JP2012204744A - Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same - Google Patents

Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same Download PDF

Info

Publication number
JP2012204744A
JP2012204744A JP2011069906A JP2011069906A JP2012204744A JP 2012204744 A JP2012204744 A JP 2012204744A JP 2011069906 A JP2011069906 A JP 2011069906A JP 2011069906 A JP2011069906 A JP 2011069906A JP 2012204744 A JP2012204744 A JP 2012204744A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
metal powder
magnetic metal
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011069906A
Other languages
Japanese (ja)
Inventor
Hisato Tokoro
久人 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011069906A priority Critical patent/JP2012204744A/en
Publication of JP2012204744A publication Critical patent/JP2012204744A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a soft magnetic metal powder superior in oxidation resistance; a powder magnetic core having a high magnetic permeability and high density; and methods for producing the same.SOLUTION: The soft magnetic metal powder is obtained by containing Al powders together with carbon powders therein as a reducing agent for performing solid reduction for iron oxide powders, has an average particle diameter of 1 μm or more, is a metal powder of an Fe particle, which has a surface covered with carbon and oxide aluminum, and of which a 1.0% or more weight increase temperature measured in thermogravimetry analysis that is a method of heating the powder in air is 450°C or higher. The powder magnetic core is produced by using the soft magnetic metal powder and at lease one of an organic resin and an inorganic oxide, and has a density of 6.0 Mg/mor more.

Description

本発明は、表面に被覆が形成された耐酸化性の軟磁性金属粉末とその製造する方法に関するものである。   The present invention relates to an oxidation-resistant soft magnetic metal powder having a coating formed on its surface and a method for producing the same.

チョークコイルやインダクタ素子、トランス等の磁心材料として軟磁性のフェライトや金属材料が用いられている。近年の電子部品においては小型で高周波でも低損失で駆動することが要求されており、動作電流は大電流化する傾向にある。これらの要求に応えるためには従来のフェライトに比べて飽和磁化が大きい金属材料が望まれている。飽和磁化が大きければ小型化が実現するだけでなく、例えばインダクタ用途の場合は直流重畳特性を大電流領域まで維持することができるので、大きな動作電流にも対応することができる。   Soft magnetic ferrite and metal materials are used as magnetic core materials for choke coils, inductor elements, transformers, and the like. In recent years, electronic components are required to be small in size and to be driven with low loss even at high frequencies, and the operating current tends to increase. In order to meet these requirements, a metal material having a saturation magnetization larger than that of conventional ferrite is desired. If the saturation magnetization is large, not only can the size be reduced, but, for example, in the case of an inductor, the direct current superimposition characteristic can be maintained up to a large current region, so that a large operating current can be dealt with.

しかし、金属材料は電気抵抗が低いために、渦電流が流れやすく、渦電流損失が発生してしまう。渦電流損失は周波数の二乗に比例するため、特に高周波磁界の下では損失が大きくなってしまう(実部の透磁率が低下してしまう)。このため、金属材料をバルク体のまま用いることが困難であった。これを解決するべく、たとえばFe系合金の粉末間を樹脂によって絶縁した状態で成形することで、50kHzの高周波でもコアロスの低い圧粉磁心が開発されている(特許文献1)。   However, since the metal material has a low electrical resistance, eddy current tends to flow and eddy current loss occurs. Since the eddy current loss is proportional to the square of the frequency, the loss increases particularly under a high-frequency magnetic field (the permeability of the real part decreases). For this reason, it was difficult to use the metal material as a bulk body. In order to solve this problem, for example, a powder magnetic core having a low core loss has been developed by molding the Fe-based alloy powder in a state of being insulated by a resin even at a high frequency of 50 kHz (Patent Document 1).

また、金属材料の粉末を圧粉して成形すると、金属粉末内部に応力歪みが残存して磁気特性の劣化を招く。すなわち保磁力が増大してしまい、ヒステリシス損失が増加してしまう。ヒステリシス損失を低減するためには成形体を熱処理して応力歪みを除去しなければならない。この熱処理において粉末間絶縁に用いた樹脂が分解する問題を回避するため、樹脂ではなく水ガラスを用いることが特許文献2に報告されている。また、ヒステリシス損失を極小とすべく、磁気異方性の小さいアモルファス材料や金属粉末をナノ結晶サイズまで微細化したナノ結晶材が開発されている。   Further, when a metal material powder is compacted and molded, stress strain remains in the metal powder, leading to deterioration of magnetic properties. That is, the coercive force increases and hysteresis loss increases. In order to reduce hysteresis loss, the molded body must be heat treated to remove stress strain. In order to avoid the problem that the resin used for insulation between powders decomposes in this heat treatment, it is reported in Patent Document 2 that water glass is used instead of resin. In addition, in order to minimize hysteresis loss, an amorphous material having a small magnetic anisotropy and a nanocrystal material obtained by miniaturizing a metal powder to a nanocrystal size have been developed.

すなわち軟磁性材料として、近年では高磁化でなおかつ高周波用途で安定に使用でき、低損失であることを兼ね備えた金属材料が望まれている。これを実現するためには耐熱性に優れた被覆層を有する軟磁性金属粉末が必要とされている。   That is, as a soft magnetic material, in recent years, a metal material that has high magnetization, can be stably used in high frequency applications, and has low loss is desired. In order to realize this, a soft magnetic metal powder having a coating layer excellent in heat resistance is required.

特開2006−274300号公報(表1)JP 2006-274300 A (Table 1) 特開2004−259807号公報(表1)JP 2004-259807 A (Table 1) 特開2009−249739号公報(実施例9〜11)JP 2009-249739 A (Examples 9 to 11) 特開2009−272615号公報JP 2009-272615 A

従来のフェライトに比べて金属磁性材料は磁化が高いものの、容易に酸化することが問題であった。圧粉磁心用途に適用する場合は歪除去焼鈍による被覆層の劣化に伴う軟磁気特性の低下抑制が困難であった。積層インダクタ等の磁心コア材料へ適用する場合は電極焼成工程で酸化してしまい、高磁化を活用することが困難であった。したがって、磁性コアを構成する軟磁性金属粉末において耐酸化性に優れる被覆層が必要であった。   Although the magnetic metal material has higher magnetization than conventional ferrite, it has been a problem that it is easily oxidized. When applied to dust core applications, it was difficult to suppress the decrease in soft magnetic properties accompanying the deterioration of the coating layer by strain relief annealing. When applied to a magnetic core material such as a multilayer inductor, it is oxidized in the electrode firing step, making it difficult to utilize high magnetization. Therefore, a coating layer excellent in oxidation resistance in the soft magnetic metal powder constituting the magnetic core is required.

また、軟磁性金属粉末の粒径が1μm以下の微小径であると、加圧成形しても成形体密度が十分に向上せず、磁化や透磁率が低い原因となっていた(特許文献2)。したがって、高密度の成形体を提供できる軟磁性金属粉末が必要であった。   Further, when the soft magnetic metal powder has a fine particle diameter of 1 μm or less, the density of the molded body is not sufficiently improved even by pressure molding, which causes low magnetization and magnetic permeability (Patent Document 2). ). Therefore, a soft magnetic metal powder capable of providing a high-density molded body has been required.

本発明の目的は、耐酸化性に優れた軟磁性金属粉末および高密度で高透磁率を有する圧粉磁心の提供、ならびにその製法を得ることである。   An object of the present invention is to provide a soft magnetic metal powder excellent in oxidation resistance, a dust core having a high density and a high magnetic permeability, and a method for producing the same.

上記目的を達成するために鋭意検討した結果、本発明に想到した。すなわち本発明の軟磁性金属粉末は、酸化鉄粉末を固相還元する還元剤として炭素粉末と共にAl粉末を添加することによって得られ、平均粒径が1μm超であり、表面が炭素および酸化アルミで被覆された鉄粒子粉末であり、大気中で加熱する熱重量分析における重量上昇が1.0%以上となる温度が450℃以上であることを特徴とする。   As a result of earnest studies to achieve the above object, the present invention has been conceived. That is, the soft magnetic metal powder of the present invention is obtained by adding Al powder together with carbon powder as a reducing agent for solid-phase reduction of iron oxide powder, the average particle diameter is more than 1 μm, and the surface is made of carbon and aluminum oxide. The coated iron particle powder is characterized in that the temperature at which the weight increase in thermogravimetric analysis heated in the atmosphere is 1.0% or more is 450 ° C. or more.

さらに前記軟磁性金属粉末において、平均粒径が1μm超、20μm以下である軟磁性金属粉末を提供する。   Furthermore, a soft magnetic metal powder having an average particle size of more than 1 μm and 20 μm or less is provided.

さらに前記軟磁性金属粉末において、平均粒径が4〜12μmである軟磁性金属粉末を提供する。   Furthermore, a soft magnetic metal powder having an average particle size of 4 to 12 μm is provided.

前記軟磁性金属粉末は、表面が炭素および酸化アルミで被覆されているため、X線光電子分光法によって分析される表面組成が、Feが1at%未満、Cが80〜85at%、Alが2.8〜3.4at%であることを特徴とする。残部は、Fe、C、及びAl以外の原料由来の元素である。   Since the surface of the soft magnetic metal powder is coated with carbon and aluminum oxide, the surface composition analyzed by X-ray photoelectron spectroscopy is such that Fe is less than 1 at%, C is 80 to 85 at%, and Al is 2. It is characterized by 8 to 3.4 at%. The balance is an element derived from raw materials other than Fe, C, and Al.

本発明の軟磁性金属粉末の製造方法は、還元剤である炭素粉末及びAl粉末と、酸化鉄粉末とを混合し、
得られた混合粉に非酸化性雰囲気中で熱処理を施し、
X線光電子分光法で検出される表面組成に炭素及び酸化アルミニウムを有し、核組成に鉄を有する粉末を得ることを特徴とする。
The method for producing a soft magnetic metal powder of the present invention comprises mixing a carbon powder and an Al powder, which are reducing agents, and an iron oxide powder,
The obtained mixed powder is subjected to heat treatment in a non-oxidizing atmosphere,
A powder having carbon and aluminum oxide in the surface composition detected by X-ray photoelectron spectroscopy and iron in the core composition is obtained.

本発明の軟磁性金属粉末を用いて圧粉磁心を作製する場合、当該軟磁性金属粉末と、有機樹脂または無機酸化物の少なくとも一方とで構成することにより、密度が6.0Mg/m以上である圧粉磁心を得られる。これにより高磁化が実現される。 When producing a powder magnetic core using the soft magnetic metal powder of the present invention, the density is 6.0 Mg / m 3 or more by comprising the soft magnetic metal powder and at least one of an organic resin or an inorganic oxide. The powder magnetic core which is is obtained. Thereby, high magnetization is realized.

前記圧粉磁心は、100kHzの周波数下で巻線に直流を重畳して発生する直流バイアス磁界が10kA/mの場合に、得られる増分透磁率が20以上であることを特徴とする。これにより優れた直流重畳特性が得られる。   The powder magnetic core is characterized in that an obtained incremental magnetic permeability is 20 or more when a DC bias magnetic field generated by superimposing DC on a winding at a frequency of 100 kHz is 10 kA / m. Thereby, excellent direct current superposition characteristics can be obtained.

また、前記圧粉磁心は、1MHzの周波数における複素比透磁率の実数部が20以上であることを特徴とする。これによりMHz帯域でも高い透磁率が得られる。   The dust core is characterized in that the real part of the complex relative permeability at a frequency of 1 MHz is 20 or more. As a result, high magnetic permeability can be obtained even in the MHz band.

また、前記圧粉磁心は、得られた軟磁性金属粉末に、有機樹脂または無機酸化物を添加した後、1000MPaまたは2000MPa の圧力で成形することによって得られる。   The dust core can be obtained by adding an organic resin or an inorganic oxide to the obtained soft magnetic metal powder and then molding it at a pressure of 1000 MPa or 2000 MPa.

耐酸化性に優れた軟磁性金属粉末、高透磁率で高密度を有する圧粉磁心、およびそれらの製造方法を提供することができる。   A soft magnetic metal powder excellent in oxidation resistance, a dust core having high permeability and high density, and a method for producing them can be provided.

図1は、圧粉磁心を用いたトロイダルコイルの直流重畳特性を示すグラフである。FIG. 1 is a graph showing DC superposition characteristics of a toroidal coil using a dust core.

本発明の実施の形態を詳細に説明する。
(1)出発原料
出発原料として用いる酸化鉄はFeやFe、FeOなどの化学式で表されるが、遷移金属元素を含むフェライトであっても構わない。酸化鉄粉末の平均粒径は0.01〜100μm未満であることが好ましく、より好ましくは20μm未満、更に好ましくは1μm未満である。酸化鉄粉末の平均粒径は最終的に得られる軟磁性金属粉末の平均粒径に大きく影響する。酸化鉄粉末の平均粒径が0.01μm未満であると粉末としての取扱いが困難になるだけでなく、還元後の軟磁性金属粉末の粒径が1μm未満となってしまい、成形体密度が向上しなくなるので好ましくない。また酸化鉄粉末の平均粒径が100μm以上となると還元反応が十分に進行しなくなるので好ましくない。還元された軟磁性金属粉末の平均粒径は1μm超であることが好ましい。1μm未満の場合は加圧後の成形体密度が6.0Mg/mに到達せず好ましくない。より好ましくは1μm超、20μm以下である。20μmを越えると粒内に渦電流が流れて渦電流損失が増大してしまうので好ましくない。更に好ましくは4〜12μmである。この範囲であれば成形体密度を十分高くすることができる。
Embodiments of the present invention will be described in detail.
(1) Starting material The iron oxide used as the starting material is represented by a chemical formula such as Fe 2 O 3 , Fe 3 O 4 , or FeO, but may be ferrite containing a transition metal element. The average particle size of the iron oxide powder is preferably 0.01 to less than 100 μm, more preferably less than 20 μm, and even more preferably less than 1 μm. The average particle size of the iron oxide powder greatly affects the average particle size of the finally obtained soft magnetic metal powder. When the average particle size of the iron oxide powder is less than 0.01 μm, not only the handling as a powder becomes difficult, but also the particle size of the soft magnetic metal powder after reduction becomes less than 1 μm, and the compact density is improved. It is not preferable because it does not occur. Further, it is not preferable that the average particle size of the iron oxide powder is 100 μm or more because the reduction reaction does not proceed sufficiently. The average particle size of the reduced soft magnetic metal powder is preferably more than 1 μm. If it is less than 1 μm, the density of the compact after pressing does not reach 6.0 Mg / m 3 , which is not preferable. More preferably, it is more than 1 μm and 20 μm or less. If it exceeds 20 μm, eddy current flows in the grains and eddy current loss increases, which is not preferable. More preferably, it is 4-12 micrometers. If it is this range, a molded object density can be made high enough.

還元後の軟磁性金属粉末は、目的に応じて鉄基合金としてもよい。すなわちFe−Si、Fe−Al−Si、Fe−Ni、Fe−Co、Fe−Si−Bなどの合金であっても構わない。   The reduced soft magnetic metal powder may be an iron-based alloy depending on the purpose. That is, an alloy such as Fe—Si, Fe—Al—Si, Fe—Ni, Fe—Co, or Fe—Si—B may be used.

(2)還元剤
前記酸化鉄を還元するための還元剤として固体粉末を用いる。均一かつ薄い被覆層を形成するためにはグラファイトが好ましく、グラファイトを被覆層とするには炭素から成る粉末を用いるのが好ましい。グラファイトはグラフェンシートが積層した構造であるため2次元的に粒成長しやすく被覆物質として好適である。還元剤として用いる炭素から成る粉末としてはグラファイト、カーボンブラック、アセチレンブラック、各種炭化水素などの粉末を用いるのが好ましい。ただしグラファイトは導電性物質であるため、金属Alを還元剤として用い、副生成物として生成する酸化アルミニウムを被覆層とすることにより電気絶縁性を確保することが好ましい。
(2) Reducing agent A solid powder is used as a reducing agent for reducing the iron oxide. In order to form a uniform and thin coating layer, graphite is preferable, and in order to use graphite as a coating layer, it is preferable to use a powder composed of carbon. Since graphite has a structure in which graphene sheets are laminated, it is easy to grow two-dimensionally and is suitable as a coating material. As the powder made of carbon used as the reducing agent, it is preferable to use powders of graphite, carbon black, acetylene black, various hydrocarbons and the like. However, since graphite is a conductive substance, it is preferable to ensure electrical insulation by using metal Al as a reducing agent and aluminum oxide produced as a by-product as a coating layer.

還元剤としては金属Alが好ましい。金属Alの融点は660℃であり、後述する還元反応が進行する温度(1100〜1400℃)よりも低温である。これが被覆構造を形成するには好適である。還元反応が始まる前にAlは液相状態で酸化鉄粒子を均一に濡らし、その後昇温されると液相Alが酸化鉄を還元する。このような反応機構であると、還元反応によって生成する酸化アルミニウムが必然的にFe核粒子を被覆する構造となる。融点が1100℃を越えるAl化合物は還元剤として相応しくない。特許文献3(特開2009−249739号公報)では固相反応においてAlNの粉末を添加して核粒子であるFeにAlを固溶させる方法が開示されているが、被覆層に酸化アルミニウムが含まれることは開示されていない。AlNの融点は2200℃と高温であるため酸化アルミニウムの被覆物質源としては好ましくない。   As the reducing agent, metal Al is preferable. The melting point of metal Al is 660 ° C., which is lower than the temperature (1100 to 1400 ° C.) at which the reduction reaction described later proceeds. This is suitable for forming a covering structure. Before the reduction reaction starts, Al uniformly wets the iron oxide particles in the liquid phase state, and when the temperature is raised thereafter, the liquid phase Al reduces the iron oxide. With such a reaction mechanism, the aluminum oxide produced by the reduction reaction inevitably has a structure that covers the Fe core particles. Al compounds having a melting point exceeding 1100 ° C. are not suitable as reducing agents. Patent Document 3 (Japanese Patent Laid-Open No. 2009-249739) discloses a method in which AlN powder is added in a solid-phase reaction to dissolve Al in Fe as a core particle, but the coating layer contains aluminum oxide. Is not disclosed. Since the melting point of AlN is as high as 2200 ° C., it is not preferable as a coating material source for aluminum oxide.

前記還元剤となる固体粉末の平均粒径としては0.01〜10μmが好ましい。0.01μm未満であると取扱いが困難となる。10μm以上であると酸化鉄粉末との混合が不均一となり、固相還元反応が不均一となって好ましくない。   The average particle size of the solid powder serving as the reducing agent is preferably 0.01 to 10 μm. If it is less than 0.01 μm, handling becomes difficult. If it is 10 μm or more, the mixing with the iron oxide powder becomes nonuniform, and the solid phase reduction reaction becomes nonuniform, which is not preferable.

(3)混合条件
前記酸化鉄粉末と前記還元剤粉末は均一に混合されることが好ましい。これら粉末を混合するにあたり、ボールミルやビーズミル、ライカイ機、乳鉢、V字型ミキサーなどを用いることができる。
(3) Mixing conditions The iron oxide powder and the reducing agent powder are preferably mixed uniformly. In mixing these powders, a ball mill, a bead mill, a reiki machine, a mortar, a V-shaped mixer, or the like can be used.

(4)反応条件
前記酸化鉄粉末と前記還元剤粉末の混合物は、非酸化性雰囲気中で1100℃〜1400℃の範囲で熱処理することが好ましい。1100℃未満であると還元反応が不十分となるので好ましくない。また1100℃未満であると炭素被覆層の形成が不十分となる。熱処理温度が1400℃を越える場合は軟磁性金属粉末が焼結してバルク化してしまう可能性があるため好ましくない。非酸化性雰囲気とは酸素を含まない雰囲気であり、Ar、N2、H2、He、CO2やそれら混合ガスが好ましく、より好ましくはN2雰囲気である。このとき不純物として酸素が多少混入しても構わないが、酸素濃度は500ppm以下が好ましく、より好ましくは100ppm以下、さらに好ましくは10ppm以下である。上記好適条件で熱処理すると、前記酸化鉄粉末は均一に還元されて軟磁性金属粉末が生成する。
(4) Reaction conditions It is preferable to heat-process the mixture of the said iron oxide powder and the said reducing agent powder in the range of 1100 degreeC-1400 degreeC in non-oxidizing atmosphere. Less than 1100 ° C. is not preferable because the reduction reaction becomes insufficient. Moreover, formation of a carbon coating layer will become inadequate that it is less than 1100 degreeC. When the heat treatment temperature exceeds 1400 ° C., the soft magnetic metal powder may be sintered and bulked, which is not preferable. The non-oxidizing atmosphere is an atmosphere that does not contain oxygen, and Ar, N 2 , H 2 , He, CO 2 or a mixed gas thereof is preferable, and an N 2 atmosphere is more preferable. At this time, oxygen may be mixed somewhat as an impurity, but the oxygen concentration is preferably 500 ppm or less, more preferably 100 ppm or less, and still more preferably 10 ppm or less. When the heat treatment is performed under the above preferable conditions, the iron oxide powder is uniformly reduced to produce a soft magnetic metal powder.

(5)生成物の精製
固相還元によって得られた前記軟磁性金属粉末には余剰の還元剤や反応副生成物が含まれているため、磁気分離操作によって強磁性粉末のみを精製回収することが好ましい。所定質量の熱処理済み粉末を有機溶媒や水中に十分分散させた後、永久磁石で軟磁性金属粉末のみを磁気捕集して精製回収することが好ましい。
(5) Product purification Since the soft magnetic metal powder obtained by solid-phase reduction contains an excessive reducing agent and reaction by-products, only the ferromagnetic powder is purified and recovered by magnetic separation operation. Is preferred. It is preferable that a heat-treated powder having a predetermined mass is sufficiently dispersed in an organic solvent or water, and then only the soft magnetic metal powder is magnetically collected and purified by a permanent magnet.

(6)軟磁性金属粉末の粒子特性
このようにして得られた軟磁性金属粉末の平均粒径は1μm超であることが好ましい。ここで平均粒径は、レーザー回折散乱法にて測定した粒度分布の体積積算50%に達するときの粉末粒径である。平均粒径が1μm未満の場合は加圧後の成形体密度が6.0Mg/mに到達せず好ましくない。より好ましくは1μm超、20μm以下である。20μmを越えると粒内に渦電流が流れて渦電流損失が増大してしまうので好ましくない。更に好ましくは4〜12μmである。この範囲であれば成形体密度を十分高くすることができる。
(6) Particle characteristics of soft magnetic metal powder The average particle diameter of the soft magnetic metal powder thus obtained is preferably more than 1 μm. Here, the average particle diameter is a powder particle diameter when the volume integration reaches 50% of the particle size distribution measured by the laser diffraction scattering method. When the average particle size is less than 1 μm, the density of the compact after pressing does not reach 6.0 Mg / m 3 , which is not preferable. More preferably, it is more than 1 μm and 20 μm or less. If it exceeds 20 μm, eddy current flows in the grains and eddy current loss increases, which is not preferable. More preferably, it is 4-12 micrometers. If it is this range, a molded object density can be made high enough.

また前記製法で得られる軟磁性金属粉末は、その表面が炭素および酸化アルミニウムで被覆された鉄粒子である。炭素で被覆されている理由は、還元されたFe粒子表面で余剰の炭素が固溶・析出した、あるいは還元反応の副生成物として生成した炭酸ガスがFe粒子表面で不均化反応を起こした、等によってFe粒子表面にグラファイト状の炭素が析出することによる。また酸化アルミニウムで被覆される理由は、還元剤として添加したAlが昇温過程で液相となり酸化鉄粒子を取り囲み、その後還元反応が進行することによって酸化アルミニウムがFe粒子を被覆する為である。表面組成をX線光電子分光法(X-ray
Photoelectron Spectroscopy:XPS )により分析した場合、Feが1at%未満、Cが80〜85at%、Alが2.8〜3.4at%であることが好ましい。Feが1at%以上であると金属Fe粒子が表出している部分が増加することを表しており、粒子の耐酸化性が低下するので好ましくない。またCが80at%未満であると炭素による被覆が不十分で好ましくない。Cが85at%以上の場合は被覆層を形成する炭素が過剰であることを表しており、金属Fe粒子の体積比率が低下して好ましくない。Alが2.8at%未満では酸化アルミニウムの被覆層が不十分で粒子間絶縁がとれず好ましくない。Alが3.4at%では非磁性成分の体積比率が大きく、金属Fe粒子の体積比率が低下して好ましくない。
Moreover, the soft magnetic metal powder obtained by the said manufacturing method is the iron particle by which the surface was coat | covered with carbon and aluminum oxide. The reason why it is coated with carbon is that excess carbon was dissolved and precipitated on the reduced Fe particle surface, or carbon dioxide gas generated as a by-product of the reduction reaction caused a disproportionation reaction on the Fe particle surface. This is due to the precipitation of graphite-like carbon on the surface of the Fe particles due to, and the like. The reason for coating with aluminum oxide is that Al added as a reducing agent becomes a liquid phase during the temperature rising process, surrounds the iron oxide particles, and then the reduction reaction proceeds to coat the aluminum oxide with the Fe particles. X-ray photoelectron spectroscopy (X-ray)
When analyzed by Photoelectron Spectroscopy (XPS), Fe is preferably less than 1 at%, C is 80 to 85 at%, and Al is 2.8 to 3.4 at%. If Fe is 1 at% or more, it indicates that the portion where the metal Fe particles are exposed increases, which is not preferable because the oxidation resistance of the particles decreases. Further, if C is less than 80 at%, coating with carbon is insufficient, which is not preferable. When C is 85 at% or more, it indicates that the carbon forming the coating layer is excessive, and the volume ratio of the metal Fe particles is not preferable. If Al is less than 2.8 at%, the coating layer of aluminum oxide is insufficient and insulation between particles cannot be obtained, which is not preferable. When Al is 3.4 at%, the volume ratio of the nonmagnetic component is large, and the volume ratio of the metal Fe particles is lowered, which is not preferable.

前記軟磁性金属粉末の飽和磁化は160〜200Am/kgであることが好ましい。160Am/kg未満であると強磁性成分の含有率が低いために高密度な成形体を得られたとしても透磁率が低下してしまい好ましくない。また200Am/kg超であると軟磁性材料としては優れているものの、被覆物質が実効的に不足しており、耐酸化性が低下して好ましくない。積層インダクタなどの磁性部品に適用する場合には部品の製造プロセスや使用環境に応じて優れた耐酸化性が要求される。 The saturation magnetization of the soft magnetic metal powder is preferably 160 to 200 Am 2 / kg. If it is less than 160 Am 2 / kg, the content of the ferromagnetic component is low, so even if a high-density molded body is obtained, the magnetic permeability is lowered, which is not preferable. Further, if it exceeds 200 Am 2 / kg, it is excellent as a soft magnetic material, but the coating substance is effectively insufficient, and the oxidation resistance is lowered, which is not preferable. When applied to magnetic components such as multilayer inductors, excellent oxidation resistance is required according to the manufacturing process and usage environment of the components.

前記軟磁性金属粉末は優れた耐酸化性を示す。耐酸化性を測定する手段としては、大気中で加熱して酸化に伴う重量増分を分析する手法、大気中で加熱しながら磁化の温度変化を測定する手法、恒温恒湿試験器に所定の時間放置して磁化の変化を測定する手法、などが挙げられる。特に酸化にともなう重量増分は熱重量測定(TG測定)により精度よく分析することができるので好ましい。本発明においては、熱重量分析において重量増分が1mass%となる温度を「耐酸化温度」と定義して用いた。前記軟磁性鉄系粉末の耐酸化温度は450℃以上であり、耐酸化性に優れる。   The soft magnetic metal powder exhibits excellent oxidation resistance. As a means of measuring oxidation resistance, a method of analyzing weight increment accompanying oxidation by heating in air, a method of measuring temperature change of magnetization while heating in air, a predetermined time in a constant temperature and humidity tester For example, a method of measuring the change in magnetization by leaving it alone. In particular, the weight increment accompanying oxidation is preferable because it can be analyzed with high accuracy by thermogravimetry (TG measurement). In the present invention, the temperature at which the weight increment is 1 mass% in the thermogravimetric analysis is defined and used as the “oxidation resistance temperature”. The oxidation resistance temperature of the soft magnetic iron-based powder is 450 ° C. or higher, and the oxidation resistance is excellent.

(7)圧粉磁心の性能評価
前記軟磁性金属粉末にバインダを混合して圧縮成形を行い、圧粉磁心を作製する。バインダとしてはポリビニルアルコール、ポリビニルブチラール、エポキシ樹脂、シリコーン樹脂などが用いられる。また粒子間絶縁を補強するため、上記バインダの他にコロイダルシリカやアルミナ微粒子などの絶縁性酸化物微粒子を添加しても構わない。バインダ添加量は軟磁性金属粉末の重量対比で0.1〜1mass%が好適である。バインダを添加すると成形性が向上するとともに粒子間を絶縁する作用が得られる。一方で、磁心密度が低下してしまうので、添加量は前記範囲が好適である。
(7) Performance evaluation of powder magnetic core A binder is mixed with the soft magnetic metal powder and compression molding is performed to produce a powder magnetic core. As the binder, polyvinyl alcohol, polyvinyl butyral, epoxy resin, silicone resin, or the like is used. Further, in order to reinforce inter-particle insulation, insulating oxide fine particles such as colloidal silica and alumina fine particles may be added in addition to the binder. The amount of binder added is preferably 0.1 to 1 mass% relative to the weight of the soft magnetic metal powder. When a binder is added, the moldability is improved and an effect of insulating particles is obtained. On the other hand, since the magnetic core density is lowered, the addition amount is preferably within the above range.

成形体密度を十分高くするためには成形時の圧力は1000〜2000MPaであることが好ましい。特許文献4(特開2009−272615号公報)では成形圧が1000MPaの場合に透磁率の減衰率とコアロスが共に増大することが開示されており、成形圧力は600MPa以下であることが好適としている。特許文献4の磁性粉末はFe粒子を被覆する物質が炭素(導電材料)のみであるため、高圧力で成形した場合は粒子の接触確率が増して圧粉磁心の絶縁性が低下して好ましくないことを表している。本発明ではより高い1000〜2000MPaで成形した圧粉磁心の特性について言及しており、本発明と特許文献4は異なる。   In order to sufficiently increase the density of the molded body, the pressure during molding is preferably 1000 to 2000 MPa. Patent Document 4 (Japanese Patent Laid-Open No. 2009-272615) discloses that when the molding pressure is 1000 MPa, both the permeability attenuation rate and the core loss increase, and the molding pressure is preferably 600 MPa or less. . In the magnetic powder of Patent Document 4, the substance that coats Fe particles is only carbon (conductive material). Therefore, when molded at a high pressure, the contact probability of the particles increases and the insulation of the powder magnetic core decreases, which is not preferable. Represents that. In the present invention, reference is made to the characteristics of a powder magnetic core molded at a higher 1000 to 2000 MPa, and the present invention is different from Patent Document 4.

トロイダル形状に成形した成形体に巻線を施し、100kHzの周波数のもとでLCRメータにて直流重畳特性を測定した場合、巻線に発生する直流バイアス磁界が10kA/mの時に得られる増分透磁率は20以上である。ここで増分透磁率とは、巻線に所定の直流電流を流して発生する磁界下で得られる透磁率を表している。増分透磁率が20未満であるとインダクタンスが小さく軟磁性材料として好ましくない。   When a winding is applied to a molded body formed into a toroidal shape and DC superposition characteristics are measured with an LCR meter at a frequency of 100 kHz, the incremental transmission obtained when the DC bias magnetic field generated in the winding is 10 kA / m. The magnetic susceptibility is 20 or more. Here, the incremental permeability represents the permeability obtained under a magnetic field generated by passing a predetermined direct current through the winding. When the incremental magnetic permeability is less than 20, the inductance is small, which is not preferable as a soft magnetic material.

またトロイダル形状の成形体についてインピーダンスアナライザで複素比透磁率の周波数依存性を計測すると、1MHzの周波数における複素比透磁率の実数部が20以上であることを特徴とする。前記透磁率が20未満の場合は軟磁性材料として相応しくない。ここで複素比透磁率とは、交流磁界下で測定した比透磁率を実数部と虚数部で表したものである。実数部は、交流磁界において磁束密度が磁界の変化に追従する(磁界波と同位相の)成分を表しており、虚数部は磁界の変化に追いつかない(位相の遅れた)成分を表している。   Further, when the frequency dependence of the complex relative permeability is measured with an impedance analyzer for the toroidal shaped molded body, the real part of the complex relative permeability at a frequency of 1 MHz is 20 or more. When the magnetic permeability is less than 20, it is not suitable as a soft magnetic material. Here, the complex relative permeability represents the relative permeability measured under an alternating magnetic field in terms of a real part and an imaginary part. The real part represents a component in which the magnetic flux density follows the change of the magnetic field in the AC magnetic field (in the same phase as the magnetic field wave), and the imaginary part represents a component that cannot catch up with the change in the magnetic field (lag in phase). .

(実施例1)
平均粒径0.05μmの酸化鉄粉末(ケミライト工業:X−21)78gと平均粒径3μmのアルミニウム粉末(添川理化学)1.7gと平均粒径0.01μmのSiC粉末(住友大阪セメント)3.3gと平均粒径0.02μmのカーボンブラック粉末(三菱化学:#44)17gをIPA中でボールミル混合し乾燥させることで、原料混合粉を得た。この原料混合粉を窒素雰囲気中で1400℃で2時間熱処理し、酸化鉄を鉄へと固相還元させた。得られた還元粉から非磁性成分を除去するため、当該粉末5.0gをIPA100ml中に投入して超音波照射し、永久磁石で磁性粒子のみを捕集して上澄み液を捨てる精製操作を実施した。この操作を上澄み液が透明になるまで繰り返し、還元鉄粉を得た。この還元鉄粉の粒度分布をレーザー回折式粒度分布計(HORIBA:LA−920)で測定した。平均粒径(d50)を表1に示す。また飽和磁化を振動試料型磁力計(理研電子:BHV−35)を用いて最大印加磁界0.8MA/m(10kOe)として測定した。得られた結果を表1に示す。また示差熱重量分析装置(リガク:TAS200)を用いて当該還元鉄粉を大気中で加熱するTG分析を行ない、耐酸化性を評価した。昇温速度は10℃/minとし、1000℃まで昇温した。質量が1%増加する温度を「耐酸化温度」と定義し、得られた耐酸化温度を表1に示す。
Example 1
78 g of iron oxide powder having an average particle size of 0.05 μm (Chemilite Industry: X-21), 1.7 g of aluminum powder having an average particle size of 3 μm (Soekawa Riken) and SiC powder having an average particle size of 0.01 μm (Sumitomo Osaka Cement) 3 .3 g and 17 g of carbon black powder (Mitsubishi Chemical: # 44) having an average particle size of 0.02 μm were ball mill mixed in IPA and dried to obtain a raw material mixed powder. This raw material mixed powder was heat-treated at 1400 ° C. for 2 hours in a nitrogen atmosphere, and iron oxide was solid-phase reduced to iron. In order to remove non-magnetic components from the obtained reduced powder, 5.0 g of the powder was put into 100 ml of IPA, irradiated with ultrasonic waves, and only the magnetic particles were collected with a permanent magnet and the supernatant was discarded. did. This operation was repeated until the supernatant became transparent to obtain reduced iron powder. The particle size distribution of the reduced iron powder was measured with a laser diffraction particle size distribution meter (HORIBA: LA-920). The average particle size (d50) is shown in Table 1. The saturation magnetization was measured using a vibrating sample magnetometer (RIKEN ELECTRONICS: BHV-35) with a maximum applied magnetic field of 0.8 MA / m (10 kOe). The obtained results are shown in Table 1. Moreover, TG analysis which heats the said reduced iron powder in air | atmosphere using the differential thermogravimetric analyzer (Rigaku: TAS200) was performed, and oxidation resistance was evaluated. The temperature increase rate was 10 ° C./min, and the temperature was increased to 1000 ° C. The temperature at which the mass increases by 1% is defined as “oxidation resistance temperature”, and the resulting oxidation resistance temperature is shown in Table 1.

(実施例2)
平均粒径0.6μmの酸化鉄粉(戸田工業:PF3400)を用い、熱処理温度を1200℃とした以外は実施例1と同様にして還元鉄粉を得た。平均粒径、飽和磁化、耐酸化温度を表1に示す。
(Example 2)
Reduced iron powder was obtained in the same manner as in Example 1 except that iron oxide powder having an average particle size of 0.6 μm (Toda Kogyo: PF3400) was used and the heat treatment temperature was 1200 ° C. Table 1 shows the average particle diameter, saturation magnetization, and oxidation resistance temperature.

(実施例3)
熱処理温度を1300℃とした以外は実施例2と同様にして還元鉄粉を得た。平均粒径、飽和磁化、耐酸化温度を表1に示す。
(Example 3)
Reduced iron powder was obtained in the same manner as in Example 2 except that the heat treatment temperature was 1300 ° C. Table 1 shows the average particle diameter, saturation magnetization, and oxidation resistance temperature.

(実施例4)
熱処理温度を1400℃とした以外は実施例2と同様にして還元鉄粉を得た。平均粒径、飽和磁化、耐酸化温度を表1に示す。
Example 4
Reduced iron powder was obtained in the same manner as in Example 2 except that the heat treatment temperature was 1400 ° C. Table 1 shows the average particle diameter, saturation magnetization, and oxidation resistance temperature.

(実施例5)
酸化鉄粉末の重量を76.4g、SiC粉末の重量を4.9gとした以外は実施例1と同様にして還元鉄粉を得た。平均粒径、飽和磁化、耐酸化温度を表1に示す。
(Example 5)
Reduced iron powder was obtained in the same manner as in Example 1 except that the weight of the iron oxide powder was 76.4 g and the weight of the SiC powder was 4.9 g. Table 1 shows the average particle diameter, saturation magnetization, and oxidation resistance temperature.

(実施例6)
酸化鉄粉末の重量を76.4g、SiC粉末の重量を4.9gとした以外は実施例4と同様にして還元鉄粉を得た。平均粒径、飽和磁化、耐酸化温度を表1に示す。
(Example 6)
Reduced iron powder was obtained in the same manner as in Example 4 except that the weight of the iron oxide powder was 76.4 g and the weight of the SiC powder was 4.9 g. Table 1 shows the average particle diameter, saturation magnetization, and oxidation resistance temperature.

(比較例1)
酸化鉄粉末を70.5g、Al粉末を0g(無添加)、SiC粉末を4.5g、カーボンブラック粉末を25gとした以外は実施例2と同様にして還元鉄粉を得た。平均粒径、飽和磁化、耐酸化温度を表1に示す。
(Comparative Example 1)
Reduced iron powder was obtained in the same manner as in Example 2 except that 70.5 g of iron oxide powder, 0 g of Al powder (no addition), 4.5 g of SiC powder, and 25 g of carbon black powder were used. Table 1 shows the average particle diameter, saturation magnetization, and oxidation resistance temperature.

(比較例2)
熱処理温度を1120℃とした以外は比較例1と同様にして還元鉄粉を得た。平均粒径、飽和磁化、耐酸化温度を表1に示す。
(Comparative Example 2)
Reduced iron powder was obtained in the same manner as in Comparative Example 1 except that the heat treatment temperature was 1120 ° C. Table 1 shows the average particle diameter, saturation magnetization, and oxidation resistance temperature.

比較例1、2の耐酸化温度はそれぞれ406℃、397℃であり、実施例と比較すると耐酸化温度は低い。表1より、Al粉末を添加すると耐酸化温度が向上することが分かる。これは還元反応を経てAlから生成したAlが鉄粉末の被覆を補強していることを示している。 The oxidation resistance temperatures of Comparative Examples 1 and 2 are 406 ° C. and 397 ° C., respectively, and the oxidation resistance temperature is lower than that of Examples. From Table 1, it can be seen that the addition of Al powder improves the oxidation resistance temperature. This indicates that Al 2 O 3 produced from Al through the reduction reaction reinforces the coating of the iron powder.

表2は実施例と比較例の各粉末についてXPS分析(アルバック・ファイ:PHI Quantera SXM)を行なった結果を示す。Fe濃度が実施例では1at%未満であるのに対して比較例では3at%以上であり、実施例においてFe粒子が十分被覆されていることが分かる。このため、本発明の鉄粉の耐酸化温度は高いのである。   Table 2 shows the results of XPS analysis (ULVAC-PHI: PHI Quantera SXM) for the powders of Examples and Comparative Examples. While the Fe concentration is less than 1 at% in the examples, it is 3 at% or more in the comparative example, which indicates that the Fe particles are sufficiently covered in the examples. For this reason, the oxidation resistance temperature of the iron powder of the present invention is high.

(実施例7)
実施例1の粉末にポリビニルブチラールを0.6mass%加えてエタノール中で混錬し乾燥後、500μmアンダーに篩分級して造粒粉を得た。この造粒粉を外径13.4mm、内径7.7mmの金型にて、油圧プレスにて20ton/cmで圧縮し、密度6.1Mg/mのトロイダルリング状成形体を作製した。この成形体に直径0.25mmのエナメル線を170ターン巻いて、LCRメータ(ヒューレット・パッカード:HP−4285A)を用いて周波数100kHzで直流重畳特性を測定した。結果を図1に示す。
(Example 7)
0.6 mass% of polyvinyl butyral was added to the powder of Example 1, kneaded in ethanol, dried, and sieved to an under 500 μm to obtain granulated powder. The granulated powder was compressed with a die having an outer diameter of 13.4 mm and an inner diameter of 7.7 mm with a hydraulic press at 20 ton / cm 2 to produce a toroidal ring-shaped molded body having a density of 6.1 Mg / m 3 . An enameled wire having a diameter of 0.25 mm was wound around this molded body for 170 turns, and a DC superposition characteristic was measured at a frequency of 100 kHz using an LCR meter (Hewlett Packard: HP-4285A). The results are shown in FIG.

(実施例8)
実施例5の粉末を用いた以外は実施例7と同様の手法で成形体密度6.0Mg/mのトロイダルリング状成形体を作製し、直流重畳特性を測定した。結果を図1に示す。
(Example 8)
A toroidal ring-shaped compact having a compact density of 6.0 Mg / m 3 was prepared in the same manner as in Example 7 except that the powder of Example 5 was used, and the DC superposition characteristics were measured. The results are shown in FIG.

(実施例9)
実施例4の粉末を用いた以外は実施例7と同様の手法で成形体密度6.6Mg/mのトロイダルリング状成形体を作製し、直流重畳特性を測定した。結果を図1に示す。
Example 9
A toroidal ring-shaped compact having a compact density of 6.6 Mg / m 3 was prepared in the same manner as in Example 7 except that the powder of Example 4 was used, and the DC superposition characteristics were measured. The results are shown in FIG.

(実施例10)
実施例6の粉末を用いた以外は実施例7と同様の手法で成形体密度6.6Mg/mのトロイダルリング状成形体を作製し、直流重畳特性を測定した。結果を図1に示す。
(Example 10)
A toroidal ring-shaped compact having a compact density of 6.6 Mg / m 3 was produced in the same manner as in Example 7 except that the powder of Example 6 was used, and the DC superposition characteristics were measured. The results are shown in FIG.

(参考例1)
平均粒径3.5μmのカルボニルFe粉末(BASF、SQ)を用いた以外は実施例7と同様の手法で成形体密度7.0Mg/mのトロイダルリング状成形体を作製し、直流重畳特性を測定した。結果を図1に示す。
(Reference Example 1)
A toroidal ring-shaped molded body having a molded body density of 7.0 Mg / m 3 was prepared in the same manner as in Example 7 except that carbonyl Fe powder (BASF, SQ) having an average particle size of 3.5 μm was used. Was measured. The results are shown in FIG.

(比較例3)
平均粒径0.6μmのNi−Znフェライト粉末(NiO:17.7mol%、CuO:8.8mol%、ZnO:25.0mol%、Fe:48.5mol%)を用いた以外は実施例7と同様に成形した。この成形体を900℃で2時間焼成してトロイダルリング状の焼結体とし、この焼結体の直流重畳特性を測定した。結果を図1に示す。
(Comparative Example 3)
Ni-Zn ferrite powder having an average particle diameter of 0.6μm (NiO: 17.7mol%, CuO : 8.8mol%, ZnO: 25.0mol%, Fe 2 O 3: 48.5mol%) is carried out except for using Molded as in Example 7. This molded body was fired at 900 ° C. for 2 hours to form a toroidal ring-shaped sintered body, and the DC superposition characteristics of the sintered body were measured. The results are shown in FIG.

(実施例11)
実施例2の粉末を用い、外径7.2mm、内径3.9mmの金型にて、成形圧力を10ton/cmとした以外は実施例圧縮し、密度6.3Mg/mのトロイダルリング状成形体を作製した。この成形体について透磁率の周波数特性をインピーダンスアナライザー(アジレント、4291B)を用いて測定し、1MHzにおける複素比透磁率の実部は41であった。
(Example 11)
Using the powder of Example 2, a toroidal ring having a density of 6.3 Mg / m 3 was compressed using a mold having an outer diameter of 7.2 mm and an inner diameter of 3.9 mm except that the molding pressure was 10 ton / cm 2. A shaped compact was produced. The frequency characteristics of the magnetic permeability of this molded body were measured using an impedance analyzer (Agilent, 4291B), and the real part of the complex relative magnetic permeability at 1 MHz was 41.

(実施例12)
実施例3の粉末を用いた以外は実施例11と同様の手法でトロイダルリング状成形体を作製・評価し、1MHzにおける複素比透磁率の実部23を得た。
(Example 12)
A toroidal ring-shaped molded body was produced and evaluated in the same manner as in Example 11 except that the powder of Example 3 was used, and a real part 23 having a complex relative permeability at 1 MHz was obtained.

(実施例13)
実施例4の粉末を用いた以外は実施例11と同様の手法でトロイダルリング状成形体を作製・評価し、1MHzにおける複素比透磁率の実部21を得た。
(Example 13)
A toroidal ring-shaped molded body was produced and evaluated in the same manner as in Example 11 except that the powder of Example 4 was used, and a real part 21 having a complex relative permeability at 1 MHz was obtained.

(実施例14)
実施例6の粉末を用いた以外は実施例11と同様の手法でトロイダルリング状成形体を作製・評価し、1MHzにおける複素比透磁率の実部23を得た。
(Example 14)
A toroidal ring-shaped molded body was produced and evaluated in the same manner as in Example 11 except that the powder of Example 6 was used, and a real part 23 having a complex relative permeability at 1 MHz was obtained.

(比較例4)
比較例1の粉末を用いた以外は実施例11と同様の手法でトロイダルリング状成形体を作製・評価し、1MHzにおける複素比透磁率の実部13を得た。
(Comparative Example 4)
A toroidal ring-shaped molded body was produced and evaluated in the same manner as in Example 11 except that the powder of Comparative Example 1 was used, and a real part 13 having a complex relative permeability at 1 MHz was obtained.

(比較例5)
比較例2の粉末を用いた以外は実施例11と同様の手法でトロイダルリング状成形体を作製・評価し、1MHzにおける複素比透磁率の実部13を得た。
(Comparative Example 5)
A toroidal ring-shaped molded body was produced and evaluated in the same manner as in Example 11 except that the powder of Comparative Example 2 was used, and a real part 13 having a complex relative permeability at 1 MHz was obtained.

図1より、実施例8、9の試料は市販Fe粉末から成る圧粉磁心と同等の透磁率、ならびに直流重畳特性を発現している。一方、比較例3のフェライト焼結体試料の場合は直流が重畳すると透磁率の低下が著しい。磁界10kA/mの時に得られる増分透磁率は実施例8、9においてはいずれも20以上であるが、比較例3では5未満となっている。これはフェライト材料の磁束密度が低磁界で飽和してしまうことに起因している。すなわち本発明によれば、耐酸化性に優れた高透磁率の軟磁性金属粉末を提供することができる


From FIG. 1, the samples of Examples 8 and 9 exhibit the same permeability and direct current superposition characteristics as those of a dust core made of commercially available Fe powder. On the other hand, in the case of the ferrite sintered body sample of Comparative Example 3, when the direct current is superimposed, the permeability is remarkably reduced. The incremental permeability obtained when the magnetic field is 10 kA / m is 20 or more in each of Examples 8 and 9, but less than 5 in Comparative Example 3. This is because the magnetic flux density of the ferrite material is saturated by a low magnetic field. That is, according to the present invention, it is possible to provide a high magnetic permeability soft magnetic metal powder excellent in oxidation resistance.


Claims (10)

酸化鉄粉末を固相還元する還元剤として炭素粉末と共にAl粉末を添加することによって得られ、平均粒径が1μm超であり、表面が炭素および酸化アルミで被覆された鉄粒子粉末であり、大気中で加熱する熱重量分析における重量上昇が1.0%以上となる温度が450℃以上であることを特徴とする軟磁性金属粉末。   It is an iron particle powder obtained by adding Al powder together with carbon powder as a reducing agent for solid-phase reduction of iron oxide powder, having an average particle diameter of more than 1 μm, and a surface coated with carbon and aluminum oxide, A soft magnetic metal powder characterized in that the temperature at which the weight increase in thermogravimetric analysis heated in the glass becomes 1.0% or more is 450 ° C or more. 平均粒径が1μm超、20μm以下であることを特徴とする請求項1に記載の軟磁性金属粉末。   2. The soft magnetic metal powder according to claim 1, having an average particle size of more than 1 μm and 20 μm or less. 平均粒径が4〜12μmであることを特徴とする請求項1に記載の軟磁性金属粉末。   The soft magnetic metal powder according to claim 1, wherein the average particle diameter is 4 to 12 μm. X線光電子分光法によって分析される表面組成が、Feが1at%未満、Cが80〜85at%、Alが2.8〜3.4at%であることを特徴とする、請求項1に記載の軟磁性金属粉末。   The surface composition analyzed by X-ray photoelectron spectroscopy is characterized in that Fe is less than 1 at%, C is 80 to 85 at%, and Al is 2.8 to 3.4 at%. Soft magnetic metal powder. 還元剤である炭素粉末及びAl粉末と、酸化鉄粉末とを混合し、
得られた混合粉に非酸化性雰囲気中で熱処理を施し、
X線光電子分光法で検出される表面組成に炭素及び酸化アルミニウムを有し、核組成に鉄を有する粉末を得ることを特徴とする軟磁性金属粉末の製造方法。
Carbon powder and Al powder, which are reducing agents, and iron oxide powder are mixed,
The obtained mixed powder is subjected to heat treatment in a non-oxidizing atmosphere,
A method for producing a soft magnetic metal powder, characterized in that a powder having carbon and aluminum oxide in the surface composition detected by X-ray photoelectron spectroscopy and iron in the core composition is obtained.
請求項1乃至4のいずれかに記載の軟磁性金属粉末と、有機樹脂または無機酸化物の少なくとも一方とで構成されており、
密度が6.0Mg/m以上であることを特徴とする圧粉磁心。
The soft magnetic metal powder according to any one of claims 1 to 4 and at least one of an organic resin or an inorganic oxide,
A dust core having a density of 6.0 Mg / m 3 or more.
請求項1乃至4のいずれかに記載の軟磁性金属粉末と、有機樹脂または無機酸化物の少なくとも一方とで構成されており、
100kHzの周波数下で巻線に直流を重畳して発生する直流バイアス磁界が10kA/mの場合に、得られる増分透磁率が20以上であることを特徴とする圧粉磁心。
The soft magnetic metal powder according to any one of claims 1 to 4 and at least one of an organic resin or an inorganic oxide,
A dust core having an obtained incremental magnetic permeability of 20 or more when a DC bias magnetic field generated by superimposing DC on a winding at a frequency of 100 kHz is 10 kA / m.
請求項1に記載の軟磁性金属粉末と、有機樹脂または無機酸化物の少なくとも一方とで構成されており、
1MHzの周波数における複素比透磁率の実数部が20以上であることを特徴とする圧粉磁心。
The soft magnetic metal powder according to claim 1 and at least one of an organic resin or an inorganic oxide,
A dust core, wherein a real part of a complex relative permeability at a frequency of 1 MHz is 20 or more.
請求項1乃至4のいずれかに記載の軟磁性金属粉末に有機樹脂または無機酸化物を添加した後、1000MPa〜2000MPaの圧力で成形することを特徴とする圧粉磁心の製造方法。   A method for producing a powder magnetic core, comprising adding an organic resin or an inorganic oxide to the soft magnetic metal powder according to any one of claims 1 to 4 and then molding the powder at a pressure of 1000 MPa to 2000 MPa. 請求項5に記載の製造方法で得られた軟磁性金属粉末に、有機樹脂または無機酸化物を添加した後、1000MPa〜2000MPaの圧力で成形することを特徴とする圧粉磁心の製造方法。


A method for producing a dust core, wherein an organic resin or an inorganic oxide is added to the soft magnetic metal powder obtained by the production method according to claim 5 and then molded at a pressure of 1000 MPa to 2000 MPa.


JP2011069906A 2011-03-28 2011-03-28 Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same Withdrawn JP2012204744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069906A JP2012204744A (en) 2011-03-28 2011-03-28 Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069906A JP2012204744A (en) 2011-03-28 2011-03-28 Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012204744A true JP2012204744A (en) 2012-10-22

Family

ID=47185341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069906A Withdrawn JP2012204744A (en) 2011-03-28 2011-03-28 Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same

Country Status (1)

Country Link
JP (1) JP2012204744A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116004A1 (en) * 2013-01-24 2014-07-31 주식회사 아모그린텍 Method for manufacturing fe-based amorphous metal powder and method for manufacturing amorphous soft magnetic cores using same
CN105428053A (en) * 2015-12-30 2016-03-23 佛山市中研非晶科技股份有限公司 Method for precisely preparing nanocrystalline magnetic core with high magnetic permeability
CN109704746A (en) * 2019-02-28 2019-05-03 滁州市博瑞特工贸有限公司 A kind of preparation method of magnetic ferrites
CN112735724A (en) * 2020-12-21 2021-04-30 安徽智磁新材料科技有限公司 Iron-cobalt-based nanocrystalline magnetically soft alloy magnetic core material and preparation method thereof
CN113674983A (en) * 2021-08-20 2021-11-19 合肥工业大学 Preparation method of compact alumina-coated soft magnetic powder
CN116825468A (en) * 2023-08-04 2023-09-29 广东泛瑞新材料有限公司 Iron-cobalt magnetic core and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014116004A1 (en) * 2013-01-24 2014-07-31 주식회사 아모그린텍 Method for manufacturing fe-based amorphous metal powder and method for manufacturing amorphous soft magnetic cores using same
CN104981884A (en) * 2013-01-24 2015-10-14 阿莫绿色技术有限公司 Method for manufacturing Fe-based amorphous metal powder and method for manufacturing amorphous soft magnetic cores using same
US10121586B2 (en) 2013-01-24 2018-11-06 Amogreentech Co., Ltd. Method for manufacturing Fe-based amorphous metal powder and method for manufacturing amorphous soft magnetic cores using same
CN105428053A (en) * 2015-12-30 2016-03-23 佛山市中研非晶科技股份有限公司 Method for precisely preparing nanocrystalline magnetic core with high magnetic permeability
CN109704746A (en) * 2019-02-28 2019-05-03 滁州市博瑞特工贸有限公司 A kind of preparation method of magnetic ferrites
CN112735724A (en) * 2020-12-21 2021-04-30 安徽智磁新材料科技有限公司 Iron-cobalt-based nanocrystalline magnetically soft alloy magnetic core material and preparation method thereof
CN113674983A (en) * 2021-08-20 2021-11-19 合肥工业大学 Preparation method of compact alumina-coated soft magnetic powder
CN113674983B (en) * 2021-08-20 2023-06-23 合肥工业大学 Preparation method of compact alumina coated soft magnetic powder core
CN116825468A (en) * 2023-08-04 2023-09-29 广东泛瑞新材料有限公司 Iron-cobalt magnetic core and preparation method and application thereof
CN116825468B (en) * 2023-08-04 2024-01-12 广东泛瑞新材料有限公司 Iron-cobalt magnetic core and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5058031B2 (en) Core-shell magnetic particles, high-frequency magnetic material, and magnetic sheet
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
JP5710427B2 (en) Magnetic material, method for manufacturing magnetic material, and inductor element using magnetic material
WO2012131872A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
JP2007299871A (en) Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same
JP2001011563A (en) Manufacture of composite magnetic material
JP2007019134A (en) Method of manufacturing composite magnetic material
WO2016010098A1 (en) Magnetic core, method for producing magnetic core, and coil component
JP2012204744A (en) Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same
JP2003217919A (en) Dust core and high-frequency reactor using the same
JP5439888B2 (en) Composite magnetic material and method for producing the same
CN111696746A (en) Crushing-method Fe-Si-Al soft magnetic powder core and preparation method thereof
JP6229166B2 (en) Composite magnetic material for inductor and manufacturing method thereof
JPWO2018052107A1 (en) Magnetic core and coil parts
JP2009158802A (en) Manufacturing method of dust core
JP4171002B2 (en) Magnetite-iron composite powder for dust core and dust core using the same
WO2003060930A1 (en) Powder magnetic core and high frequency reactor using the same
JP2012222062A (en) Composite magnetic material
JP5472694B2 (en) Composite sintered body of aluminum oxide and iron, and method for producing the same
JP2003160847A (en) Composite magnetic material, magnetic element using the same, and manufacture method therefor
JP2011211026A (en) Composite magnetic material
JP2009272615A (en) Dust core, and manufacturing method thereof
JP4568691B2 (en) Magnetite-iron-cobalt composite powder for dust core, method for producing the same, and dust core using the same
CN112635147A (en) Soft magnetic powder and preparation method and application thereof
JP2010185126A (en) Composite soft magnetic material and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603