JP2006100292A - Dust core manufacturing method and dust core manufactured thereby - Google Patents

Dust core manufacturing method and dust core manufactured thereby Download PDF

Info

Publication number
JP2006100292A
JP2006100292A JP2004280762A JP2004280762A JP2006100292A JP 2006100292 A JP2006100292 A JP 2006100292A JP 2004280762 A JP2004280762 A JP 2004280762A JP 2004280762 A JP2004280762 A JP 2004280762A JP 2006100292 A JP2006100292 A JP 2006100292A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
metal powder
magnetic metal
organic binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004280762A
Other languages
Japanese (ja)
Inventor
Akira Fukuda
晃 福田
Toru Maeda
前田  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004280762A priority Critical patent/JP2006100292A/en
Publication of JP2006100292A publication Critical patent/JP2006100292A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dust core appropriate to an apparatus in which a hysteresis loss is required to be small in a transformer, a reactor or the like thereof, and a magnetic saturation characteristic is required to be linear, and to provide a manufacturing method therefor. <P>SOLUTION: The mixture of a soft magnetic metal powder having two particle size distributions and an organic material binder, or a soft magnetic metal powder having two particle size distributions coated with the organic binder on the surface thereof is contained in a mold, vibrated, pressure-molded at a pressure in the range of 10 to 100 MPa, and heated with a temperature at which the organic matter binder thermally decomposes, or a lower temperature. The dust core provided by this way is molded without the soft magnetic metal powder being largely deformed by an applied pressure, thus the hysteresis loss does not increase. In addition, since the effect of having two particle size distributions without increasing the applied pressure and the effect of vibration enable the high density filling as well as enlarging the density of the core which is completed by the vibration filling, neither the saturation magnetization nor magnetic permeability does not significantly decrease. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、変圧器、リアクトル等のヒステリシス損が少なく磁気飽和特性が線形である特性を要求される装置に好適な粉末磁性体コア及びその製造方法に関する。   The present invention relates to a magnetic powder core suitable for an apparatus such as a transformer, a reactor, etc., which requires a characteristic with low hysteresis loss and a linear magnetic saturation characteristic, and a method for manufacturing the same.

従来、磁心には、珪素鋼板等を重ね合わせて厚み方向に発生するコア内の渦電流等による磁気特性の低下を抑える形状が用いられていた。しかし、目的の磁気特性や、形状の複雑化により、最近では、軟磁性粉末と絶縁性バインダー混合し、これを加圧し成形する圧粉磁心の製造方法がある。この手段により、種々の軟磁性金属粉末を用いることが出来、目的とする磁気特性を有する磁心が得られるようになってきている。   Conventionally, the magnetic core has a shape that suppresses a decrease in magnetic properties due to an eddy current in the core generated in the thickness direction by overlapping silicon steel plates or the like. However, recently, there is a method of manufacturing a dust core in which soft magnetic powder and an insulating binder are mixed and pressed to form due to the complicated magnetic characteristics and shape. By this means, various soft magnetic metal powders can be used, and magnetic cores having the desired magnetic properties have been obtained.

既に、コアの損失低下のためには、圧粉磁心に用いる軟磁性粉末の結晶粒を粗大化させると保磁力の低下による圧粉磁心のヒステリシス損が低減することが知られており、また、軟磁性粉末が微細化したものを用いると圧粉磁心の過電流損の低減に有効であることも知られている。そこで、使用する軟磁性粉末は結晶粒が粗大化し、かつ微細なものが好ましい。そして、軟磁性金属粉末には、粉末製造時に酸化物の巻き込み対策として、S,Te,Se等の元素を添加する手段が開示されている(特許文献1参照)。   Already, for reducing the core loss, it is known that when the crystal grains of the soft magnetic powder used in the dust core are coarsened, the hysteresis loss of the dust core due to the decrease in coercive force is reduced. It is also known that the use of a fine soft magnetic powder is effective in reducing the overcurrent loss of the dust core. Therefore, the soft magnetic powder to be used is preferably a fine one with coarse crystal grains. And the means to add elements, such as S, Te, Se, is disclosed to soft magnetic metal powder as a countermeasure against the oxide inclusion at the time of powder manufacture (refer to patent documents 1).

また、軟磁性粉末と樹脂粉末を混合した粉末を圧粉成形し加熱することによる圧粉磁心の製法において、軟磁性粉末に対し、樹脂粉末は、メジアン径で50μm以下の粉末を、5体積%以下加えるのが好ましいとしている。即ち、軟磁性粉末間に非磁性体の樹脂微粉が存在し、軟磁性粉末同士が均一な絶縁を保つことが出来る。こうした均一性は、高周波領域での使用において、渦電流による発熱等を押さえ、長寿命化できる(特許文献2参照)。   In addition, in a method of manufacturing a powder magnetic core by compacting and heating a powder obtained by mixing soft magnetic powder and resin powder, the resin powder is 5% by volume of powder having a median diameter of 50 μm or less with respect to the soft magnetic powder. The following is preferred. That is, non-magnetic resin fine powder exists between the soft magnetic powders, and the soft magnetic powders can maintain uniform insulation. Such uniformity suppresses heat generation due to eddy currents in use in a high frequency region, and can extend the life (see Patent Document 2).

さらには、磁束飽和密度や、直流重畳特性等に優れたNi系磁性合金に対し、Fe−Al−Si系合金でも、その合金粉末を予め熱処理して結晶性を向上させると、Ni系合金以上の磁束飽和密度や、直流重畳特性を得られたという例もある(特許文献3参照)。   Furthermore, for Ni-based magnetic alloys with excellent magnetic flux saturation density, DC superposition characteristics, etc., even with Fe-Al-Si-based alloys, if the alloy powder is heat-treated in advance to improve the crystallinity, it will be higher than Ni-based alloys. There are also examples in which the magnetic flux saturation density and the DC superimposition characteristics were obtained (see Patent Document 3).

また、軟磁性材料粉末を成形するために金型等を用いて高圧で圧縮し、その後焼結処理等による熱処理を施すと、酸素が粉末内部にまで入り込み、磁気特性が劣化する等の問題がある。このため、軟磁性金属粉末の組成中にAlを加える合金を用い、粉末表面にAl酸化物の層を形成する等の対策もされている。しかしながらAlが含まれるため、磁束飽和密度が低くかつ直流重畳特性も低くなるので、軟磁性金属合金に加えるAl、Siの量を特定し、さらに熱処理温度の特定もしている。そして、軟磁性材料の表面には、酸化物の層が形成されるため、これらを加圧成形した場合、フェライト焼結材と比較して磁気飽和密度が大きいので大電流化が可能となる(特許文献4参照)。
特開2003−257722号公報、(0005−0006) 特開2004−146804号公報、(0015−0016) 特開2004−214418号公報、(0008) 特開2004−128327号公報、(0004−0005)、(0010)
In addition, when a soft magnetic material powder is molded and compressed at a high pressure using a mold or the like, and then subjected to a heat treatment such as a sintering process, oxygen enters into the powder and the magnetic properties deteriorate. is there. For this reason, countermeasures have been taken, such as forming an Al oxide layer on the powder surface using an alloy that adds Al in the composition of the soft magnetic metal powder. However, since Al is contained, the magnetic flux saturation density is low and the DC superimposition characteristic is also low. Therefore, the amounts of Al and Si added to the soft magnetic metal alloy are specified, and the heat treatment temperature is also specified. Since oxide layers are formed on the surface of the soft magnetic material, when these are pressure-molded, the magnetic saturation density is larger than that of the ferrite sintered material, so that a large current can be achieved ( (See Patent Document 4).
JP2003-257722, (0005-0006) JP 2004-146804 A, (0015-0016) JP 2004-214418 A, (0008) JP 2004-128327 A, (0004-0005), (0010)

前記したような先行例においては、使用する材料に特徴があり、出来上がったコアにおいてそれぞれの材料もしくは組成・構造等に特徴を有する。そして、磁心としての特性を向上させている。   In the preceding examples as described above, the material to be used has a characteristic, and the finished core has a characteristic in each material or composition / structure. And the characteristic as a magnetic core is improved.

磁気エネルギーを蓄えるリアクトルにおいては、モータなどに要求される高透磁率、低鉄損のような磁気特性ではなく、低鉄損、不飽和特性、直流重畳特性といった磁気特性が求められる。この要求に対応するには、構成する磁性体の保磁力が小さくヒステリシス損が少ないこと、透磁率がBHカーブにおける作動点で一定である、すなわちBHカーブが線形となり、飽和しにくいことが技術的解決目標となる。   In a reactor that stores magnetic energy, magnetic characteristics such as low iron loss, unsaturation characteristics, and direct current superposition characteristics are required instead of magnetic characteristics such as high permeability and low iron loss required for motors and the like. In order to meet this requirement, it is technical that the coercive force of the constituent magnetic material is small and the hysteresis loss is small, and the permeability is constant at the operating point in the BH curve, that is, the BH curve is linear and is not easily saturated. It becomes a solution target.

この対策として、コア材の透磁率を下げるために、コアの一部を切り欠き、その部分に非磁性体を挟む等の処置などもあるが、一般的には、前記特許文献のような、軟磁性金属粉末に絶縁材料を混合し、コア全体の透磁率を下げ磁気飽和特性を改善する手段がとられる。   As a countermeasure, in order to lower the magnetic permeability of the core material, there is a treatment such as notching a part of the core and sandwiching a nonmagnetic material in the part, but generally, as in the above-mentioned patent document, An insulating material is mixed with the soft magnetic metal powder to reduce the magnetic permeability of the entire core and improve the magnetic saturation characteristics.

そして、軟磁性金属粉末に絶縁材料を加えて圧縮し、高密度化と所望の形状に成形する際、大きな圧力を必要とするが、この大きな圧力のために軟磁性金属粉に物理的な歪みが加わり、成形されたコアのヒステリシス損が大きくなることが分かった。この歪みを成形後に除去するには、700℃以上の温度で成形する必要があるが、特許文献4のように絶縁材料が酸化物である場合を除き、通常有機物バインダーが用いられ、せいぜい500℃程度の温度までが限界である。従って、こうした有機物バインダーを用いるコアでは、ヒステリシス損の改善が出来ない状態であった。   In addition, when an insulating material is added to a soft magnetic metal powder and compressed to increase the density and form the desired shape, a large pressure is required. Due to this large pressure, the soft magnetic metal powder is physically strained. It was found that the hysteresis loss of the molded core was increased. In order to remove this distortion after molding, it is necessary to mold at a temperature of 700 ° C. or higher. However, unless the insulating material is an oxide as in Patent Document 4, an organic binder is usually used, and at most 500 ° C. The temperature is the limit. Therefore, in the core using such an organic binder, the hysteresis loss cannot be improved.

本発明は、軟磁性金属粉末と有機物バインダーを用いて作製される粉末磁性体コアの製造方法を改良し、ヒステリシス損の改善された粉末磁性体コアを提供するものである。
その手段は、粒度分布を2つ有する軟磁性金属粉末と有機物バインダーの混合物、もしくは、有機物バインダーを表面に被覆した粒度分布を2つ有する軟磁性金属粉末を成形型に入れ、振動を加え、10〜100MPaの範囲で加圧成形し、前記有機物バインダーの熱分解温度以下で加熱することを特徴とする。
この様にして作製された粉末磁性体コアは、軟磁性金属粉末が加圧力による歪みを大きく受けずに成形されるため、ヒステリシス損が大きくならずに済む。また、加える加圧力は大きくせずとも、粒度分布を2つ有する効果と振動による効果により高密充填でき、振動による充填で出来上がったコアの密度を大きくすることが出来るので、透磁性に関しても大幅に低下することはない。
The present invention provides a powder magnetic core having improved hysteresis loss by improving a method for producing a powder magnetic core produced using a soft magnetic metal powder and an organic binder.
The means is that a soft magnetic metal powder having two particle size distributions and an organic binder or a soft magnetic metal powder having two particle size distributions coated with an organic binder on the surface is placed in a mold, and vibration is applied. It is characterized by being pressure-molded in a range of ˜100 MPa and heating at a temperature lower than the thermal decomposition temperature of the organic binder.
The magnetic powder core produced in this way is molded without the soft magnetic metal powder being subjected to large distortions due to the applied pressure, so that the hysteresis loss is not increased. In addition, even if the applied pressure is not increased, high density packing can be achieved by the effect of having two particle size distributions and the effect of vibration, and the density of the core obtained by filling by vibration can be increased. There is no decline.

上記振動を加える場合、機械的振動でも構わないが、成形型内に投入された成形素材のみ振動を加えれば良いから、好ましくは成形型内に超音波振動を加えるのがよい。   When the vibration is applied, mechanical vibration may be used. However, since it is sufficient to apply vibration only to the molding material put in the mold, it is preferable to apply ultrasonic vibration in the mold.

また、使用する軟磁性金属粉末は、振動により均一に分散しやすい、球形状に近いものが良く、特にアトマイズ粉末が好ましく用いられる。   Further, the soft magnetic metal powder to be used is preferably a spherical powder which is easily dispersed uniformly by vibration, and atomized powder is particularly preferably used.

そして、有機物バインダーは、耐熱性の良い素材であれば好ましく使用できるが、樹脂化した際に高電気抵抗性を示す熱硬化性樹脂を用いるのが良い。   The organic binder can be preferably used as long as the material has good heat resistance, but it is preferable to use a thermosetting resin that exhibits high electrical resistance when converted into a resin.

有機物バインダーは、粉末状で軟磁性体金属粉末と混合させても良いが、成形型内で振動を受け、不均一化することも考えられるので、液状もしくは溶液状にするか、予め軟磁性体金属粉末にコーティングしておく手段をとるのが好ましい。   The organic binder may be mixed with a soft magnetic metal powder in the form of a powder, but it may be subjected to vibration in the mold and may become non-uniform. It is preferable to take means for coating the metal powder.

本発明になる製造方法により、粉末磁性体コアは使用する軟磁性金属粉末や樹脂バインダーの種類及び量により所望の特性を調整できる。特にヒステリシス損の制限も受けずに磁気特性を調整できる。又、本発明により製造される粉末磁性体コアは、高磁束までBHカーブの直線性を維持するため、大電流の変換をする機器に好適に使用される。   With the production method according to the present invention, the powder magnetic core can be adjusted in desired properties depending on the kind and amount of soft magnetic metal powder and resin binder used. In particular, the magnetic characteristics can be adjusted without being limited by hysteresis loss. In addition, the powder magnetic core produced according to the present invention maintains the linearity of the BH curve up to a high magnetic flux, and is therefore preferably used for equipment that converts a large current.

本発明における製造方法において、特記すべき点は比較的軽度の圧縮による被加工物への歪みを抑えることと、事前に振動を加えることによる被加工物の充填密度向上を組み合わせた手段をとることにある。成形する際に被加工物を予め振動により最蜜充填状態にしておき、そこに圧力を加えることで、比較的軽度の加圧にもかかわらず、十分な密度を有する加工物が得られる。十分な密度の向上により、透磁性が大幅に低下せず、一方、軽度な加圧により、軟磁性金属粉末への歪みが軽度で済み、その結果、ヒステリシス損の低下を防ぐことが出来る。加圧力は、10〜100MPaの範囲が良く10MPa未満では被加工物の性状によっては成形できない条件となることがある。また、100MPaを超えると、被加工物中の軟磁性金属粉末への歪が大きくなり、ヒステリシス損が増大する可能性がある。   In the manufacturing method according to the present invention, the point to be noted is that it takes measures that combine the distortion to the workpiece due to relatively light compression and the improvement of the filling density of the workpiece by applying vibration in advance. It is in. A workpiece having a sufficient density can be obtained in spite of relatively light pressurization by preliminarily filling the workpiece with a honey-comb filled state by vibration during molding. By sufficiently increasing the density, the magnetic permeability is not significantly reduced. On the other hand, mild pressurization requires only a slight strain on the soft magnetic metal powder, and as a result, a reduction in hysteresis loss can be prevented. The applied pressure is in the range of 10 to 100 MPa, and if it is less than 10 MPa, it may be a condition that cannot be molded depending on the properties of the workpiece. On the other hand, if it exceeds 100 MPa, the strain on the soft magnetic metal powder in the workpiece increases, and the hysteresis loss may increase.

また、充填密度を大きくするためには、2つの粒度分布を有する軟磁性金属粉末を用いるのが良い。ここで、2つの粒度分布を有するとは、当該粉末の粒度分布を測定した場合に、2つのピーク値を有することを意味する。すなわち、平均粒径の異なる2種類の粒子で構成されていることを意味するものである。均一な粒度を有する場合は、最密充填の際、隙間が多く、この隙間を埋めるべく、粗大な径のものと微細な径のものを組み合わせるのがよい。充填密度を高めるためには、粗大な径の粒径は微細な径の粒径の1.5〜3倍の組み合わせが良く、かつ、粗大な径の量は、微細な径の量の1.5〜2.5倍の範囲にあればよい。即ち、粗大な平均粒径である軟磁性金属粉末と、微細な平均粒径である軟磁性金属粉末の2つの粒度分布を有する軟磁性金属粉末を使用する。それらの関係は、粒度分布により多少のずれはあるが、互いの粒度分布における平均粒径が前記粗大な径と微細な径との関係にあればよい。   In order to increase the packing density, it is preferable to use a soft magnetic metal powder having two particle size distributions. Here, having two particle size distributions means having two peak values when the particle size distribution of the powder is measured. That is, it means that it is composed of two types of particles having different average particle diameters. In the case of having a uniform particle size, there are many gaps at the time of close-packing, and it is preferable to combine a coarse diameter and a fine diameter to fill the gap. In order to increase the packing density, the coarse diameter particle size is preferably a combination of 1.5 to 3 times the fine diameter particle size, and the coarse diameter amount is 1. It may be in the range of 5 to 2.5 times. That is, a soft magnetic metal powder having two particle size distributions of a soft magnetic metal powder having a coarse average particle diameter and a soft magnetic metal powder having a fine average particle diameter is used. The relationship is slightly different depending on the particle size distribution, but the average particle size in the particle size distribution may be a relationship between the coarse diameter and the fine diameter.

そして、有機物バインダーは、軟磁性金属粉末とそのまま混合する手段をとることもできるし、予め有機物バインダーを軟磁性金属粉末にコーティングした状態で用いる手段をとることもできる。
有機物バインダーを軟磁性金属粉末と混合し成形する場合は、有機物バインダーを微粉末にし、使用するのが好ましい。特に、前記軟磁性体粉末の2つの粒度分布のうち、微細な径を有する粒度分布と同等もしくはそれ以下の平均系を有する粒度分布とするのが好ましい。有機物バインダーを溶液状にするかもしくは液状樹脂のような形態にすると成形型内での振動に対する充填がスムーズとなりより好ましい。
The organic binder can be mixed with the soft magnetic metal powder as it is, or the organic binder can be used in a state where the organic binder is coated on the soft magnetic metal powder in advance.
When the organic binder is mixed with the soft magnetic metal powder and molded, it is preferable to use the organic binder in a fine powder form. In particular, among the two particle size distributions of the soft magnetic powder, a particle size distribution having an average system equivalent to or less than a particle size distribution having a fine diameter is preferable. When the organic binder is in the form of a solution or in the form of a liquid resin, the filling with respect to vibration in the mold becomes smooth, which is more preferable.

有機物バインダーを予め軟磁性金属粉末にコーティングしておき、これを成形型に投入する場合は、偏析等の心配もなくスムーズに成形できる。また、軟磁性金属粉末と有機物バインダーの比率もほぼ調整できた状態で成形が可能である。コーティングの手段については後述する。   When the organic binder is coated on the soft magnetic metal powder in advance and put into a mold, it can be molded smoothly without worrying about segregation. Further, the molding can be performed with the ratio of the soft magnetic metal powder and the organic binder almost adjusted. The coating means will be described later.

前記振動の手段は、機械的な振動で十分であるが、最蜜充填近くまで被加工物を充填するには、超音波を用いた振動を加えるのが好ましい。超音波を用いることにより、成形型内のみを振動させるだけで済み、効率的でありかつ最密充填化しやすいエネルギーを加えることが出来る。
前記機械的な振動においては、加振力10N〜500N、振動数100Hz〜200Hz程度の振動で十分である。超音波で加振する場合は、振動数20kHz〜50kHz、加電力20W〜200W程度で十分効果を発揮する。
As the vibration means, mechanical vibration is sufficient, but it is preferable to apply vibration using ultrasonic waves in order to fill the workpiece close to the honey filling. By using ultrasonic waves, it is only necessary to vibrate only the inside of the mold, and energy that is efficient and easily close-packed can be applied.
In the mechanical vibration, vibration with an excitation force of 10 N to 500 N and a vibration frequency of about 100 Hz to 200 Hz is sufficient. In the case of exciting with ultrasonic waves, a sufficient effect is exhibited at a frequency of 20 kHz to 50 kHz and an applied power of 20 W to 200 W.

本発明に用いる軟磁性体金属粉末は、前記したように2つの粒度分布をもつ粉末であるが、その形状が球状もしくは楕円球状であると、成形型内での流動性が良く、軽微な圧力により高蜜名充填が可能となるため好ましい。これらの球の隙間を有機物バインダーが充填するのが理想的である。
軟磁性金属粉末が球状に近くなる粉末は、アトマイズ粉がある。特にガスアトマイズ粉が真球に近いので好ましい。
The soft magnetic metal powder used in the present invention is a powder having two particle size distributions as described above. However, when the shape is spherical or elliptical, the fluidity in the mold is good and the pressure is small. Is preferable because high honey can be filled. Ideally, an organic binder fills the gaps between these spheres.
A powder in which the soft magnetic metal powder is nearly spherical is an atomized powder. In particular, gas atomized powder is preferable because it is close to a true sphere.

そして、前記軟磁性金属粉末は、使用目的により特性にあった軟磁性金属またはその合金を使用できるが、特にFe−M(M=0〜10重量%)の合金粉末かアモルファス粉末を用いるのが好ましい。ここで前記Mは、元素記号B,N,Al,Si,P,Ti,Mn,Co,Ni,Cu,Zr,Nbから選ばれる1種以上である。
これらのうち、前記元素記号全てが軟磁性改善効果を有し、この結果、飽和磁化特性が向上する。また、元素記号N,Al,Si,P,Ti,Co,Niを選択すれば、保磁力と磁性歪が減少するため、低鉄損、低騒音の効果が得られる。元素記号B,P,Nb,Zrを選択すれば、アモルファス化が促進できる。このアモルファス化で磁気特性が良くなる場合がある。この元素を含むことによりアトマイズ処理でアモルファスが得られる。粉末自体の硬度を低下させ、成形歪を蓄えにくくするには、元素記号Mn,Cu,Alから選択すると良い。
これらの軟磁性金属粉末の実質的平均径は、50〜300μmの範囲にあるのが良い。この平均径は前記粗大な粒度分布を有する粉末の平均径を意味する。50μm未満では、微細な粒子が平均的に存在するため、保磁力が大きくなり、好ましくない。また、300μmを超えると、粒内で渦電流が発生しやすく、高周波磁化特性を低下させる。
As the soft magnetic metal powder, a soft magnetic metal or an alloy thereof having characteristics according to the purpose of use can be used. In particular, an Fe-M (M = 0 to 10% by weight) alloy powder or an amorphous powder is used. preferable. Here, the M is at least one selected from the element symbols B, N, Al, Si, P, Ti, Mn, Co, Ni, Cu, Zr, and Nb.
Of these, all of the element symbols have a soft magnetism improving effect, and as a result, the saturation magnetization characteristics are improved. Further, when the element symbols N, Al, Si, P, Ti, Co, and Ni are selected, the coercive force and the magnetic strain are reduced, so that the effects of low iron loss and low noise can be obtained. Amorphization can be promoted by selecting element symbols B, P, Nb, and Zr. This amorphization may improve the magnetic characteristics. By including this element, amorphous can be obtained by atomization. In order to reduce the hardness of the powder itself and make it difficult to store molding strain, it is preferable to select from element symbols Mn, Cu, and Al.
The substantial average diameter of these soft magnetic metal powders is preferably in the range of 50 to 300 μm. This average diameter means the average diameter of the powder having the coarse particle size distribution. If it is less than 50 μm, fine particles are present on average, so that the coercive force is increased, which is not preferable. On the other hand, if it exceeds 300 μm, eddy currents are likely to be generated in the grains, and the high-frequency magnetization characteristics are degraded.

有機物バインダーには、一旦成形した後、形状が変化するのは好ましくないため、熱硬化性樹脂を選択するのが良い。混合前の形態は微粉末であるか、液状樹脂状態であるか、樹脂溶液であるものが選択される。また、特に有機物バインダーが軟磁性金属粉末に予めコーティングされていると、混合しても振動を加えても偏析することがないので好ましい。
熱硬化性樹脂のなかでも、未硬化の時点では成形時に流動性があり、金属粉末間を充填することができ、硬化する段階において熱収縮の小さいものが寸法安定性にすぐれ、さらには硬化後、強度が大きいものが好ましく選択される。その例として、フェノール系樹脂、エポキシ系樹脂、シリコーン系樹脂、ポリイミド系樹脂などがあげられる。
As the organic binder, it is not preferable to change the shape after being molded once, so it is preferable to select a thermosetting resin. The form before mixing is a fine powder, a liquid resin state, or a resin solution. In particular, it is preferable that the organic binder is pre-coated on the soft magnetic metal powder because segregation does not occur even when mixed or vibration is applied.
Among thermosetting resins, when uncured, there is fluidity at the time of molding, and it is possible to fill between metal powders, and those that have low thermal shrinkage at the stage of curing have excellent dimensional stability, and after curing Those having high strength are preferably selected. Examples thereof include phenolic resins, epoxy resins, silicone resins, polyimide resins, and the like.

軟磁性金属粉末に対する有機物バインダーの量は、5〜30体積%が好ましく、電気抵抗を高度に維持でき、飽和磁束が大きい(1.5T以上)。5体積%未満では電気抵抗が不十分になる傾向を見せる。また30体積%を超えると飽和磁束が減少する傾向となる。ただし、焼結タイプの軟磁性コアの場合は、10体積%以下で作製され、押し出し成形される場合は30体積%以上で作製されることが多い。
加えて、軟磁性金属粉末が凝集するのを避けるため、混合時に有機又は無機のカップリング剤等の分散剤処理を加えるのが好ましい。
The amount of the organic binder with respect to the soft magnetic metal powder is preferably 5 to 30% by volume, can maintain a high electric resistance, and has a large saturation magnetic flux (1.5 T or more). If it is less than 5% by volume, the electric resistance tends to be insufficient. If it exceeds 30% by volume, the saturation magnetic flux tends to decrease. However, in the case of a sintered soft magnetic core, it is produced at 10% by volume or less, and in the case of extrusion molding, it is often produced at 30% by volume or more.
In addition, in order to avoid agglomeration of the soft magnetic metal powder, it is preferable to add a dispersant treatment such as an organic or inorganic coupling agent during mixing.

なお、本発明の粉末磁性体コアを製造する場合は、前記特徴のほかに、成形後のアニール処理が必要である。アニール処理においては有機物バインダーが硬化する温度以上に加熱し、かつ有機物バインダーが熱分解等の劣化する温度以下に加熱するのが良い。アニールにより、未硬化の有機物質等が排除されるため、コアとしての安定性が増す。   In addition, when manufacturing the powder magnetic body core of this invention, the annealing process after shaping | molding is required besides the said characteristic. In the annealing treatment, it is preferable that the temperature is higher than the temperature at which the organic binder is cured, and the temperature is lower than the temperature at which the organic binder is degraded due to thermal decomposition. Annealing removes uncured organic substances and the like, so that the stability as the core is increased.

ここで、軟磁性金属粉末に有機物バインダーをコーティングするには、種々の手段があるが、好ましい手段を以下に記す。
(分散剤の処理)分散剤の処理は、省略できるが、軟磁性金属粉末の均一分散性を確保するためには、処理をするほうが良い。また、有機物バインダーに、液状樹脂もしくは樹脂溶液等の液体を選択し、かつ有機又は無機のカップリング剤を用いる場合は、有機物バインダーに予め混合しておき、軟磁性金属粉末と混合すればよい。
特にカップリング剤を下地処理として軟磁性体金属粉末に塗布し、乾燥した後有機物バインダーを処理する2段法としても良い。ここでカップリング剤は市販のものから選択でき、その使用量についても、仕様書に基づく量を用いてなんら差し支えない。
Here, there are various means for coating the soft magnetic metal powder with the organic binder, and preferred means are described below.
(Treatment of the dispersant) The treatment of the dispersant can be omitted, but in order to ensure the uniform dispersibility of the soft magnetic metal powder, the treatment is better. In addition, when a liquid such as a liquid resin or a resin solution is selected as the organic binder and an organic or inorganic coupling agent is used, it is mixed in advance with the organic binder and mixed with the soft magnetic metal powder.
In particular, the coupling agent may be applied to the soft magnetic metal powder as a base treatment, dried, and then treated with an organic binder. Here, the coupling agent can be selected from commercially available ones, and the amount of the coupling agent can be used based on the specifications.

他の分散剤の処理として、化成処理法がある。化成処理法は、酸性化合物溶液に軟磁性金属粉末を加えることにより、軟磁性金属粉末の表面にアモルファス質不働態を形成させ、有機物バインダーとのなじみを良くする処理である。処理する対象の金属種類にもよるが、通常使用する酸性化合物溶液には、燐酸、硼酸等の酸と元素記号Fe,Zn,Mn,Al,Ca等の金属化合物が含まれ、これらが、金属表面にアモルファス質不働態を形成する。   As another dispersant treatment, there is a chemical conversion treatment method. In the chemical conversion treatment method, an amorphous passive state is formed on the surface of the soft magnetic metal powder by adding the soft magnetic metal powder to the acidic compound solution to improve the compatibility with the organic binder. Depending on the type of metal to be treated, the acidic compound solution usually used includes acids such as phosphoric acid and boric acid and metal compounds such as element symbols Fe, Zn, Mn, Al, and Ca. Forms an amorphous passive state on the surface.

さらに別の分散剤処理として、ゾルゲル法がある。この手段は、被覆する分散物のアルコキシドなどの前駆体を溶液にしておき、これに軟磁性金属粉末を加えることにより該金属表面に分散物を堆積させる方法である。前記アルコキシドは金属表面で加水分解することにより、分散物が金属表面に堆積する。   Still another dispersant treatment is a sol-gel method. This means is a method in which a precursor such as an alkoxide of a dispersion to be coated is made into a solution, and a soft magnetic metal powder is added thereto to deposit the dispersion on the metal surface. The alkoxide hydrolyzes on the metal surface, thereby depositing a dispersion on the metal surface.

(樹脂バインダーの処理)。前記分散剤を処理しなくても、有機物バインダーの種類、性状により混合は可能であるが、有機物バインダーを均一に軟磁性金属粉末表面にコーティングすることにより、より均一な安定性のあるコアが形成できる。また、軟磁性金属粉末に対する有機物バインダーの量が調整できるので好ましい。   (Processing of resin binder). Even if the dispersant is not treated, mixing is possible depending on the type and properties of the organic binder, but by coating the organic binder uniformly on the surface of the soft magnetic metal powder, a more uniform and stable core is formed. it can. Moreover, since the quantity of the organic binder with respect to soft-magnetic metal powder can be adjusted, it is preferable.

前記分散剤に有機又は無機のカップリング剤を使用する場合は、液状の有機物バインダーに予め混合して用いても、選択的にカップリング剤が軟磁性金属粉末表面に付着するため、前記2段処理をする必要がない。粉末の有機物バインダーを使用する場合は、前記2段処理を行うのが好ましい。また、前記化成処理法やゾルゲル法を用いて分散剤処理をする場合も、前記2段処理法が適用される。   When an organic or inorganic coupling agent is used as the dispersant, the coupling agent selectively adheres to the surface of the soft magnetic metal powder even when mixed with a liquid organic binder in advance. There is no need to process. When a powdered organic binder is used, the two-stage treatment is preferably performed. The two-stage treatment method is also applied when the dispersant treatment is performed using the chemical conversion treatment method or the sol-gel method.

液状の有機物バインダーを軟磁性金属粉末にコーティングするには、混合機を用い、該粉末に液状の有機物バインダーを塗布し、乾燥するか加熱することにより該粉末の表面に有機物バインダーを堆積させることで達成できる。特に分散剤が処理された軟磁性金属粉末を用いる場合は、有機物バインダーと軟磁性金属粉末の馴染みがよいため、均一に塗布でき、かつ乾燥後のコーティングも均一化しやすい。   In order to coat the liquid organic binder onto the soft magnetic metal powder, a liquid organic binder is applied to the powder, and the organic binder is deposited on the surface of the powder by drying or heating. Can be achieved. In particular, when a soft magnetic metal powder treated with a dispersant is used, the organic binder and the soft magnetic metal powder are familiar, so that they can be applied uniformly and the coating after drying can be easily made uniform.

以上のように、軟磁性金属粉末と有機物バインダーの混合は、成形型に投入する前に予め軟磁性金属粉末を有機物バインダーでコーティングしておくと、計量も正確にでき、又、金型内での振動による偏析を抑えることができるため、好ましい方法である。   As described above, the mixing of the soft magnetic metal powder and the organic binder can be accurately performed if the soft magnetic metal powder is coated with the organic binder in advance before being put into the mold. This is a preferable method because segregation due to vibrations of the material can be suppressed.

Claims (8)

粒度分布を2つ有する軟磁性金属粉末と有機物バインダーの混合物、もしくは、有機物バインダーを表面に被覆した粒度分布を2つ有する軟磁性金属粉末を成形型に入れ、振動を加え、10〜100MPaの範囲で加圧成形し、前記有機物バインダーの熱分解温度以下で加熱することを特徴とする粉末磁性体コアの製造方法。   A mixture of soft magnetic metal powder having two particle size distributions and an organic binder, or a soft magnetic metal powder having two particle size distributions coated with an organic binder on the surface is placed in a mold, and a vibration is applied thereto. A method for producing a powder magnetic core, which is formed by pressing at a temperature below the thermal decomposition temperature of the organic binder. 前記振動の手段が、超音波振動によるものである、請求項1に記載の粉末磁性体コアの製造方法。   The method for manufacturing a powder magnetic core according to claim 1, wherein the vibration means is based on ultrasonic vibration. 前記軟磁性金属粉末の形状が球状もしくは楕円球状のものを用いている請求項1又は2に記載の粉末磁性体コアの製造方法。   The method for producing a powder magnetic core according to claim 1 or 2, wherein the soft magnetic metal powder has a spherical or elliptical shape. 前記軟磁性金属粉末はアトマイズ粉末を用いている請求項1乃至3のいずれかに記載の粉末磁性体コアの製造方法。   The method for producing a powder magnetic core according to any one of claims 1 to 3, wherein the soft magnetic metal powder uses atomized powder. 前記有機物バインダーが熱硬化性樹脂を用いている請求項1乃至4のいずれかに記載の粉末磁性体コアの製造方法。   The method for producing a magnetic powder core according to any one of claims 1 to 4, wherein the organic binder uses a thermosetting resin. 前記有機物バインダーは予め前記軟磁性金属粉末にコーティングしてある請求項1乃至5のいずれかに記載の粉末磁性体コアの製造方法。   6. The method for producing a magnetic powder core according to claim 1, wherein the organic binder is coated on the soft magnetic metal powder in advance. 請求項1乃至6のいずれかに記載の方法を用いて作製された粉末磁性体コア。   A magnetic powder core produced by using the method according to claim 1. 2つの粒度分布を有する軟磁性金属粉末と、5〜30体積%の熱硬化性樹脂からなる請求項7に記載の粉末磁性体コア。   The powder magnetic core according to claim 7, comprising a soft magnetic metal powder having two particle size distributions and 5 to 30% by volume of a thermosetting resin.
JP2004280762A 2004-09-28 2004-09-28 Dust core manufacturing method and dust core manufactured thereby Withdrawn JP2006100292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280762A JP2006100292A (en) 2004-09-28 2004-09-28 Dust core manufacturing method and dust core manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280762A JP2006100292A (en) 2004-09-28 2004-09-28 Dust core manufacturing method and dust core manufactured thereby

Publications (1)

Publication Number Publication Date
JP2006100292A true JP2006100292A (en) 2006-04-13

Family

ID=36239856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280762A Withdrawn JP2006100292A (en) 2004-09-28 2004-09-28 Dust core manufacturing method and dust core manufactured thereby

Country Status (1)

Country Link
JP (1) JP2006100292A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520108A (en) * 2003-01-21 2006-08-31 メトグラス・インコーポレーテッド Magnetic article having a straight BH loop
WO2012128037A1 (en) * 2011-03-24 2012-09-27 住友電気工業株式会社 Composite material, reactor core, reactor, converter and power conversion device
WO2012128034A1 (en) * 2011-03-24 2012-09-27 住友電気工業株式会社 Composite material, reactor core, reactor, converter, and power conversion device
CN103730224A (en) * 2013-12-27 2014-04-16 青岛云路新能源科技有限公司 Preparation method for iron-based amorphous magnetic powder core with ultrahigh magnetic conductivity
JP2014212164A (en) * 2013-04-17 2014-11-13 株式会社神戸製鋼所 Winding element and method for manufacturing the same
CN105679484A (en) * 2016-04-04 2016-06-15 苏州思创源博电子科技有限公司 Preparation method of high-mechanical-strength soft magnetic alloy
WO2018084666A1 (en) * 2016-11-04 2018-05-11 주식회사 엘지화학 Thermosetting composition
KR102096310B1 (en) * 2018-11-23 2020-04-06 한국생산기술연구원 Device for manufacturing soft magnetic material using ultrasonic vibration, manufacturing method thereof, and soft magnetic material manufactured using the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006520108A (en) * 2003-01-21 2006-08-31 メトグラス・インコーポレーテッド Magnetic article having a straight BH loop
JP4832294B2 (en) * 2003-01-21 2011-12-07 メトグラス・インコーポレーテッド Magnetic article having a straight BH loop
CN103430249A (en) * 2011-03-24 2013-12-04 住友电气工业株式会社 Composite material, reactor core, reactor, converter, and power conversion device
WO2012128034A1 (en) * 2011-03-24 2012-09-27 住友電気工業株式会社 Composite material, reactor core, reactor, converter, and power conversion device
US20130294129A1 (en) * 2011-03-24 2013-11-07 Sumitomo Electric Industries, Ltd. Composite material, reactor-use core, reactor, converter, and power converter apparatus
CN103430250A (en) * 2011-03-24 2013-12-04 住友电气工业株式会社 Composite material, reactor core, reactor, converter and power conversion device
DE112012001403B4 (en) 2011-03-24 2024-02-08 Sumitomo Electric Industries, Ltd. Composite material, choke insert core, choke, converter and power converter device
US9349511B2 (en) 2011-03-24 2016-05-24 Sumitomo Electric Industries, Ltd. Composite material, reactor-use core, reactor, converter, and power converter apparatus
WO2012128037A1 (en) * 2011-03-24 2012-09-27 住友電気工業株式会社 Composite material, reactor core, reactor, converter and power conversion device
CN103430250B (en) * 2011-03-24 2017-08-18 住友电气工业株式会社 Composite, reactor magnetic core, reactor, converter and power converter arrangement
US9847156B2 (en) 2011-03-24 2017-12-19 Sumitomo Electric Industries, Ltd. Composite material, reactor-use core, reactor, converter, and power converter apparatus
CN103430249B (en) * 2011-03-24 2018-05-01 住友电气工业株式会社 Composite material, reactor magnetic core, reactor, converter and power converter arrangement
JP2014212164A (en) * 2013-04-17 2014-11-13 株式会社神戸製鋼所 Winding element and method for manufacturing the same
CN103730224A (en) * 2013-12-27 2014-04-16 青岛云路新能源科技有限公司 Preparation method for iron-based amorphous magnetic powder core with ultrahigh magnetic conductivity
CN105679484A (en) * 2016-04-04 2016-06-15 苏州思创源博电子科技有限公司 Preparation method of high-mechanical-strength soft magnetic alloy
CN105679484B (en) * 2016-04-04 2018-05-15 温州弘恒电子科技有限公司 A kind of preparation method of high mechanical properties magnetically soft alloy
US11872623B2 (en) 2016-11-04 2024-01-16 Lg Chem, Ltd. Thermosetting composition
WO2018084666A1 (en) * 2016-11-04 2018-05-11 주식회사 엘지화학 Thermosetting composition
KR102096310B1 (en) * 2018-11-23 2020-04-06 한국생산기술연구원 Device for manufacturing soft magnetic material using ultrasonic vibration, manufacturing method thereof, and soft magnetic material manufactured using the same
WO2020106125A1 (en) * 2018-11-23 2020-05-28 한국생산기술연구원 Device and method for manufacturing soft magnetic composite by using ultrasonic vibration, and soft magnetic composite manufactured by using same

Similar Documents

Publication Publication Date Title
JP6277426B2 (en) Composite magnetic body and method for producing the same
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
WO2009128425A1 (en) Composite magnetic material and manufacturing method thereof
WO2012131872A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
WO2014054430A1 (en) Soft magnetic mixed powder
JP5063861B2 (en) Composite dust core and manufacturing method thereof
WO2011016207A1 (en) Composite magnetic body and method for producing the same
JP2008192887A (en) Coil component
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2009164401A (en) Manufacturing method of dust core
JP5110624B2 (en) Wire ring parts
JP2007214425A (en) Powder magnetic core and inductor using it
JP2010153638A (en) Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component
WO2018105697A1 (en) Method for producing reactor, method for producing core, core, reactor, soft magnetic composite material, magnetic core using soft magnetic composite material, and reactor using soft magnetic composite material
JP2004363466A (en) Complex magnetic material and method for manufacturing inductor using the same
JP2007231330A (en) Methods for manufacturing metal powder for dust core and the dust core
WO2014034616A1 (en) Iron powder for powder magnetic core and process for producing powder magnetic core
WO2014054514A1 (en) Magnetic core and process for producing same
JP6615850B2 (en) Composite magnetic material and core manufacturing method
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
KR101963265B1 (en) Inductor component
JP2008192896A (en) Dust core
JP2020053439A (en) Composite magnetic material, metal composite core, reactor, and method of manufacturing metal composite core
JP6168382B2 (en) Manufacturing method of dust core

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060421

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204