JP2010153638A - Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component - Google Patents

Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component Download PDF

Info

Publication number
JP2010153638A
JP2010153638A JP2008330874A JP2008330874A JP2010153638A JP 2010153638 A JP2010153638 A JP 2010153638A JP 2008330874 A JP2008330874 A JP 2008330874A JP 2008330874 A JP2008330874 A JP 2008330874A JP 2010153638 A JP2010153638 A JP 2010153638A
Authority
JP
Japan
Prior art keywords
pure iron
particles
alloy
soft magnetic
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008330874A
Other languages
Japanese (ja)
Inventor
Hiroshi Tanaka
寛 田中
Kazunori Igarashi
和則 五十嵐
Tomohiro Sakai
智宏 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Diamet Corp
Original Assignee
Mitsubishi Materials Corp
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Diamet Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008330874A priority Critical patent/JP2010153638A/en
Publication of JP2010153638A publication Critical patent/JP2010153638A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dust core for obtaining a high saturation magnetic flux density and suppressing iron loss small, a method for manufacturing the same, and an electromagnetic circuit component provided with the dust core. <P>SOLUTION: The dust core 1 consists of Fe-3Si alloy particle phases 2, and pure iron particle phases 3 interposed in grain boundaries 2a each of which is surrounded by at least three or more Fe-3Si alloy particle phases 2. In the Fe-3Si alloy particle phases 2, a mean particle diameter is set to 100 to 145 μm, and the content of the pure iron particle phases 3 to the entire quantity of the dust core is set to 3 mass% or more and less than 10 mass%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、モータ、アクチュエータ、リアクトル、トランス、チョークコア、磁気センサコアなどの各種電磁気回路部品のコア材として用いられる複合軟磁性材料に関する。   The present invention relates to a composite soft magnetic material used as a core material of various electromagnetic circuit components such as a motor, an actuator, a reactor, a transformer, a choke core, and a magnetic sensor core.

モータ、アクチュエータ、リアクトル等のような電磁気回路部品に用いられるコア材には、高い飽和磁束密度を有するとともに、エネルギー損失(鉄損)が小さいことが求められる。
ここで、鉄損とは、ヒステリシス損失と渦電流損失の和で表されるエネルギー損失であり、このうちヒステリシス損失は、コア材の磁束密度を変化させるために必要なエネルギーによって生じるエネルギー損失であり、渦電流損失は、コア材に流れる渦電流によって生じるエネルギー損失である。このような鉄損を小さくするには、コア材の透磁率μ、飽和磁束密度Bsおよび電気抵抗率ρを大きくし、保磁力Hcを小さくすることが必要となる。
Core materials used for electromagnetic circuit components such as motors, actuators, reactors, and the like are required to have high saturation magnetic flux density and low energy loss (iron loss).
Here, iron loss is energy loss expressed as the sum of hysteresis loss and eddy current loss. Of this, hysteresis loss is energy loss caused by energy required to change the magnetic flux density of the core material. The eddy current loss is an energy loss caused by an eddy current flowing in the core material. In order to reduce such iron loss, it is necessary to increase the magnetic permeability μ, the saturation magnetic flux density Bs, and the electrical resistivity ρ of the core material, and to decrease the coercive force Hc.

このような電磁気回路部品のコア材としては、具体的には、使用周波数に応じ、大別して3種類のものが用いられている。
例えば、数10kHz以下の領域で用いられるコア材には、珪素鋼板、非晶質軟磁性薄帯、微結晶質軟磁性帯板などが主に用いられている。これらのコア材は、鉄を主成分とするものであり、飽和磁束密度Bsと比透磁率μrが大きいという長所をもつ。しかしながら、このうち珪素鋼板は、高周波領域における鉄損が大きいという欠点を有し、非晶質軟磁性薄帯と微結晶質軟磁性薄帯と珪素鋼板はいずれにおいても、磁心形状が巻磁心形状や積層磁心形状などに制約され、後述するフェライトのように種々の形状に成形し難い欠点を有する。
Specifically, as the core material of such an electromagnetic circuit component, three types of materials are roughly used according to the operating frequency.
For example, silicon steel plates, amorphous soft magnetic ribbons, microcrystalline soft magnetic strips, etc. are mainly used as core materials used in the region of several tens of kHz or less. These core materials are mainly composed of iron, and have the advantage that the saturation magnetic flux density Bs and the relative permeability μr are large. However, among these, the silicon steel sheet has a disadvantage that the iron loss in the high frequency region is large, and the core shape of the amorphous soft magnetic ribbon, the microcrystalline soft magnetic ribbon and the silicon steel plate is the wound core shape. In addition, there is a drawback that it is difficult to form into various shapes like ferrite described later.

また、数10kHz以上の領域で用いられるコア材には、Mn−Zn系やNi−Zn系に代表されるフェライトが広く用いられている。これらのフェライトよりなるコア材は、高周波領域における鉄損が小さく、また成形が比較的容易なため、種々の形状を大量生産できる特長を有する。しかしながら、飽和磁束密度Bsが、前述の珪素鋼板や非晶質軟磁性薄帯、微結晶質軟磁性薄帯より低いため、磁気飽和を避けようとすると磁心断面積が大きくなるという欠点を有する。  For core materials used in the region of several tens of kHz or more, ferrites typified by Mn—Zn and Ni—Zn are widely used. Since the core material made of these ferrites has a small iron loss in a high frequency region and is relatively easy to mold, it has the feature that various shapes can be mass-produced. However, since the saturation magnetic flux density Bs is lower than that of the above-described silicon steel plate, amorphous soft magnetic ribbon, and microcrystalline soft magnetic ribbon, there is a disadvantage that the magnetic core cross-sectional area becomes large when trying to avoid magnetic saturation.

また、数kHz〜数百kHzの領域で用いられるコア材には、圧粉磁心が用いられている。圧粉磁心とは、磁性粉末の表面を絶縁処理した後、圧密成形することによって得られるものであり、磁性粉末が絶縁処理されていることにより高い電気抵抗率ρを有し、渦電流損失が抑えられる。
このような圧粉磁心としては、従来、磁性粒子として絶縁処理が施された純鉄粒子を用いたものが知られている。しかし、純鉄は磁気異方性を有し、透磁率μが小さい。そのため、純鉄粒子を用いる圧粉磁心は、ヒステリシス損失が大きく、鉄損を十分に低減させることができないという欠点がある。
A dust core is used for the core material used in the region of several kHz to several hundred kHz. A dust core is obtained by insulating the surface of the magnetic powder and then compacting it. The magnetic powder is insulated so that it has a high electrical resistivity ρ and eddy current loss. It can be suppressed.
As such a dust core, one using pure iron particles subjected to insulation treatment as magnetic particles is conventionally known. However, pure iron has magnetic anisotropy and a small permeability μ. Therefore, the dust core using pure iron particles has a drawback that hysteresis loss is large and iron loss cannot be reduced sufficiently.

そこで、例えばFe−Si系合金やFe−Al系合金などの、純鉄と比較して透磁率μおよび電気抵抗率ρが大きく、且つ、保磁力Hcが小さい合金粒子を用いることにより、圧粉磁心の鉄損を低減させることが考えられる。このような合金粒子を用いた圧粉磁心としては、例えば、特許文献1および特許文献2に記載されたものがある。   Therefore, for example, by using alloy particles such as an Fe—Si alloy and an Fe—Al alloy that have a larger magnetic permeability μ and electric resistivity ρ and a smaller coercive force Hc than that of pure iron, compaction is achieved. It is conceivable to reduce the iron loss of the magnetic core. Examples of the dust core using such alloy particles include those described in Patent Document 1 and Patent Document 2.

このうち、特許文献1には、Fe−Si系合金やFe−Al系合金等よりなる合金粒子を絶縁被膜によって被覆した第1複合磁性粒子と、これらの合金よりなる高圧縮性軟磁性粒子を絶縁被膜によって被覆した第2複合磁性粒子によって構成された圧粉磁心が開示されている。ここで、第1複合磁性粒子は、圧粉磁心の主成分となるものであり、その合金粒子の平均粒径が3〜300μmとされている。また、第2複合磁性粒子は、平均粒径が第1複合磁性粒子を構成する合金粒子の平均粒径以下とされ、15〜35質量%の範囲で添加されている。  Among these, Patent Document 1 includes first composite magnetic particles in which alloy particles made of Fe—Si alloy, Fe—Al alloy or the like are coated with an insulating coating, and highly compressible soft magnetic particles made of these alloys. A dust core composed of second composite magnetic particles coated with an insulating coating is disclosed. Here, the first composite magnetic particles are the main component of the dust core, and the average particle size of the alloy particles is 3 to 300 μm. In addition, the second composite magnetic particles have an average particle size of not more than the average particle size of the alloy particles constituting the first composite magnetic particles, and are added in the range of 15 to 35% by mass.

また、特許文献2には、Si含有率が5〜8質量%のFe−Si系合金粉末と、純Fe粉末によって構成された圧粉磁心が開示されている。ここで、Fe−Si系合金粉末の平均粒径は50〜100μm、純Fe粉末の平均粒径は10〜50μm、純Fe粉末の含有率は10〜55%とするのが良いことが記載されている。
特開2006−135164号公報 特開2008−192897号公報
Patent Document 2 discloses a dust core composed of Fe—Si based alloy powder having a Si content of 5 to 8 mass% and pure Fe powder. Here, it is described that the average particle diameter of the Fe—Si based alloy powder is preferably 50 to 100 μm, the average particle diameter of the pure Fe powder is 10 to 50 μm, and the content of the pure Fe powder is 10 to 55%. ing.
JP 2006-135164 A JP 2008-192897 A

しかしながら、本発明者らが検討したところ、これら従来の圧粉磁心は、粒子の配合率、合金粒子の組成および平均粒径等を制御することによって鉄損を低減させようとすると、成形密度や飽和磁束密度が低くなり、これら特性を向上させようとすると、鉄損が増大する傾向が見られ、飽和磁束密度の向上と鉄損の低減を同時に達成するのが困難であった。   However, as a result of investigations by the present inventors, these conventional powder magnetic cores have a molding density and an attempt to reduce iron loss by controlling the blending ratio of particles, the composition of alloy particles, the average particle diameter, and the like. When the saturation magnetic flux density is reduced and these characteristics are improved, the iron loss tends to increase, and it is difficult to simultaneously improve the saturation magnetic flux density and reduce the iron loss.

本発明は前記した問題に鑑みて創案されたものであり、高い飽和磁束密度が得られるとともに、鉄損が小さく抑えられる圧粉磁心、その製造方法、および、そのような圧粉磁心を備える電磁気回路部品を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a dust core capable of obtaining a high saturation magnetic flux density and suppressing iron loss to be small, a manufacturing method thereof, and an electromagnetic including such a dust core. The object is to provide circuit components.

上記の課題を解決するため、本発明者らが鋭意検討を重ねた結果、複数のFe−3Si合金粒子相と、少なくとも3つ以上の前記Fe−3Si合金粒子相に囲まれた粒界に存在する複数の純鉄粒子相とを有し、前記Fe−3Si合金粒子相の平均粒径と純鉄粒子相の割合を規定することにより、飽和磁束密度が高く、鉄損が小さい圧粉磁心が得られるとの知見を得るに至った。本発明は、このような知見に基づいて提案されたものであり、以下の構成を有する。  In order to solve the above problems, the present inventors have conducted intensive studies, and as a result, existed in a grain boundary surrounded by a plurality of Fe-3Si alloy particle phases and at least three or more Fe-3Si alloy particle phases. The powder magnetic core has a high saturation magnetic flux density and a small iron loss by defining the average particle size of the Fe-3Si alloy particle phase and the ratio of the pure iron particle phase. It came to the knowledge that it was obtained. The present invention has been proposed based on such knowledge and has the following configuration.

(1)本発明は、Fe−3Si合金粒子と純鉄粒子が圧密され、焼成されてなる複合軟磁性材料であり、複数のFe−3Si合金粒子相と、少なくとも3つ以上の前記Fe−3Si合金粒子相に囲まれた粒界に存在する複数の純鉄粒子相とを有し、前記Fe−3Si合金粒子相の平均粒径が100〜145μmであり、前記純鉄粒子相の圧粉磁心全量に対する含有率が、3質量%以上10質量%未満であることを特徴とする。 (1) The present invention is a composite soft magnetic material in which Fe-3Si alloy particles and pure iron particles are consolidated and fired, and includes a plurality of Fe-3Si alloy particle phases and at least three Fe-3Si particles. A plurality of pure iron particle phases existing at grain boundaries surrounded by the alloy particle phase, the Fe-3Si alloy particle phase has an average particle size of 100 to 145 μm, and the dust core of the pure iron particle phase The content ratio with respect to the total amount is 3% by mass or more and less than 10% by mass.

(2)本発明は前記純鉄粒子相の平均粒径が、20μm以上50μm以下であることを特徴とする。
純鉄粒子相の平均粒径をこのような範囲とすることにより、鉄損をより低減させることができるとともに、飽和磁束密度Bsをより高めることができる。
(2) The present invention is characterized in that an average particle size of the pure iron particle phase is 20 μm or more and 50 μm or less.
By setting the average particle diameter of the pure iron particle phase in such a range, the iron loss can be further reduced and the saturation magnetic flux density Bs can be further increased.

(3)本発明は、前記Fe−3Si合金粒子相同士の粒界、前記純鉄粒子同士の粒界および前記Fe−Si系合金粒子と前記純鉄粒子との粒界の少なくともいずれかに、絶縁層を有することを特徴とする。
(4)本発明の複合軟磁性材料の製造方法は、平均粒径が100〜145μmのFe−3Si合金粒子と、純鉄粒子とを、該純鉄粒子の含有率が3質量%以上10質量%未満となるように混合することによって混合粒子を得る第1の工程と、前記混合粒子を加圧成形することによって成形体を得る第2の工程と、前記成形体を焼成することによってFe−3Si合金粒子相と少なくとも3つ以上の前記Fe−3Si合金粒子相に囲まれた粒界に存在する複数の純鉄粒子相とを有する複合軟磁性材料を得る第3の工程とを有することを特徴とする。
(5)本発明の複合軟磁性材料の製造方法は、前記純鉄粒子の表面が平滑化されて3質量%以上10質量%未満となるように混合されてなることを特徴とする。
(6)本発明の複合軟磁性材料の製造方法は、前記純鉄粒子のかさ密度(A.D)が平滑化する前の純鉄粒子よりも0.09〜0.25Mg/m高いことを特徴とする請求項5または請求項6に記載の複合軟磁性材料の製造方法。
(7)本発明の複合軟磁性材料の製造方法は、前記Fe−3Si合金粒子および前記純鉄粒子の少なくともいずれかに、絶縁被膜を形成する工程を有することを特徴とする。
(8)本発明の電磁気回路部品は、(1)〜(3)のいずれかに記載の複合軟磁性材料を備えることを特徴とする。
(3) In the present invention, at least one of a grain boundary between the Fe-3Si alloy particle phases, a grain boundary between the pure iron particles, and a grain boundary between the Fe-Si based alloy particle and the pure iron particle, It has an insulating layer.
(4) In the method for producing a composite soft magnetic material of the present invention, Fe-3Si alloy particles having an average particle diameter of 100 to 145 μm and pure iron particles are contained, and the content of the pure iron particles is 3% by mass or more and 10% by mass. The first step of obtaining mixed particles by mixing so as to be less than%, the second step of obtaining a molded body by press molding the mixed particles, and Fe- A third step of obtaining a composite soft magnetic material having a 3Si alloy particle phase and a plurality of pure iron particle phases present at a grain boundary surrounded by at least three Fe-3Si alloy particle phases. Features.
(5) The method for producing a composite soft magnetic material of the present invention is characterized in that the surface of the pure iron particles is smoothed and mixed so as to be 3% by mass or more and less than 10% by mass.
(6) In the method for producing a composite soft magnetic material of the present invention, the bulk density (AD) of the pure iron particles is 0.09 to 0.25 Mg / m 3 higher than that of the pure iron particles before smoothing. A method for producing a composite soft magnetic material according to claim 5 or 6.
(7) The method for producing a composite soft magnetic material according to the present invention includes a step of forming an insulating film on at least one of the Fe-3Si alloy particles and the pure iron particles.
(8) An electromagnetic circuit component according to the present invention includes the composite soft magnetic material according to any one of (1) to (3).

以上説明したように、本発明によれば、圧粉磁心の主成分としてFe−3Si合金粒子相を用いているため、保磁力Hcが低く、電気抵抗率ρが高く、鉄損が小さく抑えられた圧粉磁心などの複合軟磁性材料を得ることができる。
また、少なくとも3つ以上のFe−3Si合金粒子相に囲まれた粒界に純鉄粒子相を存在させ、この純鉄粒子相の含有率を所定の範囲としているため、Fe−3Si合金粒子相同士の隙間を磁性体(純鉄粒子相)で確実に埋めることができる。このため、本発明の複合軟磁性材料は、高い飽和磁束密度Bsを得ることができる。
As described above, according to the present invention, since the Fe-3Si alloy particle phase is used as the main component of the powder magnetic core, the coercive force Hc is low, the electrical resistivity ρ is high, and the iron loss is suppressed to a low level. A composite soft magnetic material such as a dust core can be obtained.
Further, since a pure iron particle phase is present at a grain boundary surrounded by at least three Fe-3Si alloy particle phases, and the content of the pure iron particle phase is within a predetermined range, the homology of Fe-3Si alloy particles It is possible to reliably fill the gaps between the two with a magnetic material (pure iron particle phase). For this reason, the composite soft magnetic material of the present invention can obtain a high saturation magnetic flux density Bs.

以下、本発明の複合軟磁性材料、その製造方法および電磁気回路部品を添付図面に示す好適な実施形態に基づいて説明する。
<複合軟磁性材料>
まず、本発明に係る複合軟磁性材料として圧粉磁心について説明する。
図1は、本発明に係る複合軟磁性材料としての圧粉磁心の実施形態を示す断面模式図であり、図1は後述する実施例において得られた試料の1000倍拡大図である。
図1に示す複合軟磁性材料(圧粉磁心)1は、複数のFe−3Si合金粒子相2と、少なくとも3つ以上の前記Fe−3Si合金粒子相2に囲まれた粒界2aに存在する複数の純鉄粒子相3とを有している。
各Fe−3Si合金粒子相2は、それぞれ、粒状をなし、隣り合うFe−3Si合金粒子相2同士が圧密されることによって一体化されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a composite soft magnetic material, a manufacturing method thereof, and an electromagnetic circuit component of the present invention will be described based on preferred embodiments shown in the accompanying drawings.
<Composite soft magnetic material>
First, a dust core will be described as a composite soft magnetic material according to the present invention.
FIG. 1 is a schematic cross-sectional view showing an embodiment of a powder magnetic core as a composite soft magnetic material according to the present invention, and FIG. 1 is a 1000 times enlarged view of a sample obtained in an example described later.
A composite soft magnetic material (dust core) 1 shown in FIG. 1 exists at a grain boundary 2 a surrounded by a plurality of Fe-3Si alloy particle phases 2 and at least three Fe-3Si alloy particle phases 2. A plurality of pure iron particle phases 3.
Each Fe-3Si alloy particle phase 2 has a granular shape and is integrated by adhering adjacent Fe-3Si alloy particle phases 2 to each other.

本発明で用いるFe−3Si合金粒子相2の平均粒径は、100〜145μmの範囲とされている。Fe−3Si合金粒子相2の平均粒径が100μmより小さいと、圧粉磁心1の飽和磁束密度Bsが小さくなる。また、Fe−3Si合金粒子相2の平均粒径が145μmを超えると、粒内渦電流損が大きくなる。さらに、Fe−3Si合金粒子相2の平均粒径のより好ましい範囲は、110〜140μmである。Fe−3Si合金粒子相2の平均粒径がこのような範囲であることにより、粒内渦電流損をより小さく抑えることができ、また、圧粉磁心1の飽和磁束密度Bsをより高くすることができる。なお、本明細書中において「平均粒径」とは、D50を示す。  The average particle diameter of the Fe-3Si alloy particle phase 2 used in the present invention is in the range of 100 to 145 μm. When the average particle diameter of the Fe-3Si alloy particle phase 2 is smaller than 100 μm, the saturation magnetic flux density Bs of the dust core 1 is decreased. Moreover, when the average particle diameter of the Fe-3Si alloy particle phase 2 exceeds 145 μm, intragranular eddy current loss increases. Furthermore, the more preferable range of the average particle diameter of the Fe-3Si alloy particle phase 2 is 110 to 140 μm. When the average particle diameter of the Fe-3Si alloy particle phase 2 is within such a range, the intragranular eddy current loss can be further reduced, and the saturation magnetic flux density Bs of the dust core 1 can be further increased. Can do. In the present specification, “average particle diameter” indicates D50.

各純鉄粒子相3は、それぞれ、鉄の含有率が99.5質量%を超える粒子状の相である。これら純鉄粒子相3は、3つ以上のFe−3Si合金粒子相2に囲まれた粒界2aに存在している。これにより、次のような効果を得ることができる。
すなわち、Fe−Si系合金粒子は圧縮性が悪いため、これを単独で加圧成形し、焼成することによって圧粉成形体を製造した場合、Fe−Si系合金粒子の粒子形状がそのまま製品中に保持され易い。この場合、特に、鉄粒子が多すぎると、合金粒子よりも鉄粒子の方が圧縮性が良好であり、合金粒子よりも鉄粒子の方が飽和磁束密度が大きいことが原因となって、密度と飽和磁束密度の面で有利となるが、鉄粒子の短所でもある比抵抗の低さが原因となって、全体の比抵抗が急激に低下し、低下した分、渦電流損失が増加し、圧粉磁心1としてのトータル的な鉄損の増加を引き起こす問題がある。
これに対して、図1に示すように、3つ以上のFe−3Si合金粒子相2で囲まれた粒界2aに純鉄粒子相3が適切な量存在していると、Fe−3Si合金粒子相2同士の隙間が磁性体(純鉄粒子相3)で埋められるため、Fe−3Si合金粒子相のみによって構成された圧粉成形体に比べて、高い飽和磁束密度Bsを得ることができる。
ここで、純鉄粒子相3は、2つのFe−3Si合金粒子相2によってのみ挟まれた粒界2bには実質的に存在しないことが好ましい。粒界2bに純鉄粒子相3が実質的に存在しない組織とすることにより、圧粉磁心1の飽和磁束密度の低下を防ぐことができる。
Each pure iron particle phase 3 is a particulate phase in which the iron content exceeds 99.5% by mass. These pure iron particle phases 3 exist at the grain boundaries 2 a surrounded by three or more Fe-3Si alloy particle phases 2. Thereby, the following effects can be obtained.
That is, since Fe-Si based alloy particles have poor compressibility, when a compacted body is produced by pressure forming and firing alone, the particle shape of the Fe-Si based alloy particles remains in the product as it is. Easy to hold. In this case, particularly when there are too many iron particles, the iron particles have better compressibility than the alloy particles, and the iron particles have a higher saturation magnetic flux density than the alloy particles. It is advantageous in terms of saturation magnetic flux density, but due to the low specific resistance that is also a disadvantage of iron particles, the overall specific resistance suddenly decreases, and the amount of eddy current loss increases, There is a problem that causes an increase in total iron loss as the dust core 1.
On the other hand, as shown in FIG. 1, when an appropriate amount of pure iron particle phase 3 is present in the grain boundary 2a surrounded by three or more Fe-3Si alloy particle phases 2, the Fe-3Si alloy Since the gap between the particle phases 2 is filled with a magnetic material (pure iron particle phase 3), a higher saturation magnetic flux density Bs can be obtained as compared with a compacted body constituted only by the Fe-3Si alloy particle phase. .
Here, it is preferable that the pure iron particle phase 3 does not substantially exist in the grain boundary 2b sandwiched only between the two Fe-3Si alloy particle phases 2. By setting it as the structure | tissue in which the pure iron particle phase 3 does not exist substantially in the grain boundary 2b, the fall of the saturation magnetic flux density of the dust core 1 can be prevented.

純鉄粒子相3の平均粒径は、20μm以上、50μm以下であるのが好ましい。純鉄粒子相3の平均粒径が20μmより小さいと、圧粉磁心1の保磁力Hcが大きくなり、鉄損が大きくなる。また、純鉄粒子相3の平均粒径が50μmを超えると、後述するようにFe−Si系合金粒子と純鉄粒子よりなる混合粒子を加圧成形する際、その成形密度が低くなる。その結果、この加圧成形体を焼成して得られる圧粉磁心1の飽和磁束密度Bsが低くなる。   The average particle diameter of the pure iron particle phase 3 is preferably 20 μm or more and 50 μm or less. When the average particle diameter of the pure iron particle phase 3 is smaller than 20 μm, the coercive force Hc of the dust core 1 is increased and the iron loss is increased. On the other hand, when the average particle diameter of the pure iron particle phase 3 exceeds 50 μm, as will be described later, when the mixed particles composed of Fe—Si based alloy particles and pure iron particles are formed by pressure, the forming density thereof becomes low. As a result, the saturation magnetic flux density Bs of the dust core 1 obtained by firing this pressure-molded body is lowered.

また、本発明では、圧粉磁心1全量に対する純鉄粒子相3の含有率が、3質量%以上10質量%未満とされている。純鉄粒子相3の含有率が3質量%より小さいと、純鉄粒子相3を添加する効果、すなわち、圧粉磁心1の飽和磁束密度Bsを向上させる効果が十分に得られない。また、純鉄粒子相3の含有率が10質量%以上であると、3つ以上のFe−3Si合金粒子相2で囲まれた粒界2aに収容し切れない過剰の純鉄粒子が発生し、これらが2つのFe−3Si合金粒子相2で挟まれた粒界2bに隙間4を生じさせるようになる(図2の参照)。このため、純鉄粒子相3の含有率が10質量%未満の範囲では、純鉄粒子相3の含有率を増加させても鉄損はほとんど変化せず、比較的低い値に保持されるが、純鉄粒子相3の含有率が10質量%以上になると、その含有率の増加に依存して圧粉磁心1の鉄損が急激に増大してしまう。
ここで鉄損は、ヒステリシス損失と渦電流損失の和となる。ヒステリシス損失は、鉄粒子の結晶の大きさに依存し、結晶が大きいとヒステリシス損失が小さくなる。よって、鉄粒子の含有量が増えると、比例して増加する傾向となる。渦電流損失は、電気抵抗に依存し、粉末同士の抵抗が低いと導体に渦電流が増え、急激な増加に繋がると考えられる。このことから、電気抵抗の高いFe−3Siの中に電気抵抗の低い鉄粒子を含有させると、各鉄粒子は絶縁皮膜されてはいるが、高圧力成形で絶縁皮膜が破れ易くなっており、被覆が破れた鉄粒子同士が接触された場合、渦電流が大幅に増加し、結果、鉄損の急激な増大につながると思われる。よって、Fe−3Si合金粒子相2で囲まれた隙間に充填される鉄粒子は成形によって、大きな変形は生じていないが、隙間に収容しきれなかった鉄粒子は、大きな変形がなされたことにより皮膜が破れているものが多く、隙間に収容されなかった鉄粒子であって絶縁被覆が破れた鉄粒子の存在が比抵抗の低下の原因になっていると思われる。
Moreover, in this invention, the content rate of the pure iron particle phase 3 with respect to the dust core 1 whole quantity shall be 3 mass% or more and less than 10 mass%. When the content of the pure iron particle phase 3 is smaller than 3% by mass, the effect of adding the pure iron particle phase 3, that is, the effect of improving the saturation magnetic flux density Bs of the dust core 1 cannot be sufficiently obtained. Further, when the content of the pure iron particle phase 3 is 10% by mass or more, excessive pure iron particles that cannot be accommodated in the grain boundary 2a surrounded by the three or more Fe-3Si alloy particle phases 2 are generated. As a result, a gap 4 is generated in the grain boundary 2b sandwiched between the two Fe-3Si alloy particle phases 2 (see FIG. 2). For this reason, in the range where the content of the pure iron particle phase 3 is less than 10% by mass, even if the content of the pure iron particle phase 3 is increased, the iron loss hardly changes and is kept at a relatively low value. When the content of the pure iron particle phase 3 is 10% by mass or more, the iron loss of the dust core 1 increases rapidly depending on the increase in the content.
Here, the iron loss is the sum of hysteresis loss and eddy current loss. The hysteresis loss depends on the size of the iron particle crystal, and the larger the crystal, the smaller the hysteresis loss. Therefore, when the content of iron particles increases, it tends to increase in proportion. Eddy current loss depends on electrical resistance, and it is considered that eddy current increases in a conductor when the resistance between powders is low, leading to a rapid increase. From this, when iron particles with low electrical resistance are contained in Fe-3Si with high electrical resistance, each iron particle is coated with an insulating film, but the insulating film is easily broken by high pressure molding, When iron particles having a broken coating are brought into contact with each other, the eddy current is greatly increased, and as a result, it seems that the iron loss is rapidly increased. Therefore, the iron particles filled in the gap surrounded by the Fe-3Si alloy particle phase 2 are not greatly deformed by molding, but the iron particles that could not be accommodated in the gap were greatly deformed. There are many cases where the film is torn, and the presence of iron particles that have not been accommodated in the gap and the insulating coating has been broken is considered to cause a decrease in specific resistance.

従って、各Fe−3Si合金粒子相2同士の粒界、各純鉄粒子相3同士の粒界、および、各Fe−3Si合金粒子相2と各純鉄粒子相3同士の粒界には、それぞれ、絶縁層が設けられているのが好ましい。これにより、圧粉磁心1の電気抵抗率ρが大きくなり、渦電流の発生が抑えられる。その結果、圧粉磁心1の渦電流損失に起因する鉄損を低減することができる。  Therefore, the grain boundary between each Fe-3Si alloy particle phase 2, the grain boundary between each pure iron particle phase 3, and the grain boundary between each Fe-3Si alloy particle phase 2 and each pure iron particle phase 3 are: Each is preferably provided with an insulating layer. Thereby, the electrical resistivity ρ of the dust core 1 is increased, and the generation of eddy current is suppressed. As a result, iron loss due to eddy current loss of the dust core 1 can be reduced.

絶縁層の構成材料としては、特に限定されないが、たとえばリン酸鉄、リン酸アルミニウム、リン酸マンガン、リン酸亜鉛、リン酸カルシウム、酸化ケイ素、酸化チタン、酸化アルミニウムまたは酸化ジルコニウム等の酸化物絶縁材料、熱可塑性ポリアミド、熱可塑性ポリイミド、熱可塑性ポリアミドイミド、ポリエチレン、ポリフェニレンサルファイド、ポリアミドイミド、ポリエーテルスルホン、ポリエーテルイミド、またはポリエーテルケトン等の熱可塑性樹脂等が挙げられ、このうち1種または2種以上を組み合わせて用いることができる。
このうち、絶縁層が熱可塑性樹脂を含んでいると、この熱可塑性樹脂が粒子同士を接合する接合材として機能し、機械的強度に優れた圧粉磁心1を得ることができる。
The constituent material of the insulating layer is not particularly limited. For example, an oxide insulating material such as iron phosphate, aluminum phosphate, manganese phosphate, zinc phosphate, calcium phosphate, silicon oxide, titanium oxide, aluminum oxide or zirconium oxide, Examples thereof include thermoplastic resins such as thermoplastic polyamide, thermoplastic polyimide, thermoplastic polyamideimide, polyethylene, polyphenylene sulfide, polyamideimide, polyethersulfone, polyetherimide, or polyetherketone, and one or two of these A combination of the above can be used.
Among these, when the insulating layer contains a thermoplastic resin, the thermoplastic resin functions as a bonding material for bonding particles, and the powder magnetic core 1 having excellent mechanical strength can be obtained.

以上のような圧粉磁心1は、Si含有率および平均粒径が所定の範囲とされたFe−3Si合金粒子相2を主成分として構成されていることにより、保磁力Hcが小さく、電気抵抗率ρが大きく、鉄損が小さく抑えられる。
また、少なくとも3つ以上のFe−3Si合金粒子相2に囲まれた粒界2aに純鉄粒子相3が存在しており、この純鉄粒子相3の含有率が所定の範囲とされていることにより、Fe−3Si合金粒子相2同士の隙間(粒界2a)が磁性体(純鉄粒子層3)で確実に埋まり、高い飽和磁束密度Bsを得ることができる。
The powder magnetic core 1 as described above is composed mainly of the Fe-3Si alloy particle phase 2 in which the Si content and the average particle diameter are in a predetermined range, so that the coercive force Hc is small and the electric resistance is low. The rate ρ is large, and the iron loss can be suppressed small.
Moreover, the pure iron particle phase 3 exists in the grain boundary 2a surrounded by at least three or more Fe-3Si alloy particle phases 2, and the content rate of this pure iron particle phase 3 is made into the predetermined range. Thus, the gap (grain boundary 2a) between the Fe-3Si alloy particle phases 2 is reliably filled with the magnetic material (pure iron particle layer 3), and a high saturation magnetic flux density Bs can be obtained.

<圧粉磁心の製造方法>
次に、本発明の圧粉磁心の製造方法を、図1に示す圧粉磁心を製造する場合を例にして説明する。図3は、本発明の圧粉磁心の製造方法の一例を工程順に示す工程図である。以下、各工程について説明する。
<Method of manufacturing a dust core>
Next, the manufacturing method of the dust core of the present invention will be described by taking as an example the case of manufacturing the dust core shown in FIG. FIG. 3 is a process diagram showing an example of a method of manufacturing a dust core according to the present invention in the order of steps. Hereinafter, each step will be described.

[1]Fe−Si系合金粒子の前処理工程
まず、Fe−Si系合金粒子を用意する(ステップS11)。このFe−Si系合金粒子は、最終的に圧粉磁心1のFe−3Si合金粒子相2となるものである。
[1] Pretreatment process of Fe-Si based alloy particles First, Fe-Si based alloy particles are prepared (step S11). These Fe—Si based alloy particles finally become the Fe-3Si alloy particle phase 2 of the dust core 1.

次に、Fe−Si系合金粒子を、還元雰囲気下、800〜1400℃の温度で熱処理する(ステップS12)。ここで行う熱処理の目的は、歪低減による保磁力(ヒステリシス損失)の低減である。  Next, the Fe—Si alloy particles are heat-treated at a temperature of 800 to 1400 ° C. in a reducing atmosphere (step S12). The purpose of the heat treatment performed here is to reduce the coercive force (hysteresis loss) by reducing strain.

次に、Fe−Si系合金粒子を、例えばステンレス篩を用い、平均粒径が100〜145μmとなるように分級する(ステップS13)。  Next, the Fe—Si based alloy particles are classified using, for example, a stainless sieve so that the average particle diameter is 100 to 145 μm (step S13).

次に、Fe−Si系合金粒子を絶縁被膜で被覆する(ステップS14)。
絶縁被膜は、例えば、Fe−Si系合金粒子を、前述の絶縁層の構成材料またはその前駆体を含有する液状材料中に浸漬した後、乾燥し、必要に応じて後処理を行うことによって形成することができる。
Next, the Fe—Si based alloy particles are covered with an insulating coating (step S14).
The insulating coating is formed, for example, by immersing Fe—Si-based alloy particles in a liquid material containing the constituent material of the insulating layer described above or a precursor thereof, and then performing a post-treatment as necessary. can do.

[2]純鉄粒子の前処理工程
まず、純鉄粒子を用意する(ステップS21)。この純鉄粒子は、最終的に圧粉磁心1の純鉄粒子相3となるものである。純鉄粒子を、例えばステンレス篩を用い、平均粒径が20〜50μmとなるように分級する(ステップS22)。
[2] Pure Iron Particle Pretreatment Step First, pure iron particles are prepared (step S21). The pure iron particles finally become the pure iron particle phase 3 of the dust core 1. The pure iron particles are classified using, for example, a stainless sieve so that the average particle diameter is 20 to 50 μm (step S22).

次に、純鉄粒子を絶縁被膜で被覆する(ステップS23)。
絶縁被膜の被覆方法および絶縁被膜の厚さは、Fe−Si系合金粒子の場合と同様である。
なお、この例では、Fe−Si系合金粒子を絶縁被膜で被覆する工程と、純鉄粒子を絶縁被膜で被覆する工程とを、別工程で行っているが、絶縁被膜を形成する前のFe−Si系合金粒子および純鉄粒子を所定の混合比で混合した後、これら各粒子に、同時に絶縁被膜を形成する処理を施してもよい。
Next, pure iron particles are covered with an insulating coating (step S23).
The coating method of the insulating coating and the thickness of the insulating coating are the same as in the case of Fe—Si based alloy particles.
In this example, the step of coating the Fe—Si-based alloy particles with the insulating coating and the step of coating the pure iron particles with the insulating coating are performed in separate steps, but the Fe before forming the insulating coating is performed. -After mixing Si-type alloy particles and pure iron particles at a predetermined mixing ratio, these particles may be subjected to a treatment for simultaneously forming an insulating coating.

なお、本発明において、純鉄粒子に対し表面平滑化を行っても良い。この表面平滑化については、純鉄粉末のみをメカノフュージョンで時間変量し、高回転で圧縮、剪断を行うことにより、純鉄粉末の表面を平滑化し、角の少ない純鉄粒子を得ることができる。また、純鉄粒子を平滑化していると、純鉄粉末粒子の流動性も同時に改善することができる。
この処理により、圧密後の密度を向上させて特性を向上させることができる。
In the present invention, the surface of the pure iron particles may be smoothed. As for this surface smoothing, only pure iron powder is time-varying with mechanofusion, and the surface of pure iron powder is smoothed by compressing and shearing at high rotation, and pure iron particles with few corners can be obtained. . Further, when the pure iron particles are smoothed, the fluidity of the pure iron powder particles can be improved at the same time.
By this treatment, the density after consolidation can be improved and the characteristics can be improved.

[3]Fe−Si系合金粒子と純鉄粒子の成形・焼成工程
次に、前記工程[1]、[2]で前処理が施されたFe−Si系合金粒子と純鉄粒子とを混合し、混合粒子を得る(ステップS31、ステップS32)。Fe−Si系合金粒子と純鉄粒子との混合比は、混合粒子全量に対する純鉄粒子の含有率が3質量%以上10質量%未満となるようにする。混合方法としては、特に限定されないが、例えばメカニカルアロイング法、振動ボールミル法、遊星ボールミル法等を用いることができる。
[3] Molding / firing step of Fe—Si based alloy particles and pure iron particles Next, the Fe—Si based alloy particles pretreated in the above steps [1] and [2] are mixed with pure iron particles. Then, mixed particles are obtained (step S31, step S32). The mixing ratio of the Fe—Si alloy particles and the pure iron particles is such that the content of the pure iron particles with respect to the total amount of the mixed particles is 3% by mass or more and less than 10% by mass. The mixing method is not particularly limited, and for example, a mechanical alloying method, a vibration ball mill method, a planetary ball mill method, or the like can be used.

次に、得られた混合粒子を金型に入れ、大気中において加圧成形することによって成形体を得る(ステップ33)。
ここで、加圧成形の圧力は785MPa程度であり、温度は130〜160℃程度である。このような条件で加圧成形を行うことにより、密度の大きい成形体を得ることができる。
Next, the obtained mixed particles are put into a mold and press-molded in the atmosphere to obtain a molded body (step 33).
Here, the pressure of pressure molding is about 785 MPa, and the temperature is about 130 to 160 ° C. By performing pressure molding under such conditions, a molded body having a high density can be obtained.

次に、成形体を焼成(熱処理)することによって、圧粉磁心を得る(ステップ34)。
熱処理温度は、Fe−Si系合金粒子に形成した絶縁被膜の熱分解温度または純鉄粒子に形成した絶縁被膜の熱分解温度のうち、いずれか低い方の温度より低く、且つ、300℃以上の温度に設定する。
この熱処理により、図1に示すように、複数のFe−3Si合金粒子相2と、3つ以上のFe−3Si合金粒子相2によって囲まれた粒界2aに純鉄粒子相3が存在する圧粉磁心1が得られる。
以上のようにして製造された圧粉磁心1は、Si含有率および平均粒径が所定の範囲とされたFe−3Si合金粒子相2を主成分として構成されていることにより、保磁力Hcが小さく、電気抵抗率ρが大きく、鉄損が小さく抑えられる。
また、少なくとも3つ以上のFe−3Si合金粒子相2に囲まれた粒界2aに純鉄粒子相3が存在しており、この純鉄粒子相3の含有率が所定の範囲とされていることにより、Fe−3Si合金粒子相2同士の隙間(粒界2a)が磁性体(純鉄粒子層3)で確実に埋まり、高い飽和磁束密度Bsを得ることができる。
Next, the compact is fired (heat treated) to obtain a dust core (step 34).
The heat treatment temperature is lower than the lower one of the thermal decomposition temperature of the insulating coating formed on the Fe-Si based alloy particles or the thermal decomposition temperature of the insulating coating formed on the pure iron particles, and 300 ° C or higher. Set to temperature.
By this heat treatment, as shown in FIG. 1, the pressure at which the pure iron particle phase 3 exists in the grain boundary 2a surrounded by the plurality of Fe-3Si alloy particle phases 2 and the three or more Fe-3Si alloy particle phases 2 is obtained. A powder magnetic core 1 is obtained.
The dust core 1 manufactured as described above is composed mainly of the Fe-3Si alloy particle phase 2 in which the Si content and the average particle diameter are in a predetermined range, so that the coercive force Hc is Small, high electrical resistivity ρ, and low iron loss.
Moreover, the pure iron particle phase 3 exists in the grain boundary 2a surrounded by at least three or more Fe-3Si alloy particle phases 2, and the content rate of this pure iron particle phase 3 is made into the predetermined range. Thus, the gap (grain boundary 2a) between the Fe-3Si alloy particle phases 2 is reliably filled with the magnetic material (pure iron particle layer 3), and a high saturation magnetic flux density Bs can be obtained.

<電磁気回路部品>
次に、本発明に係る複合軟磁性材料としての圧粉磁心を適用した電磁気回路部品について、リアクトルを例にして説明する。
図4は、本発明の圧粉磁心を適用したリアクトルを示す斜視図、図5は、図4のリアクトルが備えるリアクトルコアを示す斜視図である。
図4に示すリアクトル10は、リアクトルコア11と、リアクトルコア11に巻装された2つのコイル12を有している。
<Electromagnetic circuit components>
Next, an electromagnetic circuit component to which a dust core as a composite soft magnetic material according to the present invention is applied will be described by taking a reactor as an example.
FIG. 4 is a perspective view showing a reactor to which the dust core of the present invention is applied, and FIG. 5 is a perspective view showing a reactor core provided in the reactor of FIG.
A reactor 10 shown in FIG. 4 includes a reactor core 11 and two coils 12 wound around the reactor core 11.

図5に示すように、リアクトルコア11は、平面視でU字状をなす一対のU型コア11a、11bと、一対のU型コア11a、11bの間に、間隔を置いて配設された複数の矩形状のコア(I型コア)11cと、U型コア11a、11bとI型コア11cとの間およびI型コア11c、11c同士の間に介装されたギャップ板14と、ギャップ板14同士を接着する接着剤層15を有しており、全体として横長円環形状をなしている。このリアクトルコア11では、コイル12に電流を流したとき、この円環方向に磁気回路が形成される。
図4に示すように、各コイル12は、それぞれ、多数回巻回された導線よりなり、リアクトルコア11の長手方向の直線区間に巻装されている。
このリアクトル10では、リアクトルコア11が本発明の圧粉磁心によって構成されている。
As shown in FIG. 5, the reactor core 11 is disposed with a space between a pair of U-shaped cores 11a and 11b having a U shape in a plan view and the pair of U-shaped cores 11a and 11b. A plurality of rectangular cores (I-type cores) 11c, a gap plate 14 interposed between the U-type cores 11a and 11b and the I-type core 11c, and between the I-type cores 11c and 11c, and a gap plate It has the adhesive bond layer 15 which adhere | attaches 14, and has comprised the horizontal ellipse shape as a whole. In the reactor 11, when a current is passed through the coil 12, a magnetic circuit is formed in the annular direction.
As shown in FIG. 4, each coil 12 is composed of a conducting wire wound many times, and is wound around a straight section in the longitudinal direction of the reactor core 11.
In the reactor 10, the reactor core 11 is constituted by the dust core of the present invention.

このようなリアクトル10では、リアクトルコア11が、保磁力Hcが低く、電気抵抗率ρが高く、鉄損が小さく抑えられており、また、高い飽和磁束密度Bsを有する。このため、例えば、コイル12に大電流が供給されても、リアクトルコア11が磁気飽和し難く、また、電気エネルギーの損失が小さく抑えられ、リアクトル10として高い性能を得ることができる。  In such a reactor 10, the reactor core 11 has a low coercive force Hc, a high electrical resistivity ρ, a small iron loss, and a high saturation magnetic flux density Bs. For this reason, for example, even when a large current is supplied to the coil 12, the reactor core 11 is not easily magnetically saturated, the loss of electric energy is suppressed small, and high performance as the reactor 10 can be obtained.

なお、前記実施形態において、圧粉磁心および電磁気回路部品を構成する各部、圧粉磁心の製造方法の各工程は一例であって、本発明の範囲を逸脱しない範囲で適宜変更することができる。  In addition, in the said embodiment, each process of the manufacturing method of each part which comprises a powder magnetic core and an electromagnetic circuit component, and a powder magnetic core is an example, Comprising: It can change suitably in the range which does not deviate from the scope of the present invention.

次に、本発明の具体的実施例について説明する。なお、本発明は、この実施例によって制限されるものではない。   Next, specific examples of the present invention will be described. In addition, this invention is not restrict | limited by this Example.

<平均粒径101μmの合金粒子と、平均粒径48μmの純鉄粒子を用いた場合の純鉄粒子の添加量の検討>
(実施例1−1)
まず、Fe−3%Si合金粒子を用意し、水素雰囲気下、1000℃の温度で3時間熱処理した。次に、熱処理が施された合金粒子を、ステンレス篩を用いて分級し、平均粒径が101μmの合金粒子を回収した。
次に、合金粒子を、1.0%のレジン溶液中に浸漬し、乾燥することにより、シリコンレジンによって被覆した。
<Examination of the addition amount of pure iron particles when using alloy particles having an average particle size of 101 μm and pure iron particles having an average particle size of 48 μm>
(Example 1-1)
First, Fe-3% Si alloy particles were prepared and heat-treated at 1000 ° C. for 3 hours in a hydrogen atmosphere. Next, the heat-treated alloy particles were classified using a stainless steel sieve, and alloy particles having an average particle diameter of 101 μm were collected.
The alloy particles were then coated with silicon resin by dipping in a 1.0% resin solution and drying.

また、リン酸被膜付きの純鉄粒子(ヘガネス社製 商品名ソマロイ110i)を用意した。
そして、この純鉄粒子を、ステンレス篩を用いて分級し、平均粒径が48μmの純鉄粒子を回収した。次に、純鉄粒子を、1%のレジン溶液中に浸漬し、乾燥することによって、シリコンレジンによって被覆した。
次に、合金粒子と純鉄粒子とを、純鉄粒子の含有率が3質量%となるように混合して混合粒子を調製し、この混合粒子を、加圧成形することによって成形体を得た。
加圧成形の条件は、温度150℃、圧力785MPaである。
次に、成形体を、真空下、800℃の温度で1時間焼成し、焼成体(圧粉磁心)を得た。
以上の工程により、3質量%の純鉄粒子を含有する圧粉磁心を製造した。
Moreover, pure iron particles (trade name Somaloy 110i manufactured by Höganäs) with a phosphoric acid coating were prepared.
And this pure iron particle was classified using the stainless steel sieve, and the pure iron particles whose average particle diameter is 48 micrometers were collect | recovered. Next, the pure iron particles were dipped in a 1% resin solution and dried to coat the silicon resin.
Next, alloy particles and pure iron particles are mixed so that the content of pure iron particles is 3% by mass to prepare mixed particles, and the mixed particles are pressed to obtain a compact. It was.
The conditions for pressure molding are a temperature of 150 ° C. and a pressure of 785 MPa.
Next, the compact was fired at a temperature of 800 ° C. for 1 hour under vacuum to obtain a fired body (a dust core).
A dust core containing 3% by mass of pure iron particles was manufactured by the above process.

(実施例1−2〜1−4)
純鉄粒子の含有量を表1に示すように変える以外は、前記実施例1−1と同様にして圧粉磁心を製造した。
(Examples 1-2 to 1-4)
A dust core was manufactured in the same manner as in Example 1-1 except that the content of pure iron particles was changed as shown in Table 1.

(比較例1−1)
前記実施例1−1と同様にして前処理が施された合金粒子を、前記実施例1−1と同様の条件で加圧成形および焼成することによって純鉄粒子が添加されていない圧粉磁心を製造した。
(比較例1−2〜1−5)
純鉄粒子の含有量を表1に示すように変える以外は、前記実施例1−1と同様にして圧粉磁心を製造した。
(Comparative Example 1-1)
A powder magnetic core to which pure iron particles are not added by pressure-forming and firing alloy particles pretreated in the same manner as in Example 1-1 under the same conditions as in Example 1-1. Manufactured.
(Comparative Examples 1-2 to 1-5)
A dust core was manufactured in the same manner as in Example 1-1 except that the content of pure iron particles was changed as shown in Table 1.

[評価]
以上のようにして各実施例および各比較例で製造された圧粉磁心について、水中密度と、直流特性(保磁力Hc、最大透磁率μmax、飽和磁束密度Bs)および交流特性(鉄損失Pcm、ヒステリシス損失Phm、渦電流損失Pem)を測定した。
ここで、直流特性は、B−Hトレーサー(横河社製 直流磁化測定装置B積分ユニット TYPE3257)を用い、最大磁界Hm:2kA/mまたは10kA/mの条件で測定した。
また、交流特性は、B−Hアナライザー(岩通計測社製 SY−8232)を用い、飽和磁束密度Bm:0.1T、周波数f:10kHzの条件で測定した。
[Evaluation]
About the dust cores manufactured in each of the examples and comparative examples as described above, the density in water, DC characteristics (coercive force Hc, maximum permeability μmax, saturation magnetic flux density Bs), and AC characteristics (iron loss Pcm, Hysteresis loss Phm and eddy current loss Pem) were measured.
Here, the direct current characteristics were measured under the condition of the maximum magnetic field Hm: 2 kA / m or 10 kA / m using a BH tracer (DC magnetization measuring device B integration unit TYPE 3257 manufactured by Yokogawa).
In addition, the AC characteristics were measured using a BH analyzer (SY-8232, manufactured by Iwatatsu Measurement Co., Ltd.) under the conditions of saturation magnetic flux density Bm: 0.1 T and frequency f: 10 kHz.

この測定結果を、各圧粉磁心における純鉄粒子の添加量と併せて表1に示す。また、純鉄粒子の添加量と水中密度との関係を図6に、純鉄粒子の添加量と飽和磁束密度Bsとの関係を図7に、純鉄粒子の添加量と鉄損失Pcmの関係を図8に、飽和磁束密度Bsと鉄損失Pcmの関係を図9にそれぞれ示す。また、実施例1−2として表1に示す純鉄粒子5質量%の試料の組織写真の模式図を図1に示し、比較例1−2として表1に示す純鉄粒子10質量%の試料の組織写真の模式図を図2に示す。  The measurement results are shown in Table 1 together with the amount of pure iron particles added to each dust core. FIG. 6 shows the relationship between the amount of pure iron particles added and the density in water, FIG. 7 shows the relationship between the amount of pure iron particles added and the saturation magnetic flux density Bs, and the relationship between the amount of pure iron particles added and the iron loss Pcm. FIG. 8 shows the relationship between the saturation magnetic flux density Bs and the iron loss Pcm, respectively. Moreover, the schematic diagram of the structure | tissue photograph of the sample of 5 mass% of pure iron particles shown in Table 1 as Example 1-2 is shown in FIG. 1, and the sample of 10 mass% of pure iron particles shown in Table 1 as Comparative Example 1-2 A schematic diagram of the structure photograph is shown in FIG.

Figure 2010153638
Figure 2010153638

図1と図2の比較から、純鉄粒子の配合割合を好ましい量とした試料の金属組織は、3つ以上のFe−3Si粒子が形成する粒界に純鉄粒子が密に配置され、隙間4が少なくなっているのに対し、純鉄粒子の添加量を過剰にすると、3つ以上のFe−3Si粒子が形成する粒界のみならず、2つのFe−3Si粒子間の粒界にまで相当数の純鉄粒子が入り込み、隙間4も多くなっていることが分かる。このような金属組織では、硬質のFe−3Si粒子間に存在する純鉄粒子の表面の絶縁被膜が破れている可能性が高く、これが原因となって鉄損が増加しているものと思われる。
次に、図6、図7を見ると、水中密度および飽和磁束密度Bsは、純鉄粒子の添加量が多くなる程増大している。
また、図8から、鉄損Pcmは、純鉄粒子の添加量が10質量%未満の範囲ではほとんど変化せず、比較的小さな値(20W/kg以下)に保持されており、純鉄粒子の添加量が10質量%以上になると、その添加量に依存して急激に増大することがわかる。
さらに、図9を見ると、鉄損Pcmは、飽和磁束密度Bsが1.1T以下の範囲(純鉄粒子の添加量が10質量%未満の範囲)ではほとんど変化しないが、1.1Tを超えると急激に増大している。
From the comparison between FIG. 1 and FIG. 2, the metal structure of the sample in which the mixing ratio of the pure iron particles is a preferable amount is such that the pure iron particles are densely arranged at the grain boundaries formed by three or more Fe-3Si particles. However, when the amount of pure iron particles added is excessive, not only the grain boundary formed by three or more Fe-3Si particles but also the grain boundary between two Fe-3Si particles. It can be seen that a considerable number of pure iron particles have entered and the gap 4 has increased. In such a metal structure, there is a high possibility that the insulating coating on the surface of the pure iron particles existing between the hard Fe-3Si particles is broken, and this is considered to cause an increase in iron loss. .
6 and 7, the underwater density and the saturation magnetic flux density Bs increase as the amount of pure iron particles added increases.
Moreover, from FIG. 8, the iron loss Pcm hardly changes in the range where the amount of pure iron particles added is less than 10% by mass, and is maintained at a relatively small value (20 W / kg or less). It can be seen that when the addition amount is 10% by mass or more, it increases rapidly depending on the addition amount.
Furthermore, when FIG. 9 is seen, the iron loss Pcm hardly changes in the range where the saturation magnetic flux density Bs is 1.1 T or less (the amount of pure iron particles added is less than 10% by mass), but exceeds 1.1 T. It is increasing rapidly.

このことから、鉄損を小さく抑えつつ飽和磁束密度Bsの向上を図るには、純鉄粒子の添加量を10質量%未満とする必要があると言える。一方、純鉄粒子の添加量が3質量%未満であると、飽和磁束密度Bsを増大させる効果がほとんど得られない(図7参照)。
以上のことから、純鉄粒子の添加量の適正範囲は、3質量%以上10質量%未満であることがわかった。
From this, it can be said that in order to improve the saturation magnetic flux density Bs while keeping the iron loss small, it is necessary to make the addition amount of pure iron particles less than 10 mass%. On the other hand, when the addition amount of the pure iron particles is less than 3% by mass, the effect of increasing the saturation magnetic flux density Bs is hardly obtained (see FIG. 7).
From the above, it was found that an appropriate range of the addition amount of the pure iron particles is 3% by mass or more and less than 10% by mass.

<平均粒径140μmの合金粒子と、平均粒径38μmの純鉄粒子を用いた場合の純鉄粒子の添加量の検討>
(実施例2−1)
合金粒子および純鉄粒子を分級する際に、それぞれ、平均粒径が140μmの合金粒子および平均粒径が38μmの純鉄粒子を回収した以外は、前記実施例1−1と同様にして圧粉磁心を製造した。
(実施例2−2〜2−4)
純鉄粒子の含有量を表2に示すように変える以外は、前記実施例2−1と同様にして圧粉磁心を製造した。
<Examination of the addition amount of pure iron particles when using alloy particles having an average particle size of 140 μm and pure iron particles having an average particle size of 38 μm>
(Example 2-1)
When classifying the alloy particles and the pure iron particles, powder compaction was performed in the same manner as in Example 1-1, except that the alloy particles having an average particle diameter of 140 μm and the pure iron particles having an average particle diameter of 38 μm were recovered. A magnetic core was manufactured.
(Examples 2-2 to 2-4)
A dust core was manufactured in the same manner as in Example 2-1 except that the content of pure iron particles was changed as shown in Table 2.

(比較例2−1)
前記実施例2−1と同様にして前処理が施された合金粒子を、前記実施例2−1と同様の条件で加圧成形および焼成することによって圧粉磁心を製造した。
(比較例2−2、2−3)
純鉄粒子の含有量を表2に示すように変える以外は、前記実施例2−1と同様にして圧粉磁心を製造した。
(Comparative Example 2-1)
A powder magnetic core was manufactured by press-molding and firing alloy particles pretreated in the same manner as in Example 2-1 under the same conditions as in Example 2-1.
(Comparative Examples 2-2, 2-3)
A dust core was manufactured in the same manner as in Example 2-1 except that the content of pure iron particles was changed as shown in Table 2.

[評価]
以上のようにして各実施例および各比較例で製造された圧粉磁心について、水中密度と、直流特性(保磁力Hc、最大透磁率μmax、飽和磁束密度Bs)および交流特性(鉄損失Pcm、ヒステリシス損失Phm、渦電流損失Pem)を、前述と同様にして測定した。
この測定結果を、各圧粉磁心における純鉄粒子の添加量と併せて表2に示す。また、純鉄粒子の添加量と密度との関係を図10に、純鉄粒子の添加量と飽和磁束密度Bsとの関係を図11に、純鉄粒子の添加量と鉄損失Pcmの関係を図12に、飽和磁束密度Bsと鉄損失Pcmの関係を図13にそれぞれ示す。
[Evaluation]
About the dust cores manufactured in each of the examples and comparative examples as described above, the density in water, DC characteristics (coercive force Hc, maximum permeability μmax, saturation magnetic flux density Bs), and AC characteristics (iron loss Pcm, Hysteresis loss Phm and eddy current loss Pem) were measured in the same manner as described above.
The measurement results are shown in Table 2 together with the amount of pure iron particles added to each dust core. FIG. 10 shows the relationship between the amount of pure iron particles added and the density, FIG. 11 shows the relationship between the amount of pure iron particles added and the saturation magnetic flux density Bs, and the relationship between the amount of pure iron particles added and the iron loss Pcm. FIG. 12 shows the relationship between the saturation magnetic flux density Bs and the iron loss Pcm, respectively.

Figure 2010153638
Figure 2010153638

まず、図10、図11を見ると、水中密度および飽和磁束密度Bsは、純鉄粒子の添加量が多くなる程増大している。
また、図12から、鉄損Pcmは、純鉄粒子の添加量が9質量%まではほとんど変化せず、比較的小さな値(20W/kg以下)に保持されており、純鉄粒子の添加量が10質量%以上になると、その添加量に依存して急激に増大することがわかる。
さらに、図13を見ると、鉄損Pcmは、飽和磁束密度Bsが1.29以下の範囲(純鉄粒子の添加量が10質量%未満の範囲)ではほとんど変化しないが、1.3Tを超えると増大している。
First, referring to FIGS. 10 and 11, the underwater density and the saturation magnetic flux density Bs increase as the amount of pure iron particles added increases.
Further, from FIG. 12, the iron loss Pcm is maintained at a relatively small value (20 W / kg or less), with the addition amount of pure iron particles hardly changing up to 9% by mass, and the addition amount of pure iron particles. It can be seen that when the amount is 10% by mass or more, it rapidly increases depending on the amount of addition.
Furthermore, when FIG. 13 is seen, the iron loss Pcm hardly changes in the range where the saturation magnetic flux density Bs is 1.29 or less (the amount of pure iron particles added is less than 10% by mass), but exceeds 1.3T. It is increasing.

このことから、鉄損を小さく抑えつつ飽和磁束密度Bsの向上を図るには、純鉄粒子の添加量を10質量%未満とする必要があると言える。一方、純鉄粒子の添加量が3質量%未満であると、飽和磁束密度Bsを増大させる効果があまり得られない(図11参照)。
以上のことから、純鉄粒子の添加量の適正範囲は、3質量%以上10質量%未満であることがわかった。
From this, it can be said that in order to improve the saturation magnetic flux density Bs while keeping the iron loss small, it is necessary to make the addition amount of pure iron particles less than 10 mass%. On the other hand, when the addition amount of the pure iron particles is less than 3% by mass, the effect of increasing the saturation magnetic flux density Bs is not obtained so much (see FIG. 11).
From the above, it was found that an appropriate range of the addition amount of the pure iron particles is 3% by mass or more and less than 10% by mass.

<平均粒径140μmの合金粒子と、平均粒径26μmの純鉄粒子を用いた場合の純鉄粒子の添加量の検討>
(実施例3−1)
合金粒子および純鉄粒子を分級する際に、それぞれ、平均粒径が140μmの合金粒子および平均粒径が26μmの純鉄粒子を回収した以外は、前記実施例1−1と同様にして圧粉磁心を製造した。
(実施例3−2〜3−4)
純鉄粒子の含有量を表3に示すように変える以外は、前記実施例3−1と同様にして圧粉磁心を製造した。
<Examination of the addition amount of pure iron particles when using alloy particles having an average particle size of 140 μm and pure iron particles having an average particle size of 26 μm>
(Example 3-1)
When classifying the alloy particles and the pure iron particles, the dust particles were collected in the same manner as in Example 1-1 except that the alloy particles having an average particle size of 140 μm and the pure iron particles having an average particle size of 26 μm were recovered. A magnetic core was manufactured.
(Examples 3-2 to 3-4)
A dust core was produced in the same manner as in Example 3-1, except that the content of pure iron particles was changed as shown in Table 3.

(比較例3−1)
前記実施例3−1と同様にして前処理が施された合金粒子を、前記実施例2−1と同様の条件で加圧成形および焼成することによって圧粉磁心を製造した。
(比較例3−2、3−3)
純鉄粒子の含有量を表3に示すように変える以外は、前記実施例2−1と同様にして圧粉磁心を製造した。
(Comparative Example 3-1)
A powder magnetic core was manufactured by press-molding and firing alloy particles pretreated in the same manner as in Example 3-1, under the same conditions as in Example 2-1.
(Comparative Examples 3-2 and 3-3)
A dust core was manufactured in the same manner as in Example 2-1 except that the content of pure iron particles was changed as shown in Table 3.

[評価]
以上のようにして各実施例および各比較例で製造された圧粉磁心について、水中密度と、直流特性(保磁力Hc、最大透磁率μmax、飽和磁束密度Bs)および交流特性(鉄損失Pcm、ヒステリシス損失Phm、渦電流損失Pem)を、前述と同様にして測定した。
この測定結果を、各圧粉磁心における純鉄粒子の添加量と併せて表3に示す。また、純鉄粒子の添加量と密度との関係を図14に、純鉄粒子の添加量と飽和磁束密度Bsとの関係を図15に、純鉄粒子の添加量と鉄損失Pcmの関係を図16に、飽和磁束密度Bsと鉄損失Pcmの関係を図17にそれぞれ示す。
[Evaluation]
About the dust cores manufactured in each of the examples and comparative examples as described above, the density in water, DC characteristics (coercive force Hc, maximum permeability μmax, saturation magnetic flux density Bs), and AC characteristics (iron loss Pcm, Hysteresis loss Phm and eddy current loss Pem) were measured in the same manner as described above.
The measurement results are shown in Table 3 together with the amount of pure iron particles added to each dust core. FIG. 14 shows the relationship between the amount of pure iron particles added and the density, FIG. 15 shows the relationship between the amount of pure iron particles added and the saturation magnetic flux density Bs, and FIG. 15 shows the relationship between the amount of pure iron particles added and the iron loss Pcm. FIG. 16 shows the relationship between the saturation magnetic flux density Bs and the iron loss Pcm, respectively.

Figure 2010153638
Figure 2010153638

まず、図14、図15を見ると、水中密度および飽和磁束密度Bsは、純鉄粒子の添加量が多くなる程増大している。
また、図16から、鉄損Pcmは、純鉄粒子の添加量が9質量%まではほとんど変化せず、比較的小さな値(20W/kg以下)に保持されており、純鉄粒子の添加量が10質量%以上になると、その添加量に依存して増大することがわかる。
さらに、図17を見ると、鉄損Pcmは、飽和磁束密度Bsが1.28T以下の範囲(純鉄粒子の添加量が10質量%未満の範囲)ではほとんど変化しないが、1.29Tを超えると急激に増大している。
First, in FIGS. 14 and 15, the underwater density and the saturation magnetic flux density Bs increase as the amount of pure iron particles added increases.
Moreover, from FIG. 16, the iron loss Pcm is maintained at a relatively small value (20 W / kg or less), with the addition amount of pure iron particles hardly changing up to 9% by mass, and the addition amount of pure iron particles. It can be seen that when the amount is 10% by mass or more, it increases depending on the amount of addition.
Furthermore, when FIG. 17 is seen, the iron loss Pcm hardly changes in the range where the saturation magnetic flux density Bs is 1.28 T or less (the amount of pure iron particles added is less than 10% by mass), but exceeds 1.29 T. It is increasing rapidly.

このことから、鉄損を小さく抑えつつ飽和磁束密度Bsの向上を図るには、純鉄粒子の添加量を10質量%未満とする必要があると言える。一方、純鉄粒子の添加量が3質量%未満であると、飽和磁束密度Bsを増大させる効果があまり得られない(図15参照)。
以上のことから、純鉄粒子の添加量の適正範囲は、3質量%以上10質量%未満であることがわかった。
From this, it can be said that in order to improve the saturation magnetic flux density Bs while keeping the iron loss small, it is necessary to make the addition amount of pure iron particles less than 10 mass%. On the other hand, when the addition amount of the pure iron particles is less than 3% by mass, the effect of increasing the saturation magnetic flux density Bs is not obtained so much (see FIG. 15).
From the above, it was found that an appropriate range of the addition amount of the pure iron particles is 3% by mass or more and less than 10% by mass.

(実施例4−1〜実施例4−5)
合金粒子を分級する際に、表3に示す平均粒径の合金粒子を回収し、合金粒子と純鉄粒子とを混合する際に、純鉄粒子の添加量を7質量%とした以外は、前記実施例1−1と同様にして圧粉磁心を製造した。
(Example 4-1 to Example 4-5)
When classifying the alloy particles, the alloy particles having an average particle size shown in Table 3 are collected, and when the alloy particles and the pure iron particles are mixed, the addition amount of the pure iron particles is set to 7% by mass. A dust core was manufactured in the same manner as in Example 1-1.

<合金粒子の平均粒径の検討>
(比較例4−1)
合金粒子を分級する際に、表3に示す平均粒径の合金粒子を回収した以外は、前記実施例4−1と同様にして圧粉磁心を製造した。
<Examination of average particle size of alloy particles>
(Comparative Example 4-1)
A powder magnetic core was produced in the same manner as in Example 4-1, except that the alloy particles having an average particle size shown in Table 3 were collected when classifying the alloy particles.

[評価]
以上のようにして各実施例および各比較例で製造された圧粉磁心について、水中密度と、直流特性(保磁力Hc、最大透磁率μmax、飽和磁束密度Bs)および交流特性(鉄損失Pcm、ヒステリシス損失Phm、渦電流損失Pem)を、前述と同様にして測定した。
この測定結果を、各圧粉磁心における純鉄粒子の添加量と併せて表4に示す。また、純鉄粒子の添加量と密度との関係を図18に、純鉄粒子の添加量と飽和磁束密度Bsとの関係を図19に、純鉄粒子の添加量と鉄損失Pcmの関係を図20に、飽和磁束密度Bsと鉄損失Pcmの関係を図21にそれぞれ示す。
[Evaluation]
About the dust cores manufactured in each of the examples and comparative examples as described above, the density in water, DC characteristics (coercive force Hc, maximum permeability μmax, saturation magnetic flux density Bs), and AC characteristics (iron loss Pcm, Hysteresis loss Phm and eddy current loss Pem) were measured in the same manner as described above.
The measurement results are shown in Table 4 together with the amount of pure iron particles added to each dust core. FIG. 18 shows the relationship between the addition amount and density of pure iron particles, FIG. 19 shows the relationship between the addition amount of pure iron particles and saturation magnetic flux density Bs, and the relationship between the addition amount of pure iron particles and iron loss Pcm. FIG. 20 shows the relationship between the saturation magnetic flux density Bs and the iron loss Pcm, respectively.

Figure 2010153638
Figure 2010153638

図18から、水中密度は、合金粒子の平均粒径が108μmまでは平均粒径に依存して増加し、それより大きくなると減少する傾向が見られる。また、図19を見ると、飽和磁束密度Bsは、合金粒子の平均粒径が101μmまでは平均粒径に依存して大きく増加するが、平均粒径が108μmを超えると略一定となっている。さらに、図20から、鉄損Pcmは、合金粒子の平均粒径が増大しても、ほとんど変化しないことがわかる。  From FIG. 18, the density in water tends to increase depending on the average particle size until the average particle size of the alloy particles is up to 108 μm, and decrease when the average particle size is larger than that. In addition, as shown in FIG. 19, the saturation magnetic flux density Bs increases greatly depending on the average particle size until the average particle size of the alloy particles reaches 101 μm, but becomes substantially constant when the average particle size exceeds 108 μm. . Furthermore, FIG. 20 shows that the iron loss Pcm hardly changes even when the average particle diameter of the alloy particles increases.

ここで、リアクトルの飽和磁束密度Bsは、1Tを超えている必要があり、さらに好ましくは1.1T以上であるのが良い。そのような飽和磁束密度Bsが得られるのは、合金粒子の平均粒径が100μm以上の場合である(図19参照)。
このことから、合金粒子の平均粒径の下限は100μmであり、より好ましくは110μmであることがわかる。
Here, the saturation magnetic flux density Bs of the reactor needs to exceed 1T, and more preferably 1.1T or more. Such a saturation magnetic flux density Bs is obtained when the average particle diameter of the alloy particles is 100 μm or more (see FIG. 19).
This shows that the lower limit of the average particle diameter of the alloy particles is 100 μm, more preferably 110 μm.

<平滑化試験>
前記実施例にて利用したリン酸被膜付きの純鉄粒子(ヘガネス社製 商品名ソマロイ110i)を用意した。この純鉄粒子を(ホソカワミクロン(株)製:型番AMS−30F)のメカノフュージョン装置にて表面平滑化を行った。装置の運転条件は、回転数1500rpm、処理時間、2分、4分、6分、8分、1バッチあたり、10kgの純鉄粒子(純鉄粉末)を平滑化する条件とした。
得られた純鉄粉末の平滑化について、元の純鉄粒子と2分処理後の純鉄粒子、4分処理後の純鉄粒子、6分処理後の純鉄粒子、8分処理後の純鉄粒子、10分処理後の純鉄粒子について、1500倍に拡大した顕微鏡写真を図22に示す。また、平滑化時間に対する、かさ密度を測定した結果を図23に示す。図22と図23に示す結果から、処理時間が長くなるほどかさ密度が向上し、純鉄粒子の表面を平滑化できているので、メカノフュージョン装置による留処理時間を調整することでかさ密度と表面の平滑状態を制御できることが明らかである。
<Smoothing test>
Pure iron particles with a phosphoric acid coating (trade name Somaloy 110i manufactured by Höganäs) used in the above examples were prepared. The pure iron particles were subjected to surface smoothing using a mechanofusion apparatus (manufactured by Hosokawa Micron Corporation: model number AMS-30F). The operating conditions of the apparatus were such that the rotational speed was 1500 rpm, the processing time was 2 minutes, 4 minutes, 6 minutes, 8 minutes, and 10 kg of pure iron particles (pure iron powder) were smoothed per batch.
Regarding smoothing of the obtained pure iron powder, the original pure iron particles, pure iron particles after 2 minutes treatment, pure iron particles after 4 minutes treatment, pure iron particles after 6 minutes treatment, pure after 8 minutes treatment FIG. 22 shows a micrograph magnified 1500 times for the iron particles and the pure iron particles after 10 minutes of treatment. Moreover, the result of having measured the bulk density with respect to smoothing time is shown in FIG. From the results shown in FIGS. 22 and 23, the bulk density is improved as the treatment time is increased, and the surface of the pure iron particles can be smoothed. Therefore, the bulk density and the surface density can be adjusted by adjusting the distillation treatment time by the mechanofusion apparatus. It is clear that the smooth state can be controlled.

次に、Fe−3Si合金粒子と上述の表面平滑化した純鉄粒子を用い、Fe−3Si合金粒子と純鉄粒子を配合比93:7の割合で混合した。各粒子は、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社商品名:YR3370)のレジン0.6%溶液に粉末を浸漬し、乾燥・焼付けを行った。なお、0.6%溶液に粉末を浸漬することは0.6重量%のシリコンレジンを添加したことを意味する。
また、純鉄粉末のメカノフュージョン加工は、1500rpmにて0分(処理無し)、2分、4分、6分、8分、10分それぞれ1バッチあたり、10kgの純鉄粉末を平滑化する条件として各種試料を用意した。
Next, Fe-3Si alloy particles and pure iron particles having a smooth surface were used, and Fe-3Si alloy particles and pure iron particles were mixed at a mixing ratio of 93: 7. Each particle was dried and baked by immersing the powder in a 0.6% resin solution of Momentive Performance Materials Japan GK (trade name: YR3370). In addition, immersing the powder in the 0.6% solution means that 0.6% by weight of silicon resin was added.
In addition, the mechano-fusion processing of pure iron powder is a condition for smoothing 10 kg of pure iron powder per batch at 1500 rpm for 0 minute (no treatment), 2 minutes, 4 minutes, 6 minutes, 8 minutes, 10 minutes each. Various samples were prepared.

次に、前述のFe−3Si合金粒子と純鉄粒子とを、純鉄粒子の含有率が7質量%となるように混合して混合粒子を調製し、この混合粒子を、温間成形することによって成形体を得た。
温間成形の条件は、温度150℃、圧力785MPaである。
次に、成形体を、真空下、800℃の温度で1時間焼成し、焼成体(圧粉磁心)を得た。
以上の工程により、7質量%の純鉄粒子を含有する圧粉磁心を製造した。
Next, the aforementioned Fe-3Si alloy particles and pure iron particles are mixed so that the content of pure iron particles is 7% by mass to prepare mixed particles, and the mixed particles are warm-formed. A molded body was obtained.
The conditions for warm forming are a temperature of 150 ° C. and a pressure of 785 MPa.
Next, the compact was fired at a temperature of 800 ° C. for 1 hour under vacuum to obtain a fired body (a dust core).
The dust core containing 7 mass% pure iron particles was manufactured by the above process.

以上のようにして製造された圧粉磁心について、寸法密度、水中密度と、比抵抗、交流特性(鉄損失Pcm、ヒステリシス損失Phm、渦電流損失Pem)、および、直流特性(保磁力Hc、最大透磁率μmax、飽和磁束密度Bs)を測定した。この測定における測定条件と測定装置は、先の実施例の場合と同等である。
以上の測定結果を以下の表5に示すとともに、図24に得られた圧粉磁心の比抵抗と平滑化時間の関係を示し、図25に得られた圧粉磁心の渦損失と平滑化時間の関係を示し、図26に得られた圧粉磁心の保磁力と平滑化時間の関係を示し、図27に得られた圧粉磁心の鉄損と平滑化時間の関係を示す。
About the powder magnetic core manufactured as mentioned above, dimensional density, underwater density, specific resistance, AC characteristics (iron loss Pcm, hysteresis loss Phm, eddy current loss Pem), and DC characteristics (coercive force Hc, maximum) Permeability μmax and saturation magnetic flux density Bs) were measured. The measurement conditions and measurement apparatus in this measurement are the same as those in the previous embodiment.
The above measurement results are shown in Table 5 below, and FIG. 24 shows the relationship between the specific resistance of the dust core obtained and the smoothing time. FIG. 25 shows the eddy loss and smoothing time of the dust core obtained. FIG. 26 shows the relationship between the coercive force of the obtained dust core and the smoothing time, and FIG. 27 shows the relationship between the iron loss of the obtained dust core and the smoothing time.

Figure 2010153638
Figure 2010153638

表5と図23〜図27に示す結果から、純鉄粒子を平滑化した上でFe−3Si合金粒子に3〜10質量%添加すると、平滑化時間が4分を超えて増加するとともに比抵抗が向上し、平滑化時間の増加とともに渦電流損失が減少し、鉄損も若干減少することが明らかである。また、これらの結果において、純鉄粒子のかさ密度(A.D)の対比から、平滑化する前の純鉄粒子に対し、0.09〜0.25Mg/mの範囲高い純鉄粒子をFe−3Si合金粒子に3〜10質量%添加すると、比抵抗が高くなり、損失を少なくすることができる。これは、純鉄粒子をメカノフュージョン装置により表面平滑化したことにより、図22(A)に示す如く大きな異形状となっている純鉄粒子表面が滑らかになる結果、この表面滑らかな粒子どうしの圧密がなされるので、表面が異形状の純鉄粒子どうしの圧密に比べ、粒子表面に形成したレジン等のコーティング層が破れ難くなる結果と思われる。圧密時に異形状の純鉄粒子同士が押圧されると、表面に被覆されているレジン層に異形状の純鉄粒子の角が押し付けられるので亀裂が生成され易くなり、結果的に比抵抗が低下すると思われる。よって平滑化の効果が現れているものと思われる。 From the results shown in Table 5 and FIGS. 23 to 27, when 3 to 10 mass% is added to Fe-3Si alloy particles after pure iron particles are smoothed, the smoothing time increases beyond 4 minutes and the specific resistance is increased. It is clear that the eddy current loss decreases as the smoothing time increases, and the iron loss also decreases slightly. Further, in these results, pure iron particles having a high range of 0.09 to 0.25 Mg / m 3 with respect to the pure iron particles before smoothing are compared with the bulk density (AD) of the pure iron particles. When 3 to 10% by mass is added to the Fe-3Si alloy particles, the specific resistance increases and the loss can be reduced. This is because the surface of the pure iron particles having a large irregular shape as shown in FIG. 22 (A) is smoothed by smoothing the surface of the pure iron particles with a mechanofusion device. Since the compaction is performed, it seems that the resin or other coating layer formed on the particle surface is less likely to be broken than the compaction of pure iron particles having irregular shapes on the surface. When the deformed pure iron particles are pressed together during consolidation, the corners of the deformed pure iron particles are pressed against the resin layer coated on the surface, so that cracks are easily generated, resulting in a decrease in specific resistance. It seems to be. Therefore, it seems that the smoothing effect appears.

本発明による圧粉磁心は、電磁気回路部品として、例えば、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトルコア、トランスコア、チョークコイルコアまたは磁気センサコアなどとして利用が可能であり、いずれにおいても優れた特性を発揮し得る。   The dust core according to the present invention can be used as an electromagnetic circuit component, for example, as a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core, or a magnetic sensor core. In any case, excellent characteristics can be exhibited.

本発明に係る圧粉磁心の断面模式図である。It is a cross-sectional schematic diagram of the powder magnetic core which concerns on this invention. 10質量%の純鉄粒子相を含む圧粉磁心の断面模式図である。It is a cross-sectional schematic diagram of the powder magnetic core containing a 10 mass% pure iron particle phase. 本発明の圧粉磁心の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the powder magnetic core of this invention. 本発明の圧粉磁心を適用した電磁気回路部品(リアクトル)を示す斜視図である。It is a perspective view which shows the electromagnetic circuit components (reactor) to which the dust core of this invention is applied. 図4に示すリアクトルが備えるリアクトルコアを示す斜視図である。It is a perspective view which shows the reactor core with which the reactor shown in FIG. 4 is provided. 実施例において得られた圧粉磁心において、純鉄粒子の添加量と密度との関係を示す図である。It is a figure which shows the relationship between the addition amount of a pure iron particle, and a density in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、純鉄粒子の添加量と飽和磁束密度Bsとの関係を示す図である。It is a figure which shows the relationship between the addition amount of a pure iron particle, and the saturation magnetic flux density Bs in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、純鉄粒子の添加量と鉄損Pcmとの関係を示す図である。It is a figure which shows the relationship between the addition amount of a pure iron particle, and the iron loss Pcm in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、飽和磁束密度Bsと鉄損Pcmとの関係を示す図である。It is a figure which shows the relationship between the saturation magnetic flux density Bs and the iron loss Pcm in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、純鉄粒子の添加量と密度との関係を示す図である。It is a figure which shows the relationship between the addition amount of a pure iron particle, and a density in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、純鉄粒子の添加量と飽和磁束密度Bsとの関係を示す図である。It is a figure which shows the relationship between the addition amount of a pure iron particle, and the saturation magnetic flux density Bs in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、純鉄粒子の添加量と鉄損Pcmとの関係を示す図である。It is a figure which shows the relationship between the addition amount of a pure iron particle, and the iron loss Pcm in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、飽和磁束密度Bsと鉄損Pcmとの関係を示す図である。It is a figure which shows the relationship between the saturation magnetic flux density Bs and the iron loss Pcm in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、純鉄粒子の添加量と密度との関係を示す図である。It is a figure which shows the relationship between the addition amount of a pure iron particle, and a density in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、純鉄粒子の添加量と飽和磁束密度Bsとの関係を示す図である。It is a figure which shows the relationship between the addition amount of a pure iron particle, and the saturation magnetic flux density Bs in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、純鉄粒子の添加量と鉄損Pcmとの関係を示す図である。It is a figure which shows the relationship between the addition amount of a pure iron particle, and the iron loss Pcm in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、飽和磁束密度Bsと鉄損Pcmとの関係を示す図である。It is a figure which shows the relationship between the saturation magnetic flux density Bs and the iron loss Pcm in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、合金粒子の平均粒径と密度との関係を示す図である。It is a figure which shows the relationship between the average particle diameter of an alloy particle, and a density in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、合金粒子の平均粒径と飽和磁束密度Bsとの関係を示す図である。It is a figure which shows the relationship between the average particle diameter of an alloy particle, and saturation magnetic flux density Bs in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、合金粒子の平均粒径と鉄損Pcmとの関係を示す図である。It is a figure which shows the relationship between the average particle diameter of an alloy particle, and the iron loss Pcm in the powder magnetic core obtained in the Example. 実施例において得られた圧粉磁心において、飽和磁束密度Bsと鉄損Pcmとの関係を示す図である。It is a figure which shows the relationship between the saturation magnetic flux density Bs and the iron loss Pcm in the powder magnetic core obtained in the Example. 実施例においてメカノフュージョン装置にて表面平滑化を行った場合の純鉄粒子の状態を示すもので、(A)は処理前の元粒子を示す顕微鏡写真、(B)は2分処理後の状態を示す顕微鏡写真、(C)は4分処理後の状態を示す顕微鏡写真、(D)は6分処理後の状態を示す顕微鏡写真、(E)は8分処理後の状態を示す顕微鏡写真、(F)は10分処理後の状態を示す顕微鏡写真である。In the examples, the state of pure iron particles when the surface is smoothed with a mechanofusion apparatus is shown, (A) is a micrograph showing the original particles before treatment, and (B) is the state after 2 minutes treatment. (C) is a photomicrograph showing the state after the treatment for 4 minutes, (D) is a photomicrograph showing the state after the treatment for 6 minutes, (E) is a photomicrograph showing the state after the treatment for 8 minutes, (F) is a photomicrograph showing the state after 10 minutes of treatment. メカノフュージョン装置にて表面平滑化を行った場合の実施例の純鉄粒子のかさ密度と平滑化時間の関係を示す図である。It is a figure which shows the relationship between the bulk density of the pure iron particle of the Example at the time of performing surface smoothing with a mechano-fusion apparatus, and smoothing time. 純鉄粒子の平滑化を行った実施例において得られた圧粉磁心において、平滑化時間と比抵抗の関係を示す図である。It is a figure which shows the relationship between smoothing time and specific resistance in the powder magnetic core obtained in the Example which smoothed the pure iron particle. 純鉄粒子の平滑化を行った実施例において得られた圧粉磁心において、平滑化時間と渦電流損失の関係を示す図である。It is a figure which shows the relationship between smoothing time and eddy current loss in the powder magnetic core obtained in the Example which smoothed the pure iron particle. 純鉄粒子の平滑化を行った実施例において得られた圧粉磁心において、平滑化時間と保磁力の関係を示す図である。It is a figure which shows the relationship between smoothing time and coercive force in the powder magnetic core obtained in the Example which performed the smoothing of the pure iron particle. 純鉄粒子の平滑化を行った実施例において得られた圧粉磁心において、平滑化時間と鉄損Pcmの関係を示す図である。It is a figure which shows the relationship between smoothing time and iron loss Pcm in the powder magnetic core obtained in the Example which smoothed the pure iron particle.

符号の説明Explanation of symbols

1…複合軟磁性材料(圧粉磁心)、2…Fe−3Si合金粒子相、2a…粒界、2b…粒界、3…純鉄粒子相、4…隙間、10…リアクトル、11a、11b…U型コア、11c…I型コア、12…コイル、14…ギャップ、15…接着剤層。   DESCRIPTION OF SYMBOLS 1 ... Composite soft magnetic material (powder magnetic core), 2 ... Fe-3Si alloy particle phase, 2a ... Grain boundary, 2b ... Grain boundary, 3 ... Pure iron particle phase, 4 ... Gap, 10 ... Reactor, 11a, 11b ... U-type core, 11c ... I-type core, 12 ... coil, 14 ... gap, 15 ... adhesive layer.

Claims (8)

Fe−3Si合金粒子と純鉄粒子が圧密され、焼成されてなる複合軟磁性材料であり、複数のFe−3Si合金粒子相と、少なくとも3つ以上の前記Fe−3Si合金粒子相に囲まれた粒界に存在する複数の純鉄粒子相とを有し、前記Fe−3Si合金粒子相の平均粒径が100〜145μmであり、前記純鉄粒子相の圧粉磁心全量に対する含有率が、3質量%以上10質量%未満であることを特徴とする複合軟磁性材料。  A composite soft magnetic material in which Fe-3Si alloy particles and pure iron particles are consolidated and fired, and is surrounded by a plurality of Fe-3Si alloy particle phases and at least three Fe-3Si alloy particle phases A plurality of pure iron particle phases existing at grain boundaries, the average particle size of the Fe-3Si alloy particle phase is 100 to 145 μm, and the content of the pure iron particle phase with respect to the total amount of the dust core is 3 A composite soft magnetic material, wherein the composite soft magnetic material is not less than 10% by mass and less than 10% by mass. 前記純鉄粒子相の平均粒径が、10μm以上、50μm以下であることを特徴とする請求項1に記載の複合軟磁性材料。  2. The composite soft magnetic material according to claim 1, wherein an average particle size of the pure iron particle phase is 10 μm or more and 50 μm or less. 前記Fe−3Si合金粒子相同士の粒界、前記純鉄粒子同士の粒界および前記Fe−Si系合金粒子と前記純鉄粒子との粒界の少なくともいずれかに、絶縁層を有することを特徴とする請求項1または2に記載の複合軟磁性材料。  It has an insulating layer in at least any one of the grain boundary between the Fe-3Si alloy particle phases, the grain boundary between the pure iron particles, and the grain boundary between the Fe-Si alloy particles and the pure iron particles. The composite soft magnetic material according to claim 1 or 2. 平均粒径が100〜145μmのFe−3Si合金粒子と、純鉄粒子とを、該純鉄粒子の含有率が3質量%以上10質量%未満となるように混合することによって混合粒子を得る第1の工程と、
前記混合粒子を加圧成形することによって成形体を得る第2の工程と、
前記成形体を焼成することによってFe−3Si合金粒子相と少なくとも3つ以上の前記Fe−3Si合金粒子相に囲まれた粒界に存在する複数の純鉄粒子相とを有する複合軟磁性材料を得る第3の工程とを有することを特徴とする複合軟磁性材料の製造方法。
A mixed particle is obtained by mixing Fe-3Si alloy particles having an average particle diameter of 100 to 145 μm and pure iron particles so that the content of the pure iron particles is 3% by mass or more and less than 10% by mass. 1 process,
A second step of obtaining a molded body by pressure-molding the mixed particles;
A composite soft magnetic material having a Fe-3Si alloy particle phase and a plurality of pure iron particle phases existing at a grain boundary surrounded by at least three Fe-3Si alloy particle phases by firing the compact. And a third step of obtaining the composite soft magnetic material.
前記純鉄粒子の表面が平滑化されて3質量%以上10質量%未満となるように混合されてなることを特徴とする請求項4に記載の複合軟磁性材料の製造方法。   The method for producing a composite soft magnetic material according to claim 4, wherein the surface of the pure iron particles is smoothed and mixed so as to be 3% by mass or more and less than 10% by mass. 前記純鉄粒子のかさ密度(A.D)が平滑化する前の純鉄粒子よりも0.09〜0.25Mg/m高いことを特徴とする請求項4または請求項5に記載の複合軟磁性材料の製造方法。 6. The composite according to claim 4, wherein the bulk density (AD) of the pure iron particles is 0.09 to 0.25 Mg / m 3 higher than that of the pure iron particles before smoothing. A method for producing a soft magnetic material. 前記Fe−3Si合金粒子および前記純鉄粒子の少なくともいずれかに、絶縁被膜を形成する工程を有することを特徴とする請求項4〜6のいずれかに記載の複合軟磁性材料の製造方法。   The method for producing a composite soft magnetic material according to any one of claims 4 to 6, further comprising a step of forming an insulating coating on at least one of the Fe-3Si alloy particles and the pure iron particles. 請求項1〜3のいずれかに記載の複合軟磁性材料を備えることを特徴とする電磁気回路部品。  An electromagnetic circuit component comprising the composite soft magnetic material according to claim 1.
JP2008330874A 2008-12-25 2008-12-25 Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component Withdrawn JP2010153638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330874A JP2010153638A (en) 2008-12-25 2008-12-25 Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330874A JP2010153638A (en) 2008-12-25 2008-12-25 Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component

Publications (1)

Publication Number Publication Date
JP2010153638A true JP2010153638A (en) 2010-07-08

Family

ID=42572407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330874A Withdrawn JP2010153638A (en) 2008-12-25 2008-12-25 Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component

Country Status (1)

Country Link
JP (1) JP2010153638A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115137A1 (en) * 2011-02-22 2012-08-30 三菱マテリアル株式会社 Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
WO2014068928A1 (en) * 2012-10-31 2014-05-08 パナソニック株式会社 Composite magnetic body and method for manufacturing same
JP2014103266A (en) * 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, production method of composite particle, powder magnetic core, magnetic element and portable electronic apparatus
WO2015079981A1 (en) * 2013-11-29 2015-06-04 株式会社神戸製鋼所 Powder mixture for powder magnetic core and powder magnetic core
WO2016043025A1 (en) * 2014-09-17 2016-03-24 株式会社オートネットワーク技術研究所 Composite material, magnetic component, and reactor
JP2016103598A (en) * 2014-11-28 2016-06-02 Tdk株式会社 Coil component
WO2017033990A1 (en) * 2015-08-26 2017-03-02 Ntn株式会社 Magnetic core powder and method for producing dust core
JP2020505758A (en) * 2017-01-10 2020-02-20 エルジー イノテック カンパニー リミテッド Magnetic core and coil component including the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9773597B2 (en) 2011-02-22 2017-09-26 Mitsubishi Materials Corporation Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
WO2012115137A1 (en) * 2011-02-22 2012-08-30 三菱マテリアル株式会社 Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
EP2680281A4 (en) * 2011-02-22 2017-12-20 Mitsubishi Materials Corporation Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
WO2014068928A1 (en) * 2012-10-31 2014-05-08 パナソニック株式会社 Composite magnetic body and method for manufacturing same
JPWO2014068928A1 (en) * 2012-10-31 2016-09-08 パナソニックIpマネジメント株式会社 Composite magnetic body and method for producing the same
US9881722B2 (en) 2012-10-31 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Composite magnetic body and method for manufacturing same
JP2014103266A (en) * 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, production method of composite particle, powder magnetic core, magnetic element and portable electronic apparatus
TWI632566B (en) * 2012-11-20 2018-08-11 精工愛普生股份有限公司 Composite particle, method for producing composite particle, powder magnetic core, magnetic element, and portable electronic device
US9767956B2 (en) 2012-11-20 2017-09-19 Seiko Epson Corporation Composite particle of soft-magnetic metallic material, method for producing composite particle, powder core, magnetic element, and portable electronic device
WO2015079981A1 (en) * 2013-11-29 2015-06-04 株式会社神戸製鋼所 Powder mixture for powder magnetic core and powder magnetic core
WO2016043025A1 (en) * 2014-09-17 2016-03-24 株式会社オートネットワーク技術研究所 Composite material, magnetic component, and reactor
JPWO2016043025A1 (en) * 2014-09-17 2017-04-27 株式会社オートネットワーク技術研究所 Composite materials, magnetic components, and reactors
US10325706B2 (en) 2014-09-17 2019-06-18 Autonetworks Technologies, Ltd. Composite material, magnetic component, and reactor
JP2016103598A (en) * 2014-11-28 2016-06-02 Tdk株式会社 Coil component
WO2017033990A1 (en) * 2015-08-26 2017-03-02 Ntn株式会社 Magnetic core powder and method for producing dust core
JP2020505758A (en) * 2017-01-10 2020-02-20 エルジー イノテック カンパニー リミテッド Magnetic core and coil component including the same

Similar Documents

Publication Publication Date Title
JP6662436B2 (en) Manufacturing method of dust core
JP6443523B2 (en) Dust core manufacturing method and dust core
JP6071211B2 (en) Low magnetostrictive high magnetic flux density composite soft magnetic material and its manufacturing method
JP4630251B2 (en) Powder cores and iron-based powders for dust cores
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP2010153638A (en) Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component
JP4723442B2 (en) Powder cores and iron-based powders for dust cores
JP6088284B2 (en) Soft magnetic mixed powder
WO2016010098A1 (en) Magnetic core, method for producing magnetic core, and coil component
JPWO2010073590A1 (en) Composite soft magnetic material and manufacturing method thereof
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
CN114270456A (en) Magnetic wedge, rotating electric machine, and method for manufacturing magnetic wedge
WO2014034616A1 (en) Iron powder for powder magnetic core and process for producing powder magnetic core
JP2005336513A (en) Method for manufacturing soft-magnetic material and soft-magnetic material, and method for manufacturing dust core and dust core
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JPH11260618A (en) Composite magnetic material, its manufacture, and fe-al-si soft magnetic alloy powder used therefor
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP2009032860A (en) Dust core and iron-base powder for the same
JPWO2018052108A1 (en) Magnetic core and coil parts
JP2011216571A (en) High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
JP4701531B2 (en) Dust core
JP2005079511A (en) Soft magnetic material and its manufacturing method
JPH11238614A (en) Soft magnetic material and manufacture thereof and electrical equipment using the same
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2010185126A (en) Composite soft magnetic material and method for producing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306