JP2005079511A - Soft magnetic material and its manufacturing method - Google Patents

Soft magnetic material and its manufacturing method Download PDF

Info

Publication number
JP2005079511A
JP2005079511A JP2003311353A JP2003311353A JP2005079511A JP 2005079511 A JP2005079511 A JP 2005079511A JP 2003311353 A JP2003311353 A JP 2003311353A JP 2003311353 A JP2003311353 A JP 2003311353A JP 2005079511 A JP2005079511 A JP 2005079511A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic material
magnetic particles
particles
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003311353A
Other languages
Japanese (ja)
Other versions
JP2005079511A5 (en
Inventor
Haruhisa Toyoda
晴久 豊田
Ryoji Mizutani
良治 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Toyota Motor Corp
Original Assignee
Sumitomo Electric Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Toyota Motor Corp filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003311353A priority Critical patent/JP2005079511A/en
Priority to BRPI0414095-8A priority patent/BRPI0414095A/en
Priority to CNA2004800253531A priority patent/CN1846282A/en
Priority to EP04772795A priority patent/EP1662518A1/en
Priority to PCT/JP2004/012846 priority patent/WO2005024859A1/en
Publication of JP2005079511A publication Critical patent/JP2005079511A/en
Publication of JP2005079511A5 publication Critical patent/JP2005079511A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soft magnetic material that is optimized in electrical resistivity, and to provide a method of manufacturing the material. <P>SOLUTION: The soft magnetic material contains a plurality of composite magnetic particles. The composite magnetic particles are respectively composed of metal magnetic particles, and insulating coating films which coat the surfaces of the magnetic particles and contain at least one kind of oxide selected from among a group composed of a zirconium oxide, aluminium oxide, and silicon oxide. The soft magnetic material has an electrical resistance ratio of 3,000-50,000 μΩcm and magnetic permeability μ of 2,000-4,000. The method of manufacturing the soft magnetic material includes a step of forming a molding by pressing the plurality of composite magnetic particles, and a step of performing first heat treatment on the molding at a temperature of 400-900°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、軟磁性材料およびその製造方法に関し、より特定的には、金属磁性粒子と絶縁被膜とを有する複合磁性粒子を備える軟磁性材料およびその製造方法に関するものである。   The present invention relates to a soft magnetic material and a method for producing the same, and more particularly to a soft magnetic material including composite magnetic particles having metal magnetic particles and an insulating coating and a method for producing the same.

近年、電気電子部品の高密度化および小型化が図られており、モータコアやトランスコアなどにおいて、より精密な制御を省電力で行なえることが求められている。このため、これらの電気電子部品に使用される軟磁性材料であって、中高周波領域において優れた磁気的特性を有する軟磁性材料の開発が進められている。軟磁性材料が中高周波領域で優れた磁気的特性を有するためには、高い飽和磁束密度、高い透磁率および高い電気抵抗率を併せ持つ必要がある。   In recent years, the density and size of electric and electronic parts have been increased, and it is required that more precise control can be performed with less power in motor cores and transformer cores. For this reason, soft magnetic materials that are used in these electric and electronic parts and that have excellent magnetic properties in the mid-high frequency region are being developed. In order for a soft magnetic material to have excellent magnetic properties in the mid-high frequency region, it is necessary to have a high saturation magnetic flux density, a high magnetic permeability, and a high electrical resistivity.

このような軟磁性材料については、たとえば特開平6−267723号公報(特許文献1)に開示されている。
特開平6−267723号公報
Such a soft magnetic material is disclosed, for example, in JP-A-6-267723 (Patent Document 1).
JP-A-6-267723

しかしながら、上記の文献に開示された軟磁性材料では、電気抵抗率が高過ぎ、かつ磁束密度が小さいという問題があった。   However, the soft magnetic materials disclosed in the above documents have problems that the electrical resistivity is too high and the magnetic flux density is small.

そこで、この発明は上述のような問題点を解決するためになされたものであり、この発明の目的は、電気抵抗率が最適化された軟磁性材料およびその製造方法を提供することである。   Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a soft magnetic material having an optimized electrical resistivity and a method for manufacturing the same.

この発明に従った軟磁性材料は、複数の複合磁性粒子を備える。複数の複合磁性粒子の各々は、金属磁性粒子と、その金属磁性粒子の表面を取囲み、酸化アルミニウム、酸化ジルコニウムおよび酸化ケイ素からなる群より選ばれた少なくとも1種を含む絶縁被膜とを有する。軟磁性材料の電気抵抗率ρは3000μΩcm以上50000μΩcm以下である。   The soft magnetic material according to the present invention includes a plurality of composite magnetic particles. Each of the plurality of composite magnetic particles has a metal magnetic particle and an insulating coating that surrounds the surface of the metal magnetic particle and includes at least one selected from the group consisting of aluminum oxide, zirconium oxide, and silicon oxide. The electric resistivity ρ of the soft magnetic material is not less than 3000 μΩcm and not more than 50000 μΩcm.

より好ましくは、軟磁性材料の透磁率μは2000以上4000以下である。 この発明に従った軟磁性材料の製造方法は、上述の軟磁性材料を製造するための方法であって金属磁性粒子と、その金属磁性粒子の表面を取囲み、酸化アルミニウム、酸化ジルコニウムおよび酸化ケイ素からなる群より選ばれた少なくとも1種を含む絶縁被膜とを有する複数の複合磁性粒子を加圧することによって成形体を形成する工程と、成形体に温度400℃以上900℃以下で第1の熱処理をする工程を備える。   More preferably, the magnetic permeability μ of the soft magnetic material is 2000 or more and 4000 or less. A method for producing a soft magnetic material according to the present invention is a method for producing the above-described soft magnetic material, which surrounds metal magnetic particles and the surfaces of the metal magnetic particles, and includes aluminum oxide, zirconium oxide, and silicon oxide. Forming a molded body by pressurizing a plurality of composite magnetic particles having an insulating film containing at least one selected from the group consisting of: a first heat treatment at a temperature of 400 ° C. to 900 ° C. The process of carrying out.

好ましくは、軟磁性材料の製造方法は、第1の熱処理後、成形体を加圧した後、大気圧で温度400℃以上900℃以下で成形体に第2の熱処理をする工程を備える。   Preferably, the method for producing a soft magnetic material includes a step of pressurizing the compact after the first heat treatment, and then subjecting the compact to a second heat treatment at a temperature of 400 ° C. to 900 ° C. at atmospheric pressure.

この発明に従えば、所望の磁気特性を有する軟磁性材料およびその製造方法を提供することができる。   According to the present invention, it is possible to provide a soft magnetic material having desired magnetic characteristics and a method for manufacturing the same.

この発明に従った軟磁性材料は、複数の複合磁性粒子を有し、複合磁性粒子の各々は金属磁性粒子と、その金属磁性粒子の表面を取囲む絶縁被膜とを有する。   The soft magnetic material according to the present invention has a plurality of composite magnetic particles, and each of the composite magnetic particles has a metal magnetic particle and an insulating coating surrounding the surface of the metal magnetic particle.

金属磁性粒子は、一般的には鉄(Fe)により構成されている。しかしながら、金属磁性粒子は鉄に限定されず、他の磁性粒子で構成されてもよい。たとえば、金属磁性粒子は、鉄(Fe)−シリコン(Si)系合金、鉄(Fe)−窒素(N)系合金、鉄(Fe)−ニッケル(Ni)系合金、鉄(Fe)−炭素(C)系合金、鉄(Fe)−硼素(B)系合金、鉄(Fe)−コバルト(Co)系合金、鉄(Fe)−リン(P)系合金、鉄(Fe)−ニッケル(Ni)−コバルト(Co)系合金および、鉄(Fe)−アルミニウム(Al)−シリコン(Si)系合金などから形成されていてもよい。金属磁性粒子は、金属単体でも合金でもいずれであってもよい。   The metal magnetic particles are generally composed of iron (Fe). However, the metal magnetic particles are not limited to iron, and may be composed of other magnetic particles. For example, metal magnetic particles include iron (Fe) -silicon (Si) based alloys, iron (Fe) -nitrogen (N) based alloys, iron (Fe) -nickel (Ni) based alloys, iron (Fe) -carbon ( C) alloys, iron (Fe) -boron (B) alloys, iron (Fe) -cobalt (Co) alloys, iron (Fe) -phosphorus (P) alloys, iron (Fe) -nickel (Ni) -You may form from a cobalt (Co) type alloy, an iron (Fe) -aluminum (Al) -silicon (Si) type alloy, etc. The metal magnetic particles may be either a simple metal or an alloy.

金属磁性粒子の平均粒径は、5μm以上200μm以下であることが好ましい。金属磁性粒子の平均粒径が5μm未満である場合、金属が酸化されやすいため、軟磁性材料の磁気的特性が低下する恐れがある。また、金属磁性粒子の平均粒径が200μmを超える場合には、後に続く成形工程時において混合粉末の圧縮性が低下する。これにより、成形工程によって得られた成形体の密度が低下して取扱が困難となる恐れがある。   The average particle size of the metal magnetic particles is preferably 5 μm or more and 200 μm or less. When the average particle size of the metal magnetic particles is less than 5 μm, the metal is easily oxidized, so that the magnetic properties of the soft magnetic material may be deteriorated. On the other hand, when the average particle diameter of the metal magnetic particles exceeds 200 μm, the compressibility of the mixed powder is lowered during the subsequent molding step. Thereby, the density of the molded body obtained by the molding process may be reduced, and handling may be difficult.

なお、平均粒径とは、ふるい法によって測定した粒径のヒストグラム中、粒径の小さい方からの質量の和が総質量の50%に達する粒子の粒径、つまり50%粒径Dをいう。   The average particle diameter means the particle diameter of particles in which the sum of masses from the smaller particle diameter reaches 50% of the total mass in the histogram of particle diameters measured by the sieving method, that is, 50% particle diameter D. .

絶縁被膜は、アルミニウムおよび/またはジルコニウムおよび/またはケイ素を含む酸化物絶縁体で構成することができる。金属磁性粒子の表面を絶縁被膜で覆うことによって、軟磁性材料の電気抵抗率ρを大きくすることができる。これにより、金属磁性粒子間に渦電流が流れるのを抑制し、渦電流に起因する軟磁性材料の鉄損を低減することができる。   The insulating coating can be composed of an oxide insulator containing aluminum and / or zirconium and / or silicon. By covering the surfaces of the metal magnetic particles with an insulating coating, the electrical resistivity ρ of the soft magnetic material can be increased. Thereby, it can suppress that an eddy current flows between metal magnetic particles, and can reduce the iron loss of the soft magnetic material resulting from an eddy current.

この発明に従えば、軟磁性材料の電気抵抗率ρは3000μΩcm以上50000μΩcm以下である。電気抵抗率ρが3000μΩcm未満であれば、電気抵抗率が小さくなり、渦電流を抑制する効果が小さくなる。   According to this invention, the electrical resistivity ρ of the soft magnetic material is not less than 3000 μΩcm and not more than 50000 μΩcm. If the electrical resistivity ρ is less than 3000 μΩcm, the electrical resistivity is reduced, and the effect of suppressing eddy current is reduced.

これとは反対に、電気抵抗率ρが50000μΩcmを超えると電気抵抗率が大きくなり過ぎるため好ましくない。具体的には、電気抵抗率ρが大きくなることは、絶縁被膜の量が大きくなることを意味する。絶縁被膜が多くなり過ぎると透磁率および磁束密度などの磁気特性が悪化する。   On the contrary, if the electrical resistivity ρ exceeds 50000 μΩcm, the electrical resistivity becomes too large, which is not preferable. Specifically, increasing the electrical resistivity ρ means increasing the amount of the insulating coating. When the insulating film is too much, magnetic properties such as magnetic permeability and magnetic flux density are deteriorated.

上記効果を高めるためには、軟磁性材料の電気抵抗率ρは6000μΩcm以上15000μΩcm以下、さらに、8000μΩcm以上10000μΩcm以下であることが望ましい。   In order to enhance the above effect, the electrical resistivity ρ of the soft magnetic material is preferably 6000 μΩcm to 15000 μΩcm, and more preferably 8000 μΩcm to 10,000 μΩcm.

絶縁被膜の厚みは0.005μm以上20μm以下であることが好ましい。絶縁被膜の厚みを0.005μm以上とすることにより、渦電流によるエネルギ損失を効果的に抑制することができる。また、絶縁被膜の厚みを20μm以下とすることによって、軟磁性材料中に占める絶縁被膜の体積比率が大きくなり過ぎることがない。これにより、所定の飽和磁束密度を有する軟磁性材料を形成することができる。   The thickness of the insulating coating is preferably 0.005 μm or more and 20 μm or less. By setting the thickness of the insulating coating to 0.005 μm or more, energy loss due to eddy current can be effectively suppressed. In addition, by setting the thickness of the insulating coating to 20 μm or less, the volume ratio of the insulating coating in the soft magnetic material does not become too large. Thereby, a soft magnetic material having a predetermined saturation magnetic flux density can be formed.

より好ましくは、軟磁性材料の透磁率μは2000以上4000以下である。より好ましくは、軟磁性材料の透磁率μは2500以上3500以下である。   More preferably, the magnetic permeability μ of the soft magnetic material is 2000 or more and 4000 or less. More preferably, the magnetic permeability μ of the soft magnetic material is 2500 or more and 3500 or less.

次に、上述の軟磁性材料の製造方法について説明する。まず、複数の複合磁性粒子を準備する。この複合磁性粒子を金型に入れて、たとえば圧力390MPa以上1500MPa以下の条件で混合粉末を加圧成形する。これにより、混合粉末が圧縮されて成形体を得ることができる。加圧成形する雰囲気は、不活性ガスまたは減圧雰囲気下とすることが好ましい。この場合、大気中の酸素によって混合粉末が酸化されるのを防止することができる。成形体の形成工程において、公知技術である温間成形法や金型潤滑法を用いることにより、成形体が高密度化し、占積率が向上し、磁気特性が向上する。温間成形時の粉末温度は、100℃から180℃が好ましい。   Next, a method for producing the above soft magnetic material will be described. First, a plurality of composite magnetic particles are prepared. The composite magnetic particles are put into a mold, and the mixed powder is pressure-molded under a pressure of 390 MPa to 1500 MPa, for example. Thereby, mixed powder is compressed and a molded object can be obtained. The atmosphere for pressure molding is preferably an inert gas or a reduced pressure atmosphere. In this case, it is possible to prevent the mixed powder from being oxidized by oxygen in the atmosphere. By using a warm molding method or a mold lubrication method, which are known techniques, in the formation process of the molded body, the molded body is densified, the space factor is improved, and the magnetic properties are improved. The powder temperature during warm forming is preferably 100 ° C to 180 ° C.

なお、複合磁性粒子同士の結合を強めるために、複合磁性粒子の間に有機物を介在させてもよい。この場合、複合磁性粒子と有機物とを予め混合する必要がある。混合方法に特に制限はなく、たとえばメカニカルアロイング法、振動ボールミル、遊星ボールミル、メカノフュージョン、共沈法、化学気相蒸着法(CVD法)、物理気相蒸着法(PVD法)、めっき法、スパッタリング法、蒸着法またはゾル−ゲル法などのいずれを使用することも可能である。   In addition, in order to strengthen the coupling | bonding between composite magnetic particles, you may interpose organic substance between composite magnetic particles. In this case, it is necessary to mix the composite magnetic particles and the organic substance in advance. There is no particular limitation on the mixing method, for example, mechanical alloying method, vibration ball mill, planetary ball mill, mechanofusion, coprecipitation method, chemical vapor deposition method (CVD method), physical vapor deposition method (PVD method), plating method, Any of a sputtering method, a vapor deposition method, a sol-gel method, and the like can be used.

有機物としては、熱可塑性ポリイミド、熱可塑性ポリアミド、熱可塑性ポリアミドイミド、ポリフェニレンサルファイド、ポリアミドイミド、ポリエーテルスルホン、ポリエーテルイミドまたはポリエーテルエーテルケトンなどの熱可塑性樹脂を用いることができる。このような有機物を設けることによって、複数の複合磁性粒子の間で有機物が潤滑剤として機能する。これにより、成形工程時において、絶縁被膜が破壊されることを抑制できる。   As the organic material, thermoplastic resins such as thermoplastic polyimide, thermoplastic polyamide, thermoplastic polyamideimide, polyphenylene sulfide, polyamideimide, polyethersulfone, polyetherimide, or polyetheretherketone can be used. By providing such an organic substance, the organic substance functions as a lubricant between the plurality of composite magnetic particles. Thereby, it can suppress that an insulating film is destroyed at the time of a formation process.

次に、加圧形成によって得られた成形体を温度400℃以上900度以下で熱処理する。加圧成形の工程を経た成形体の内部には、歪みおよび転位が多数発生しており、歪および転位が透磁率の低下と保磁力の増加をひきおこしている。この歪および転位を取除くことを目的として成形体に熱処理を行なう。なお、複合磁性粒子間に有機物を介在させる場合であってもこのような熱処理は必要とされる。   Next, the molded body obtained by pressure forming is heat-treated at a temperature of 400 ° C. or higher and 900 ° C. or lower. A large number of strains and dislocations are generated in the molded body that has undergone the pressure molding process, and the strains and dislocations cause a decrease in magnetic permeability and an increase in coercive force. The molded body is heat-treated for the purpose of removing the strain and dislocation. Even when an organic substance is interposed between the composite magnetic particles, such heat treatment is required.

軟磁性材料の密度を向上させ、さらに軟磁性材料内の転位および歪みを取除くためには、再度軟磁性材料を圧縮して密度を向上させた後、軟磁性材料を大気圧で温度400℃以上900℃以下で熱処理する。   In order to improve the density of the soft magnetic material and further remove dislocations and strain in the soft magnetic material, the soft magnetic material is compressed again to increase the density, and then the soft magnetic material is heated to 400 ° C. at atmospheric pressure. Heat treatment is performed at 900 ° C. or lower.

このようにしてこの発明に従った軟磁性材料を製造することができる。   In this way, the soft magnetic material according to the present invention can be manufactured.

一般的に、軟磁性材料の保磁力が小さいとヒステリシス損失が小さくなり、ヒステリシス損失が大きいと保磁力も大きくなり、保磁力が小さいと透磁率は大きくなる。透磁率を向上させることによりヒステリシス損失の低減に繋がる。本発明では、透磁率が高くなるように材料を構成しているため、ヒステリシス損失の低減に繋がる。   Generally, when the coercive force of a soft magnetic material is small, the hysteresis loss is small. When the hysteresis loss is large, the coercive force is large. When the coercive force is small, the magnetic permeability is large. By improving the magnetic permeability, the hysteresis loss is reduced. In the present invention, the material is configured so that the magnetic permeability is high, which leads to a reduction in hysteresis loss.

また、渦電流損失を低減するためには、複合磁性粒子間の絶縁を保つことが重要である。軟磁性材料のバルク体としての比抵抗を増加させることで渦電流損失の低減に繋がる。特に、渦電流損失には、各粒子内の渦電流損失と、粒子間に亘って発生する渦電流損失がある。粒子間に亘る渦電流損失を低減する必要があり、本発明では磁気特性を損なわない範囲で軟磁性材料の比抵抗を高くしているため渦電流損失の低減が可能となる。   In order to reduce eddy current loss, it is important to maintain insulation between the composite magnetic particles. Increasing the specific resistance of the soft magnetic material as a bulk body leads to a reduction in eddy current loss. In particular, eddy current loss includes eddy current loss in each particle and eddy current loss that occurs between particles. It is necessary to reduce the eddy current loss between the particles. In the present invention, since the specific resistance of the soft magnetic material is increased within a range not impairing the magnetic characteristics, the eddy current loss can be reduced.

なお、本発明で絶縁被膜を構成する酸化アルミニウム、酸化ジルコニウムおよび酸化ケイ素の組成については特に限定されるものではない。具体的には、酸化アルミニウムの組成はAl23に限定されるものではなく、アルミニウムと酸素との原子比率は適宜変更してもよい。また、酸化ジルコニウムの組成比も、ジルコニウムと酸素の割合を適宜変更してもよい。また、酸化ケイ素の組成比もケイ素と酸素の割合を適宜変更してもよい。 The composition of aluminum oxide, zirconium oxide and silicon oxide constituting the insulating coating in the present invention is not particularly limited. Specifically, the composition of aluminum oxide is not limited to Al 2 O 3 , and the atomic ratio between aluminum and oxygen may be changed as appropriate. Further, the composition ratio of zirconium oxide may be changed as appropriate from the ratio of zirconium to oxygen. Further, the composition ratio of silicon oxide may be changed as appropriate from the ratio of silicon to oxygen.

(実施例1)
実施例1では、本発明に従った軟磁性材料を製造した。まず、金属磁性粒子として、平均粒径が70μmの鉄粉を用意した、湿式法を用いて、この鉄粉に絶縁被膜としてのAl23膜をコーティングした。この際、絶縁被膜の厚みを100nmとなるようにした。このコーティングによって、鉄粉の表面をAl23膜で取囲んだ複合磁性粒子を形成した。
(Example 1)
In Example 1, a soft magnetic material according to the present invention was manufactured. First, as a metal magnetic particle, an iron powder having an average particle diameter of 70 μm was prepared, and this iron powder was coated with an Al 2 O 3 film as an insulating film. At this time, the thickness of the insulating coating was set to 100 nm. By this coating, composite magnetic particles in which the surface of the iron powder was surrounded by an Al 2 O 3 film were formed.

複合磁性粒子と、平均粒径が100μm以下のポリフェニレンサルファイド樹脂の粒子とを混合することによって、混合粉末を形成した。混合粉末を金型に入れて加圧成形を行なった。このとき、窒素ガス雰囲気中で加圧成形を行ない、金型の温度を常温とし、加圧圧力を882MPaとした。これにより、成形体のサンプルを得た。次に、成形体を熱処理した。熱処理は、窒素ガス雰囲気中温度800℃で3時間行なった。その後サンプルの電気抵抗率、密度、透磁率を測定したところ、電気抵抗率は5670μΩcm、密度は7.5g/cm3、透磁率μは2050であった。 A mixed powder was formed by mixing the composite magnetic particles and particles of polyphenylene sulfide resin having an average particle size of 100 μm or less. The mixed powder was put into a mold and subjected to pressure molding. At this time, pressure molding was performed in a nitrogen gas atmosphere, the mold temperature was set to room temperature, and the pressure applied was set to 882 MPa. This obtained the sample of the molded object. Next, the compact was heat treated. The heat treatment was performed in a nitrogen gas atmosphere at a temperature of 800 ° C. for 3 hours. Thereafter, the electrical resistivity, density, and magnetic permeability of the sample were measured. The electrical resistivity was 5670 μΩcm, the density was 7.5 g / cm 3 , and the magnetic permeability μ was 2050.

(比較例1)
比較例1では、複合磁性粒子として、ソマロイ500(商品名)を準備した。ソマロイ500は鉄粉の表面に燐酸塩被膜が形成された複合磁性粒子である。複合磁性粒子にポリフェニレンサルファイドの粒子を混合することによって混合粉末を形成した。混合粉末を金型に入れて加圧成形を行なった。この際、窒素ガス雰囲気中で加圧成形を行ない、金型の温度を常温とし、加圧圧力を882MPaとした。これにより、成形体を得た。
(Comparative Example 1)
In Comparative Example 1, Somaloy 500 (trade name) was prepared as a composite magnetic particle. Somaloy 500 is a composite magnetic particle in which a phosphate coating is formed on the surface of iron powder. A mixed powder was formed by mixing particles of polyphenylene sulfide with the composite magnetic particles. The mixed powder was put into a mold and subjected to pressure molding. At this time, pressure molding was performed in a nitrogen gas atmosphere, the mold temperature was set to room temperature, and the pressure applied was set to 882 MPa. This obtained the molded object.

次に、成形体を熱処理した。熱処理は、窒素ガス雰囲気中で温度300℃で0.5時間行なった。その後成形体の電気抵抗率と透磁率を測定した。電気抵抗率は350μΩcm、透磁率μは600であった。   Next, the compact was heat treated. The heat treatment was performed in a nitrogen gas atmosphere at a temperature of 300 ° C. for 0.5 hours. Thereafter, the electrical resistivity and magnetic permeability of the molded body were measured. The electrical resistivity was 350 μΩcm and the magnetic permeability μ was 600.

以上の結果から、本発明による軟磁性材料によれば、軟磁性材料に求められる磁気的特性を満たすことができることを確認した。   From the above results, it was confirmed that the soft magnetic material according to the present invention can satisfy the magnetic characteristics required for the soft magnetic material.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (4)

複数の複合磁性粒子を備え、
前記複数の複合磁性粒子の各々は、金属磁性粒子と、前記金属磁性粒子の表面を取囲み、酸化アルミニウム、酸化ジルコニウムおよび酸化ケイ素からなる群より選ばれた少なくとも1種を含む絶縁被膜とを有し、
電気抵抗率ρが3000μΩcm以上50000μΩcm以下である、軟磁性材料。
Comprising a plurality of composite magnetic particles,
Each of the plurality of composite magnetic particles includes a metal magnetic particle and an insulating coating that surrounds the surface of the metal magnetic particle and includes at least one selected from the group consisting of aluminum oxide, zirconium oxide, and silicon oxide. And
A soft magnetic material having an electrical resistivity ρ of 3000 μΩcm or more and 50000 μΩcm or less.
透磁率μが2000以上4000以下である、請求項1に記載の軟磁性材料。   The soft magnetic material according to claim 1, wherein the magnetic permeability μ is 2000 or more and 4000 or less. 請求項1または2に記載の軟磁性材料の製造方法であって、
金属磁性粒子と、前記金属磁性粒子の表面を取囲み酸化アルミニウム、酸化ジルコニウムおよび酸化ケイ素からなる群より選ばれた少なくとも1種を含む絶縁被膜とを有する複数の複合磁性粒子を加圧することによって成形体を形成する工程と、
前記成形体に大気圧で温度400℃以上900℃以下で第1の熱処理をする工程とを備えた、軟磁性材料の製造方法。
A method for producing a soft magnetic material according to claim 1 or 2,
Molding by pressing a plurality of composite magnetic particles having metal magnetic particles and an insulating coating that surrounds the surface of the metal magnetic particles and includes at least one selected from the group consisting of aluminum oxide, zirconium oxide, and silicon oxide Forming a body;
And a step of subjecting the molded body to a first heat treatment at a temperature of 400 ° C. to 900 ° C. under atmospheric pressure.
前記第1の熱処理をした後に、前記成形体を加圧し、その後に大気圧で温度400℃以上900℃以下で第2の熱処理をする工程とをさらに備えた、請求項3に記載の軟磁性材料の製造方法。   The soft magnetic material according to claim 3, further comprising: pressurizing the compact after performing the first heat treatment, and then performing a second heat treatment at a temperature of 400 ° C. to 900 ° C. at atmospheric pressure. Material manufacturing method.
JP2003311353A 2003-09-03 2003-09-03 Soft magnetic material and its manufacturing method Pending JP2005079511A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003311353A JP2005079511A (en) 2003-09-03 2003-09-03 Soft magnetic material and its manufacturing method
BRPI0414095-8A BRPI0414095A (en) 2003-09-03 2004-09-03 soft magnetic material and method for producing it
CNA2004800253531A CN1846282A (en) 2003-09-03 2004-09-03 Soft magnetic material and method for producing same
EP04772795A EP1662518A1 (en) 2003-09-03 2004-09-03 Soft magnetic material and method for producing same
PCT/JP2004/012846 WO2005024859A1 (en) 2003-09-03 2004-09-03 Soft magnetic material and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003311353A JP2005079511A (en) 2003-09-03 2003-09-03 Soft magnetic material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2005079511A true JP2005079511A (en) 2005-03-24
JP2005079511A5 JP2005079511A5 (en) 2006-10-19

Family

ID=34269693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311353A Pending JP2005079511A (en) 2003-09-03 2003-09-03 Soft magnetic material and its manufacturing method

Country Status (5)

Country Link
EP (1) EP1662518A1 (en)
JP (1) JP2005079511A (en)
CN (1) CN1846282A (en)
BR (1) BRPI0414095A (en)
WO (1) WO2005024859A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150664A (en) * 2006-12-18 2008-07-03 Fuji Electric Holdings Co Ltd Soft magnetic compact and manufacturing method therefor
JP2009290024A (en) * 2008-05-29 2009-12-10 Denso Corp Method for manufacturing pressed powder magnetic core
JP2011049391A (en) * 2009-08-27 2011-03-10 Tdk Corp Soft magnetic dust core, and manufacturing method thereof
DE112009000263T5 (en) 2008-01-31 2011-05-05 Honda Motor Co., Ltd. Soft magnetic material and manufacturing method therefor
WO2012060452A1 (en) * 2010-11-04 2012-05-10 アイダエンジニアリング株式会社 High density molding method and high density molding device for mixed powder
JP2021021097A (en) * 2019-07-25 2021-02-18 Tdk株式会社 Composite magnetic powder, powder magnetic core using the same, and manufacturing method for composite magnetic powder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008023059B4 (en) * 2008-05-09 2010-06-10 Eto Magnetic Gmbh Method for producing a magnetizable metallic shaped body
CN107578872B (en) * 2017-08-10 2019-10-22 深圳市铂科新材料股份有限公司 A kind of preparation method of the metal soft magnetic powder core of high temperature heat-resistant processing
KR102004805B1 (en) * 2017-10-18 2019-07-29 삼성전기주식회사 Coil electronic component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435223B2 (en) * 1994-08-26 2003-08-11 住友特殊金属株式会社 Method for producing sendust-based sintered alloy
JP2003037018A (en) * 2001-07-23 2003-02-07 Daido Steel Co Ltd Method for manufacturing dust core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150664A (en) * 2006-12-18 2008-07-03 Fuji Electric Holdings Co Ltd Soft magnetic compact and manufacturing method therefor
DE112009000263T5 (en) 2008-01-31 2011-05-05 Honda Motor Co., Ltd. Soft magnetic material and manufacturing method therefor
JP2009290024A (en) * 2008-05-29 2009-12-10 Denso Corp Method for manufacturing pressed powder magnetic core
JP2011049391A (en) * 2009-08-27 2011-03-10 Tdk Corp Soft magnetic dust core, and manufacturing method thereof
WO2012060452A1 (en) * 2010-11-04 2012-05-10 アイダエンジニアリング株式会社 High density molding method and high density molding device for mixed powder
JP2021021097A (en) * 2019-07-25 2021-02-18 Tdk株式会社 Composite magnetic powder, powder magnetic core using the same, and manufacturing method for composite magnetic powder

Also Published As

Publication number Publication date
EP1662518A1 (en) 2006-05-31
BRPI0414095A (en) 2006-10-31
CN1846282A (en) 2006-10-11
WO2005024859A1 (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4613622B2 (en) Soft magnetic material and dust core
EP2154694A1 (en) Soft magnetic material, powder magnetic core, process for producing soft magnetic material, and process for producing powder magnetic core
JP2007088156A (en) Soft magnetic material, manufacturing method thereof, powder magnetic core, and manufacturing method thereof
WO2005083725A1 (en) Soft magnetic material, powder magnetic core and process for producing the same
JP4136936B2 (en) Method for producing composite magnetic material
JPWO2004107367A1 (en) Soft magnetic material, motor core, transformer core, and method for producing soft magnetic material
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
JP2005286145A (en) Method for manufacturing soft magnetic material, soft magnetic powder and dust core
JP2010153638A (en) Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component
JP2005336513A (en) Method for manufacturing soft-magnetic material and soft-magnetic material, and method for manufacturing dust core and dust core
JP2005079511A (en) Soft magnetic material and its manufacturing method
JPWO2005013294A1 (en) Soft magnetic material, dust core, transformer core, motor core, and method for manufacturing dust core
JP2005303006A (en) Method of manufacturing dust core and dust core
JP4507663B2 (en) Method for producing soft magnetic material, soft magnetic powder and dust core
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
US7601229B2 (en) Process for producing soft magnetism material, soft magnetism material and powder magnetic core
JP2010016290A (en) Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2007012744A (en) Dust core and manufacturing method thereof
EP1662517A1 (en) Soft magnetic material and method for producing same
JP2009290128A (en) Method for manufacturing powder magnetic core
JP2008297622A (en) Soft magnetic material, dust core, method for manufacturing soft magnetic material and method for manufacturing dust core
US20070036669A1 (en) Soft magnetic material and method for producing the same
JP2007129093A (en) Soft magnetic material and dust core manufactured by using same
CN112420309B (en) Dust core

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127