JP2008150664A - Soft magnetic compact and manufacturing method therefor - Google Patents

Soft magnetic compact and manufacturing method therefor Download PDF

Info

Publication number
JP2008150664A
JP2008150664A JP2006339965A JP2006339965A JP2008150664A JP 2008150664 A JP2008150664 A JP 2008150664A JP 2006339965 A JP2006339965 A JP 2006339965A JP 2006339965 A JP2006339965 A JP 2006339965A JP 2008150664 A JP2008150664 A JP 2008150664A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic
maximum temperature
molded body
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006339965A
Other languages
Japanese (ja)
Other versions
JP4865527B2 (en
Inventor
Kazuyoshi Shibata
一喜 柴田
Shinji Uchida
真治 内田
Sanehiro Okuda
修弘 奥田
Toyoshige Sakaguchi
豊重 坂口
Nobuyuki Tagami
暢之 田上
Yoji Okano
洋司 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp, Fuji Electric Holdings Ltd filed Critical Toda Kogyo Corp
Priority to JP2006339965A priority Critical patent/JP4865527B2/en
Publication of JP2008150664A publication Critical patent/JP2008150664A/en
Application granted granted Critical
Publication of JP4865527B2 publication Critical patent/JP4865527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a soft magnetic compact which can simultaneously achieve three objects of high magnetic permeability, inhibition for the decrease of magnetic permeability due to a direct-current superimposing magnetic field and a low loss, so as to reduce the volume of a magnetic part such as a transformer or an electric reactor which is a main component of a switching power supply. <P>SOLUTION: The method for manufacturing the soft magnetic compact comprises the steps of: preparing soft magnetic particles having a silicate film formed on the surface by making silicic acid which has been precipitated by hydrolysis of water glass deposit on soft magnetic particles; preparing a green compact by compression-molding the soft magnetic particles; and rapidly heating the green compact in atmospheric air or in a gas containing oxygen. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軟磁性成形体およびその製造方法に関し、より詳しくは、表面を珪酸膜で被覆した複合軟磁性粒子を圧粉成形した軟磁性成形体およびその製造方法に関する。本発明の製造方法により製造された軟磁性成形体は、スイッチング電源などに搭載されるトランスやリアクトルなどの磁気部品に適している。   The present invention relates to a soft magnetic molded body and a method for producing the same, and more particularly to a soft magnetic molded body obtained by compacting composite soft magnetic particles having a surface coated with a silicate film and a method for producing the same. The soft magnetic molded body manufactured by the manufacturing method of the present invention is suitable for magnetic parts such as a transformer and a reactor mounted on a switching power supply.

近年、各種電子機器は小型・軽量化されてきており、なおかつ、低消費電力化が求められている。これに伴い、電子機器に搭載される電源として高効率かつ小型のスイッチング電源に対する要求が高まっている。特にノート型パソコンや携帯電話等の小型情報機器、薄型CRT、フラットパネルディスプレイ等に用いられるスイッチング電源では、小型・薄型化が強く求められている。     In recent years, various electronic devices have been reduced in size and weight, and low power consumption has been demanded. In connection with this, the request | requirement with respect to a highly efficient and small switching power supply as a power supply mounted in an electronic device is increasing. In particular, switching power supplies used for small information devices such as notebook computers and mobile phones, thin CRTs, flat panel displays, and the like are strongly required to be small and thin.

しかし、スイッチング電源では、その主要な構成部品であるトランスやリアクトルなどの磁気部品が大きな体積を占めており、スイッチング電源を小型・薄型化するためには、これら磁気部品の体積を縮小することが必要不可欠となっていた。   However, magnetic components such as transformers and reactors, which are the main components of switching power supplies, occupy a large volume. To reduce the size and thickness of switching power supplies, the volume of these magnetic components can be reduced. It was indispensable.

従来、このような磁気部品には、センダストやパーマロイ等の金属磁性材料や、フェライト等の酸化物磁性材料が使用されていた。   Conventionally, metal magnetic materials such as Sendust and Permalloy, and oxide magnetic materials such as ferrite have been used for such magnetic parts.

金属磁性材料は、一般に高い飽和磁束密度と透磁率を有するが、電気抵抗率が低いため、特に高周波数領域では渦電流損失が大きくなってしまう。スイッチング電源では、高効率化および小型化のため回路を高周波駆動することが行われているが、上記の渦電流損失の影響から高周波駆動できないため金属磁性材料をスイッチング電源用の磁気部品に使用することは困難である。   Metallic magnetic materials generally have a high saturation magnetic flux density and magnetic permeability, but have low electrical resistivity, so that eddy current loss is particularly large in the high frequency region. In switching power supplies, circuits are driven at high frequency for high efficiency and downsizing, but metal magnetic materials are used for magnetic components for switching power supplies because they cannot be driven at high frequencies due to the effects of eddy current loss. It is difficult.

一方、フェライトに代表される酸化物磁性材料は、金属磁性材料に比べ電気抵抗率が高いため、高周波数領域でも発生する渦電流損失が小さい。しかしながら、トランスやリアクトルを小型化した場合、コイルに流す電流は同じでも磁心にかかる磁場は強くなってしまう。一般に、フェライトの飽和磁束密度は金属磁性材料に比べて小さく、スイッチング電源の磁気部品として使用した場合、上記の理由によりその小型化には限界がある。   On the other hand, an oxide magnetic material typified by ferrite has a higher electrical resistivity than a metal magnetic material, and therefore, an eddy current loss generated even in a high frequency region is small. However, when the transformer or the reactor is downsized, the magnetic field applied to the magnetic core becomes strong even if the current flowing through the coil is the same. In general, the saturation magnetic flux density of ferrite is smaller than that of a metal magnetic material, and when used as a magnetic component of a switching power supply, there is a limit to downsizing for the above reasons.

つまり、いずれの材料を用いても、スイッチング電源の磁気部品に対して要求される、高周波駆動と小型化の双方を満足させることは困難となっていた。   That is, regardless of which material is used, it has been difficult to satisfy both the high frequency driving and the miniaturization required for the magnetic components of the switching power supply.

最近、金属磁性材料および酸化物磁性材料の両者の長所を有する磁性材料として、1〜10μmの粒子からなる金属磁性材の表面をM-FexO4(但しM=Ni、Mn、Zn、x≦2)で表されるスピネル組成の金属酸化物磁性材で被覆してなる高密度焼結磁性体が提案されている(例えば、特許文献1参照)。特許文献1では、湿式フェライト製造法によりフェライトで金属磁性材の表面を被覆した後、水素または水素+窒素の還元性雰囲気中で熱処理してフェライトの完全な被覆を形成している。 Recently, as a magnetic material having the advantages of both a metal magnetic material and an oxide magnetic material, the surface of a metal magnetic material composed of particles of 1 to 10 μm has been changed to M-Fe x O 4 (where M = Ni, Mn, Zn, x There has been proposed a high-density sintered magnetic body coated with a metal oxide magnetic material having a spinel composition represented by ≦ 2) (see, for example, Patent Document 1). In Patent Document 1, the surface of a metal magnetic material is coated with ferrite by a wet ferrite manufacturing method, and then heat-treated in a reducing atmosphere of hydrogen or hydrogen + nitrogen to form a complete coating of ferrite.

さらに、表面に超音波励起フェライトめっきによって形成されたフェライト層の被覆を有する金属または金属間化合物の強磁性体微粒子粉末が圧縮成形され、前記フェライト層を介して前記強磁性体粒子間に磁路を形成するものであることを特徴とする複合磁性材料の提案もある(例えば、特許文献2参照。)。   Further, a ferromagnetic fine particle powder of a metal or an intermetallic compound having a ferrite layer coating formed by ultrasonic excitation ferrite plating on the surface is compression-molded, and a magnetic path is formed between the ferromagnetic particles via the ferrite layer. There is also a proposal of a composite magnetic material that is characterized by forming (see, for example, Patent Document 2).

特開昭56−38402号公報JP-A-56-38402 国際公開第03/015109号パンフレットWO03 / 015109 pamphlet

フェライト被覆軟磁性粉末成形体を大気中で熱処理すると成形体の透磁率は増大する。
しかし、実際にはインダクタには直流磁場が印加される。これはインダクタコイル電極に直流電流が重畳して流れるからである。被膜のフェライトはこの直流磁場のため、磁気飽和に近づきフェライト自身の透磁率が低下する。そのため、成形体透磁率も大きく低下する。
磁気部品用磁性材料としては、直流磁場が印加されても成形磁性体透磁率が低下しないあるいは低下量が少ないことが望まれている。
When the ferrite-coated soft magnetic powder compact is heat-treated in the air, the magnetic permeability of the compact increases.
However, in practice, a DC magnetic field is applied to the inductor. This is because a direct current flows superimposed on the inductor coil electrode. Since the ferrite of the film is a direct current magnetic field, the magnetic permeability of the ferrite itself decreases as it approaches magnetic saturation. For this reason, the magnetic permeability of the compact is also greatly reduced.
As a magnetic material for magnetic parts, it is desired that the magnetic permeability of the molded magnetic material does not decrease or the amount of decrease is small even when a DC magnetic field is applied.

しかし、軟磁性粉の組成を変えて軟磁性粉の直流重畳特性を改善することで直流磁場印加による透磁率低下を改善しようとすると、透磁率自体が低下してしまう。また、インダクタの損失も最小にする必要がある。すなわち、高い透磁率、直流重畳磁場による透磁率低下の低減及び低い損失という3つの課題を同時に達成することが必要であるが、フェライト被覆軟磁性粉末成形体ではこの3つの課題を同時に達成することはできなかった。   However, if the composition of the soft magnetic powder is changed to improve the DC superposition characteristics of the soft magnetic powder to improve the permeability decrease due to the application of the DC magnetic field, the permeability itself is decreased. It is also necessary to minimize inductor loss. In other words, it is necessary to simultaneously achieve the three problems of high magnetic permeability, reduction of magnetic permeability reduction due to DC superposition magnetic field, and low loss, but in the ferrite-coated soft magnetic powder compact, these three problems must be achieved simultaneously. I couldn't.

直流重畳磁場による透磁率の低下を低減するためには被膜のフェライトを非磁性材料に変えて薄くすることが有効である。被膜のフェライトは直流重畳磁場により磁気飽和に近づきフェライト自身の透磁率が低下する。そのため、成形体透磁率も低下する。成形体透磁率は軟磁性粉末の透磁率と被膜フェライトの透磁率で決まるが、被膜の透磁率の低下がなければ成形体透磁率低下は軽減される。
さらに、非磁性材の被膜は、電気抵抗が高いことが必要である。これは成形体に高周波において渦電流の発生を抑えるためである。
In order to reduce the decrease in the magnetic permeability due to the DC superimposed magnetic field, it is effective to change the thickness of the coating ferrite to a nonmagnetic material and reduce the thickness. The ferrite of the coating approaches magnetic saturation due to the DC superimposed magnetic field, and the permeability of the ferrite itself decreases. For this reason, the magnetic permeability of the molded body also decreases. The compact permeability is determined by the magnetic permeability of the soft magnetic powder and the permeability of the coating ferrite. However, if the permeability of the coating is not reduced, the reduction in the permeability of the compact is reduced.
Furthermore, the coating of nonmagnetic material needs to have a high electrical resistance. This is to suppress the generation of eddy currents in the molded body at high frequency.

そこで、非磁性材料で電気絶縁性のあるケイ素の酸化物を被膜として用いる。しかし、被膜の厚みは20nm以下の厚みにする必要がある。非磁性被膜の厚みが厚いと成形体透磁率が大きく下がってしまうからである。非磁性被膜の厚みは1nm以上であることが好ましい。1nm未満であるとピンホールの発生などにより電気抵抗を十分高く維持できなくなるおそれがある。この20nm以下という薄い膜を再現性良く成膜するために、軟磁性粒子の表面に水ガラスの加水分解により析出する珪酸を付着させて珪酸膜を成膜する方法を用いる。ちなみに、フェライト膜の場合は、膜厚は約100nmである。   Therefore, a non-magnetic material and an electrically insulating silicon oxide are used as the coating. However, the thickness of the film needs to be 20 nm or less. This is because if the thickness of the non-magnetic coating is thick, the magnetic permeability of the molded product is greatly reduced. The thickness of the nonmagnetic coating is preferably 1 nm or more. If it is less than 1 nm, the electrical resistance may not be maintained sufficiently high due to the generation of pinholes. In order to form a thin film of 20 nm or less with good reproducibility, a method of forming a silicate film by attaching silicic acid precipitated by hydrolysis of water glass to the surface of soft magnetic particles is used. Incidentally, in the case of a ferrite film, the film thickness is about 100 nm.

即ち、本発明の軟磁性成形体の製造方法は、軟磁性粒子の表面に水ガラスの加水分解により析出する珪酸を付着させて珪酸膜を成膜した軟磁性粒子を用いた圧粉成形体を大気中あるいは酸素を含むガス中で急速加熱熱処理することを特徴とする。   That is, the method for producing a soft magnetic molded body of the present invention comprises a compacted body using soft magnetic particles in which silicic acid deposited by hydrolysis of water glass is adhered to the surface of the soft magnetic particles to form a silicate film. It is characterized by rapid heat treatment in the atmosphere or a gas containing oxygen.

本発明の製造方法によれば、μ′が大きくμ″が小さく相対損失係数が5×10−4未満であり、さらに、直流重畳磁場下においてもμ′の低下が少ない軟磁性成形体を得ることができる。 According to the production method of the present invention, a soft magnetic molded body having a large μ ′, a small μ ″, a relative loss coefficient of less than 5 × 10 −4 , and a small decrease in μ ′ even under a DC superimposed magnetic field is obtained. be able to.

本発明において、軟磁性粒子としては、例えば純鉄、鉄系合金、鉄−ケイ素合金、パーマロイをはじめとした鉄−ニッケル合金、センダスト合金、コバルトおよびコバルト系合金、ニッケルおよびニッケル合金、各種アモルファス合金などの各種の軟磁性材料からなる粒子、粒子の粒界に酸化物や炭化物などの不純物を析出させた軟磁性粒子を挙げることができ、パーマロイからなる粒子であることが好ましい。   In the present invention, the soft magnetic particles include, for example, pure iron, iron alloys, iron-silicon alloys, iron-nickel alloys such as permalloy, sendust alloys, cobalt and cobalt alloys, nickel and nickel alloys, and various amorphous alloys. Examples thereof include particles made of various soft magnetic materials such as soft magnetic particles in which impurities such as oxides and carbides are precipitated at the grain boundaries, and particles made of permalloy are preferable.

パーマロイはNi組成およびMo、Cu、Cr、Mn、Al、Siなどの添加元素組成など種々の組成のものがあるが、Ni78FeMo5パーマロイ(Niが78重量%、Moが5重量%、残りがFeからなるパーマロイ)をはじめとして種々の組成のパーマロイのいずれも用いることができる。   Permalloy has various compositions such as Ni composition and additive element composition such as Mo, Cu, Cr, Mn, Al, Si, etc., but Ni78FeMo5 permalloy (Ni is 78 wt%, Mo is 5 wt%, the rest is Fe Any of the permalloys having various compositions can be used.

水ガラスは組成がNa0・xSiO・nH0(x=2〜4)で、これを水に溶かした溶液はアルカリ性を示す。この溶液に軟磁性粒子を入れ、酸を溶液に加えると加水分解してゲル状の珪酸(HSiO)が析出し、軟磁性粒子表面に付着する。この後、軟磁性粒子を乾燥させれば、表面に珪酸膜が成膜された軟磁性粒子が得られる。珪酸膜の膜厚は、水ガラス水溶液の濃度で制御可能であり、20nm以下(1〜20nm)という薄い膜を再現性よく成膜できる。 Water glass has a composition of Na 2 0 · xSiO 2 · nH 2 0 (x = 2 to 4), and a solution obtained by dissolving this in water shows alkalinity. When soft magnetic particles are put into this solution and acid is added to the solution, it is hydrolyzed and gel silicic acid (H 2 SiO 3 ) is precipitated and adheres to the surface of the soft magnetic particles. Thereafter, if the soft magnetic particles are dried, soft magnetic particles having a silicate film formed on the surface can be obtained. The film thickness of the silicate film can be controlled by the concentration of the water glass aqueous solution, and a thin film of 20 nm or less (1 to 20 nm) can be formed with good reproducibility.

こうして得られた珪酸膜を有する軟磁性粒子を圧縮成形して圧粉成形体を得る。
圧縮成形方法としては、金型を用いて、例えば上下方向から加圧圧縮する単軸圧縮成形、圧縮圧延成形、電気絶縁性非磁性被膜を有する軟磁性粒子をゴム型などにつめて全方向から加圧圧縮する静圧圧縮成形、これらを温間で行う温間単軸圧縮成形、温間静圧圧縮成形(WIP)、熱間で行う熱間単軸圧縮成形および熱間静圧圧縮成形(HIP)などを用いることができる。
The soft magnetic particles having the silicate film thus obtained are compression molded to obtain a green compact.
As a compression molding method, using a mold, for example, uniaxial compression molding that compresses and compresses in the vertical direction, compression rolling molding, soft magnetic particles having an electrically insulating nonmagnetic coating are packed in a rubber mold and the like from all directions. Hydrostatic compression molding that compresses and compresses, warm uniaxial compression molding that performs these in warm, warm hydrostatic compression molding (WIP), hot uniaxial compression molding that performs hot, and hot hydrostatic compression molding ( HIP) or the like can be used.

本発明においては、得られた圧粉成形体を熱処理する。熱処理することにより透磁率が高く(μ′(透磁率の実部)が大きく)、損失の小さい(μ″(透磁率の虚部)が小さい)成形体を得ることができる。熱処理の最高到達温度は600〜700℃であることが好ましい。最高到達温度が700℃を超えるとμ′も大きくなるが、μ″が大きくなりすぎ、損失が大きくなる。最高到達温度が600℃未満であるとμ′があまり大きくならない。μ′が大きく、μ″が小さくなるようにするために、熱処理の最高到達温度が600〜700℃であることが好ましい。   In the present invention, the obtained green compact is heat-treated. By heat treatment, it is possible to obtain a molded article having high permeability (μ ′ (real part of magnetic permeability) is large) and low loss (small μ ″ (imaginary part of magnetic permeability)). The temperature is preferably 600 to 700 ° C. When the maximum temperature reaches 700 ° C., μ ′ increases, but μ ″ becomes too large and loss increases. When the maximum temperature is less than 600 ° C., μ ′ does not become so large. In order to make μ ′ large and μ ″ small, it is preferable that the maximum temperature of heat treatment is 600 to 700 ° C.

最高到達温度の保持時間は最高到達温度が高いほど短くすることが好ましい。したがって、本発明においては、急速加熱熱処理を採用する。
急速加熱熱処理とは、最高到達温度を550℃以上、750℃以下、好ましくは600〜700℃とし、少なくとも300℃以上における昇温速度及び降温速度を100℃/min以上、好ましくは200℃/min以上の速度で行い、最高到達温度での保持時間を2000s(秒)以下とする熱処理である。昇温速度及び降温速度の上限は用いる熱処理装置の装置特性で決まる値である。
最高到達温度と最高到達温度での最長保持時間の関係に付き各種実験を積み重ねた結果、例えば、加熱・冷却速度が300℃/sの場合、最高到達温度と最高到達温度での最長保持時間は、図1に示される関係があることがわかった。これを数式で示すと、最長保持時間をt(単位はs(秒))、最高到達温度をT(単位は℃)としたとき、下記式で示されることがわかった。
t=10−0.02*T+15.3
図1から、700℃では保持時間は20s以下、より好ましくは1〜20s、680℃では50s以下、650℃では200s以下、630℃では500s以下、600℃では2000s以下にするのが好ましいことがわかった。長すぎるとμ″が大きくなりすぎ損失が増大する。なお、保持時間が短すぎるとμ′が十分大きくならない。熱処理時間は相対損失係数(=μ″/(μ′))が5×10−4未満になるような範囲に留めるのが良い。
熱処理中のガス雰囲気は、大気あるいは酸素含有ガスが好適である。
It is preferable that the retention time of the maximum temperature is shorter as the maximum temperature is higher. Therefore, in the present invention, a rapid heating heat treatment is employed.
Rapid heating heat treatment means that the highest temperature is 550 ° C. or higher and 750 ° C. or lower, preferably 600 to 700 ° C., and the temperature rising rate and temperature decreasing rate at least 300 ° C. or higher are 100 ° C./min or higher, preferably 200 ° C./min The heat treatment is performed at the above speed, and the holding time at the maximum temperature reached is 2000 s (seconds) or less. The upper limit of the heating rate and the cooling rate is a value determined by the device characteristics of the heat treatment device used.
As a result of accumulating various experiments related to the relationship between the maximum temperature reached and the longest retention time at the maximum temperature, for example, when the heating / cooling rate is 300 ° C / s, the maximum retention time at the maximum temperature and the maximum temperature is The relationship shown in FIG. 1 was found. When this is expressed by a mathematical formula, it is found that the maximum retention time is represented by the following formula where t (unit is s (seconds)) and the maximum temperature reached is T (unit is ° C.).
t = 10 −0.02 * T + 15.3
From FIG. 1, it is preferable that the holding time at 700 ° C. is 20 s or less, more preferably 1 to 20 s, 680 ° C. is 50 s or less, 650 ° C. is 200 s or less, 630 ° C. is 500 s or less, and 600 ° C. is 2000 s or less. all right. If too long, μ ″ becomes too large and loss increases. If the holding time is too short, μ ′ does not increase sufficiently. The heat treatment time has a relative loss coefficient (= μ ″ / (μ ′ 2 )) of 5 × 10. It is good to keep in the range which becomes less than -4 .
The gas atmosphere during the heat treatment is preferably air or an oxygen-containing gas.

特に軟磁性粒子としてパーマロイを用いると、600〜700℃の急速加熱熱処理においてパーマロイ成形体は透磁率が大きく向上し、相対損失は小さい。更に、直流重畳特性も良い。すなわち、高透磁率、低相対損失、直流重畳による透磁率低滅も小さい圧粉成形体が得られる。   In particular, when permalloy is used as the soft magnetic particles, the magnetic permeability of the permalloy molded body is greatly improved and the relative loss is small in the rapid heat treatment at 600 to 700 ° C. Furthermore, direct current superposition characteristics are also good. That is, a compacted body with high magnetic permeability, low relative loss, and low permeability due to DC superposition can be obtained.

以下に、実施例を用いて、本発明を更に説明する。   The present invention will be further described below with reference to examples.

<実施例1>
粒子径8μmのNi78FeMo5パーマロイ粉末表面に珪酸膜を形成した。即ち、パーマロイ粉末を水ガラス水溶液に投入した。水ガラスは組成がNa0・xSiO・nH0(x=2〜4)で、これを水に溶かした溶液はアルカリ性を示す。この水溶液に液のpHが8.5になるまで塩酸を滴下した。塩酸滴下により水ガラスが加水分解してゲル状の珪酸(HSiO)がパーマロイ粉末表面に析出した。次に、パーマロイ粉末を水で洗浄した後、乾燥させて、珪酸膜被覆パーマロイ粉末を得た。珪酸膜の膜厚は10nmであった。
<Example 1>
A silicate film was formed on the surface of Ni78FeMo5 permalloy powder having a particle diameter of 8 μm. That is, permalloy powder was put into a water glass aqueous solution. Water glass has a composition of Na 2 0 · xSiO 2 · nH 2 0 (x = 2 to 4), and a solution obtained by dissolving this in water shows alkalinity. Hydrochloric acid was added dropwise to this aqueous solution until the pH of the solution reached 8.5. Water glass was hydrolyzed by dropping hydrochloric acid, and gel-like silicic acid (H 2 SiO 3 ) was deposited on the surface of the permalloy powder. Next, the permalloy powder was washed with water and then dried to obtain a silicate film-coated permalloy powder. The thickness of the silicate film was 10 nm.

この珪酸膜被覆パーマロイ粒子粉末をプレス圧力784MPa(8トン重/cm)で内径3mm、外径8mm、厚さ0.3mmのトロイダル状に圧縮成形した。
この成形体を大気中で、最高到達温度700℃、最高到達温度保持時間1s、加熱速度、冷却速度ともに300℃/minの急速加熱処理を行った。
This silicic acid film-coated permalloy particle powder was compression-molded into a toroidal shape having an inner diameter of 3 mm, an outer diameter of 8 mm, and a thickness of 0.3 mm at a press pressure of 784 MPa (8 ton weight / cm 2 ).
This compact was subjected to a rapid heat treatment in the atmosphere at a maximum temperature of 700 ° C., a maximum temperature holding time of 1 s, a heating rate and a cooling rate of 300 ° C./min.

こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。
得られた成形体の2MHzにおけるμ′は159、μ″は9であった。このときの相対損失係数は3.6×10−4であった。また、直流重畳磁場が500A/mのときのμ′は149であった。
It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.
The obtained molded body had a μ ′ of 159 and a μ ″ of 9 at 2 MHz. The relative loss coefficient was 3.6 × 10 −4 . When the DC superposition magnetic field was 500 A / m, The μ ′ was 149.

<実施例2>
実施例1と同様にして、平均粒子径8μmのNi78FeMo5パーマロイ粒子粉末の表面に10nmの膜厚の珪酸被膜を形成し、内径3mm、外径8mm、厚さ0.3mmのトロイダル状成形体を得た。
この成形体を大気中で、最高到達温度650℃、最高到達温度保持時間60s、加熱速度、冷却速度ともに300℃/minの急速加熱熱処理を行った。
こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。
得られた成形体の2MHzにおけるμ′は153、μ″は8であった。このときの相対損失係数は3.4×10−4であった。また、直流重畳磁場が500A/mのときのμ′は145であった。
<Example 2>
In the same manner as in Example 1, a 10 nm thick silicic acid coating was formed on the surface of Ni78FeMo5 permalloy particles having an average particle diameter of 8 μm to obtain a toroidal shaped body having an inner diameter of 3 mm, an outer diameter of 8 mm, and a thickness of 0.3 mm. It was.
This compact was subjected to a rapid heating heat treatment in the atmosphere at a maximum temperature of 650 ° C., a maximum temperature holding time of 60 s, a heating rate and a cooling rate of 300 ° C./min.
It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.
The obtained molded product had a μ ′ of 153 at 2 MHz and a μ ″ of 8. The relative loss factor at this time was 3.4 × 10 −4 . When the DC superimposed magnetic field was 500 A / m. The μ ′ was 145.

<実施例3>
実施例1と同様にして、平均粒子径8μmのNi78FeMo5パーマロイ粒子粉末の表面に10nmの膜厚の珪酸被膜を形成し、内径3mm、外径8mm、厚さ0.3mmのトロイダル状成形体を得た。
この成形体を大気中で、最高到達温度600℃、最高到達温度保持時間1000s、加熱速度、冷却速度ともに300℃/minの急速加熱熱処理を行った。
こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。
得られた成形体の2MHzにおけるμ′は138、μ″は6であった。このときの相対損失係数は3.2×10−4であった。また、直流重畳磁場が500A/mのときのμ′は133であった。
<Example 3>
In the same manner as in Example 1, a 10 nm thick silicic acid coating was formed on the surface of Ni78FeMo5 permalloy particles having an average particle diameter of 8 μm to obtain a toroidal shaped body having an inner diameter of 3 mm, an outer diameter of 8 mm, and a thickness of 0.3 mm. It was.
This compact was subjected to a rapid heating heat treatment in the atmosphere at a maximum temperature of 600 ° C., a maximum temperature holding time of 1000 s, a heating rate and a cooling rate of 300 ° C./min.
It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.
The obtained molded product had a μ ′ of 138 at 2 MHz and a μ ″ of 6. The relative loss factor at this time was 3.2 × 10 −4 . When the DC superimposed magnetic field was 500 A / m. The μ ′ was 133.

<実施例4>
水ガラス濃度を実施例1の場合の倍にした以外は実施例1と同様にして、平均粒子径8μmのNi78FeMo5パーマロイ粒子粉末の表面に20nmの膜厚の珪酸被膜を形成し、内径3mm、外径8mm、厚さ0.3mmのトロイダル状成形体を得た。
この成形体を大気中で、最高到達温度700℃、最高到達温度保持時間1s、加熱速度、冷却速度ともに300℃/minの急速加熱熱処理を行った。
こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。
得られた成形体の2MHzにおけるμ′は130、μ″は4であった。このときの相対損失係数は2.4×10−4であった。また、直流重畳磁場が500A/mのときのμ′は123であった。
<Example 4>
A silica film with a thickness of 20 nm was formed on the surface of Ni78FeMo5 permalloy particles having an average particle diameter of 8 μm, except that the water glass concentration was doubled in the case of Example 1, and the inner diameter was 3 mm. A toroidal shaped body having a diameter of 8 mm and a thickness of 0.3 mm was obtained.
This molded body was subjected to a rapid heating heat treatment in the atmosphere at a maximum temperature of 700 ° C., a maximum temperature holding time of 1 s, a heating rate and a cooling rate of 300 ° C./min.
It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.
The obtained compact had a μ ′ of 130 and 2 ″ at 4 MHz at 2 MHz. The relative loss factor at this time was 2.4 × 10 −4 . When the DC superimposed magnetic field was 500 A / m. The μ ′ was 123.

<実施例5>
実施例1と同様にして、平均粒子径8μmのNi55FeMo5パーマロイ粒子粉末の表面に10nmの膜厚の珪酸被膜を形成し、内径3mm、外径8mm、厚さ0.3mmのトロイダル状成形体を得た。
この成形体を大気中で、最高到達温度700℃、最高到達温度保持時間1s、加熱速度、冷却速度ともに300℃/minの急速加熱熱処理を行った。
こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。
得られた成形体の2MHzにおけるμ′は73、μ″は1であった。このときの相対損失係数は1.9×10−4であった。また、直流重畳磁場が500A/mのときのμ′は70であった。
<Example 5>
In the same manner as in Example 1, a 10 nm thick silicic acid coating was formed on the surface of Ni55FeMo5 permalloy particles having an average particle diameter of 8 μm to obtain a toroidal shaped body having an inner diameter of 3 mm, an outer diameter of 8 mm, and a thickness of 0.3 mm. It was.
This molded body was subjected to a rapid heating heat treatment in the atmosphere at a maximum temperature of 700 ° C., a maximum temperature holding time of 1 s, a heating rate and a cooling rate of 300 ° C./min.
It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.
The obtained molded product had a μ ′ of 73 at 2 MHz and a μ ″ of 1. The relative loss factor at this time was 1.9 × 10 −4 . When the DC superposition magnetic field was 500 A / m. The μ ′ was 70.

<比較例1>
実施例1で用いたのと同様の平均粒子径8μmのNi78FeMo5パーマロイ粒子粉末を用い、超音波励起フェライトめっき法によりフェライトめっき軟磁性粒子を以下のようにして作製した。
<Comparative Example 1>
Using the same Ni78FeMo5 permalloy particle powder having an average particle diameter of 8 μm as used in Example 1, ferrite-plated soft magnetic particles were produced by the ultrasonic excitation ferrite plating method as follows.

めっき反応液としてはFeCl+NiCl+ZnClの水溶液、酸化液としてはNaNO+NHOHを用いて超音波励起フェライトめっきを行い、めっき膜厚100nmのフェライトめっき軟磁性粒子を得た。 Ultrasound-excited ferrite plating was performed using an aqueous solution of FeCl 2 + NiCl 2 + ZnCl 2 as the plating reaction solution and NaNO 2 + NH 4 OH as the oxidizing solution to obtain ferrite-plated soft magnetic particles having a plating film thickness of 100 nm.

このフェライトめっきパーマロイ粒子粉末をプレス圧力784MPa(8トン重/cm)で内径3mm、外径8mm、厚さ0.3mmのトロイダル状に圧縮成形した。
この成形体を窒素中で、最高到達温度550℃、最高到達温度保持時間1s、加熱速度、冷却速度ともに300℃/minの急速加熱処理を行った。
こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。
得られた成形体の2MHzにおけるμ′は151、μ″は11であった。このときの相対損失係数は4.8×10−4であった。また、直流重畳磁場が500A/mのときのμ′は108であった。
This ferrite-plated permalloy particle powder was compression-molded into a toroidal shape having an inner diameter of 3 mm, an outer diameter of 8 mm, and a thickness of 0.3 mm at a press pressure of 784 MPa (8 ton weight / cm 2 ).
This compact was subjected to a rapid heat treatment in nitrogen at a maximum temperature of 550 ° C., a maximum temperature holding time of 1 s, a heating rate and a cooling rate of 300 ° C./min.
It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.
The obtained molded body had a μ ′ of 151 and 2 ″ of 11 at 2 MHz. The relative loss factor was 4.8 × 10 −4 . When the DC superposed magnetic field was 500 A / m. The μ ′ was 108.

<比較例2>
実施例5で用いたのと同様の平均粒子径8μmのNi55FeMo5パーマロイ粒子粉末を用い、超音波励起フェライトめっき法によりフェライトめっき軟磁性粒子を以下のようにして作製した。
めっき反応液としてはFeCl+NiCl+ZnClの水溶液、酸化液としてはNaNO+NHOHを用いて超音波励起フェライトめっきを行い、めっき膜厚100nmのフェライトめっき軟磁性粒子を得た。
<Comparative example 2>
Using the same Ni55FeMo5 permalloy particle powder having an average particle diameter of 8 μm as used in Example 5, ferrite-plated soft magnetic particles were produced by the ultrasonic excitation ferrite plating method as follows.
Ultrasound-excited ferrite plating was performed using an aqueous solution of FeCl 2 + NiCl 2 + ZnCl 2 as the plating reaction solution and NaNO 2 + NH 4 OH as the oxidizing solution to obtain ferrite-plated soft magnetic particles having a plating film thickness of 100 nm.

このフェライトめっきパーマロイ粒子粉末をプレス圧力784MPa(8トン重/cm)で内径3mm、外径8mm、厚さ0.3mmのトロイダル状に圧縮成形した。
この成形体を窒素中で、最高到達温度700℃、最高到達温度保持時間1s、加熱速度、冷却速度ともに300℃/minの急速加熱処理を行った。
こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。
得られた成形体の2MHzにおけるμ′は74、μ″は3であった。このときの相対損失係数は5.5×10−4であった。また、直流重畳磁場が500A/mのときのμ′は67であった。
This ferrite-plated permalloy particle powder was compression-molded into a toroidal shape having an inner diameter of 3 mm, an outer diameter of 8 mm, and a thickness of 0.3 mm at a press pressure of 784 MPa (8 ton weight / cm 2 ).
This compact was subjected to a rapid heat treatment in nitrogen at a maximum temperature of 700 ° C., a maximum temperature holding time of 1 s, a heating rate and a cooling rate of 300 ° C./min.
It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.
The obtained molded product had a μ ′ of 74 at 2 MHz and a μ ″ of 3. The relative loss factor at this time was 5.5 × 10 −4 . When the DC superposition magnetic field was 500 A / m. The μ ′ was 67.

Ni78FeMo5パーマロイに関する実施例1〜4と比較例1の比較から、実施例1,2ではμ′は比較例1よりも大きく、μ″は比較例1より小さいことがわかる。実施例3,4ではμ′は比較例1よりも小さいものの、μ″が比較例1よりも格段に小さくなっている。500m/Aの直流重畳磁場の下でのμ′は、実施例1〜4では比較例より格段に大きい、各実施例とも、相対損失係数は比較例より小さいことがわかる。   From comparison between Examples 1 to 4 and Comparative Example 1 regarding Ni78FeMo5 permalloy, it can be seen that in Examples 1 and 2, μ ′ is larger than Comparative Example 1 and μ ″ is smaller than Comparative Example 1. In Examples 3 and 4. Although μ ′ is smaller than Comparative Example 1, μ ″ is much smaller than Comparative Example 1. The μ ′ under a DC superimposed magnetic field of 500 m / A is much larger in Examples 1 to 4 than in the comparative example, and it can be seen that the relative loss coefficient is smaller in each example than in the comparative example.

また、比較例2は実施例5で用いたと同じ組成のパーマロイを用いて、従来の方法で製造した例であり、Ni55FeMo5パーマロイに関する実施例5と比較例2より、実施例5のμ′は比較例2のμ′と同程度であるものの、μ″は比較例2(および比較例1)より小さいことがわかる。500m/Aの直流重畳磁場の下でのμ′は比較例2より大きい。特に相対損失係数については、実施例5が比較例1,2より小さくなっていることがわかる。   Further, Comparative Example 2 is an example produced by a conventional method using a permalloy having the same composition as that used in Example 5. Compared with Example 5 and Comparative Example 2 regarding Ni55FeMo5 permalloy, μ ′ of Example 5 is a comparison. It can be seen that μ ″ is smaller than Comparative Example 2 (and Comparative Example 1) although it is comparable to μ ′ of Example 2. μ ′ under a DC superimposed magnetic field of 500 m / A is larger than Comparative Example 2. Particularly regarding the relative loss coefficient, it can be seen that Example 5 is smaller than Comparative Examples 1 and 2.

本発明の製造方法によれば、μ′が大きくμ″が小さく相対損失係数が5×10−4未満であり、さらに、直流重畳磁場下においてもμ′の低下が少ない軟磁性成形体を得ることができる。従って、本発明の製造方法で得られる軟磁性成形体を用いれば、スイッチング電源を小型・薄型化することができる。 According to the production method of the present invention, a soft magnetic molded body having a large μ ′, a small μ ″, a relative loss coefficient of less than 5 × 10 −4 , and a small decrease in μ ′ even under a DC superimposed magnetic field is obtained. Therefore, if the soft magnetic molded body obtained by the manufacturing method of the present invention is used, the switching power supply can be reduced in size and thickness.

最高到達温度と最高到達温度における最長保持時間の関係を示す図である。It is a figure which shows the relationship between the maximum attainment temperature and the longest holding time in the maximum attainment temperature.

Claims (6)

水ガラスの加水分解により析出した珪酸を軟磁性粒子に付着させて表面に珪酸膜を成膜した軟磁性粒子を用いて圧縮成形してなる圧粉成形体を大気中あるいは酸素を含むガス中で急速加熱熱処理することを特徴とする軟磁性成形体の製造方法。   A compact molded body formed by compression molding using soft magnetic particles having silicic acid deposited by hydrolysis of water glass attached to soft magnetic particles and having a silicic acid film formed on the surface is formed in the atmosphere or in a gas containing oxygen. A method for producing a soft magnetic molded article, characterized by performing rapid thermal treatment. 前記珪酸膜の膜厚が20nm以下であることを特徴とする請求項1記載の軟磁性成形体の製造方法。   The method for producing a soft magnetic molded body according to claim 1, wherein the thickness of the silicate film is 20 nm or less. 前記急速加熱熱処理における最高到達温度が600〜700℃であることを特徴とする請求項1または2記載の軟磁性成形体の製造方法。   3. The method for producing a soft magnetic molded body according to claim 1, wherein the maximum temperature reached in the rapid thermal treatment is 600 to 700 ° C. 4. 前記軟磁性材料がパーマロイであることを特徴とする請求項1〜3のいずれか1項に記載の軟磁性成形体の製造方法。   The method for producing a soft magnetic molded body according to any one of claims 1 to 3, wherein the soft magnetic material is permalloy. 熱処理の最高到達温度と最高到達温度における最長保持時間の関係が、最高到達温度680〜700℃のとき最高到達温度における最長保持時間が1〜50s、650〜680℃のとき50〜200s、630〜650℃のとき200〜500s、600〜630℃のとき500〜2000sであることを特徴とする請求項1〜4のいずれか1項に記載の軟磁性成形体の製造方法。   The relationship between the maximum temperature of heat treatment and the longest holding time at the maximum temperature is 1 to 50 s when the maximum temperature is 680 to 700 ° C, 50 to 200 s and 630 to 650 to 680 ° C. 5. The method for producing a soft magnetic molded body according to claim 1, wherein the method is 200 to 500 s at 650 ° C. and 500 to 2000 s at 600 to 630 ° C. 5. 水ガラスの加水分解により析出した珪酸を軟磁性粒子に付着させて表面に膜厚が20nm以下である珪酸膜を成膜した軟磁性粒子を用いて圧縮成形してなる圧粉成形体を大気中あるいは酸素を含むガス中で急速加熱熱処理してなることを特徴とする軟磁性成形体。   A compact molded body formed by compression molding using soft magnetic particles in which silicic acid deposited by hydrolysis of water glass is attached to soft magnetic particles and a silicate film having a thickness of 20 nm or less is formed on the surface is formed in the atmosphere. Alternatively, a soft magnetic shaped article obtained by rapid heat treatment in a gas containing oxygen.
JP2006339965A 2006-12-18 2006-12-18 Soft magnetic molded body and method for producing the same Active JP4865527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339965A JP4865527B2 (en) 2006-12-18 2006-12-18 Soft magnetic molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339965A JP4865527B2 (en) 2006-12-18 2006-12-18 Soft magnetic molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008150664A true JP2008150664A (en) 2008-07-03
JP4865527B2 JP4865527B2 (en) 2012-02-01

Family

ID=39653152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339965A Active JP4865527B2 (en) 2006-12-18 2006-12-18 Soft magnetic molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4865527B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040243A (en) * 1999-07-30 2001-02-13 Nittetsu Mining Co Ltd Magenta-colored powder and its production
JP2005079511A (en) * 2003-09-03 2005-03-24 Sumitomo Electric Ind Ltd Soft magnetic material and its manufacturing method
JP2006128307A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Manufacturing method of soft magnetic compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040243A (en) * 1999-07-30 2001-02-13 Nittetsu Mining Co Ltd Magenta-colored powder and its production
JP2005079511A (en) * 2003-09-03 2005-03-24 Sumitomo Electric Ind Ltd Soft magnetic material and its manufacturing method
JP2006128307A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Manufacturing method of soft magnetic compact

Also Published As

Publication number Publication date
JP4865527B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4872833B2 (en) Powder magnetic core and manufacturing method thereof
JP2006351946A (en) Method for manufacturing soft magnetic compact
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
US8974608B2 (en) Powder magnetic core and the method of manufacturing the same
WO2018179812A1 (en) Dust core
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JPWO2003015109A1 (en) Ferrite-coated fine metal particle compression molded composite magnetic material and method for producing the same
JP2009164401A (en) Manufacturing method of dust core
US20150325346A1 (en) HARD-SOFT MAGNETIC MnBi/SiO2/FeCo NANOPARTICLES
JP2006287004A (en) Magnetic core for high frequency and inductance component using it
JP2009158802A (en) Manufacturing method of dust core
US10910153B2 (en) Superparamagnetic iron cobalt alloy and silica nanoparticles of high magnetic saturation and a magnetic core containing the nanoparticles
JP2009054709A (en) Dust core and manufacturing method therefor
JP2009295613A (en) Method of manufacturing dust core
JP2012204744A (en) Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same
JP2009164402A (en) Manufacturing method of dust core
JP4865527B2 (en) Soft magnetic molded body and method for producing the same
JP2005167097A (en) Magnetic component and method for manufacturing the same
JP2006080166A (en) Dust core
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
WO2022121208A1 (en) Soft magnetic powder, preparation method therefor, and use thereof
JP2005311078A (en) Composite magnetic component and manufacturing method thereof
JP2005136358A (en) Magnetic core and soft magnetic iron-based powder
JP2004014613A (en) PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JP2007067219A (en) Composite magnetic material, magnetic component and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4865527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250