JP2009164317A - Method for manufacturing soft magnetism composite consolidated core - Google Patents
Method for manufacturing soft magnetism composite consolidated core Download PDFInfo
- Publication number
- JP2009164317A JP2009164317A JP2008000074A JP2008000074A JP2009164317A JP 2009164317 A JP2009164317 A JP 2009164317A JP 2008000074 A JP2008000074 A JP 2008000074A JP 2008000074 A JP2008000074 A JP 2008000074A JP 2009164317 A JP2009164317 A JP 2009164317A
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- oxide
- core
- powder
- metal particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 91
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 230000005389 magnetism Effects 0.000 title abstract description 8
- 238000000034 method Methods 0.000 title description 19
- 239000002923 metal particle Substances 0.000 claims abstract description 118
- 239000011230 binding agent Substances 0.000 claims abstract description 23
- 238000007596 consolidation process Methods 0.000 claims abstract description 7
- 150000007522 mineralic acids Chemical class 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims description 52
- 238000005554 pickling Methods 0.000 claims description 44
- 239000011521 glass Substances 0.000 claims description 23
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 18
- 238000002844 melting Methods 0.000 claims description 18
- 239000006249 magnetic particle Substances 0.000 claims description 12
- 229910044991 metal oxide Inorganic materials 0.000 claims description 8
- 150000004706 metal oxides Chemical class 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 6
- 238000005056 compaction Methods 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract description 20
- 238000000576 coating method Methods 0.000 abstract description 18
- 239000011248 coating agent Substances 0.000 abstract description 17
- 230000003647 oxidation Effects 0.000 abstract description 6
- 238000007254 oxidation reaction Methods 0.000 abstract description 6
- 239000007888 film coating Substances 0.000 abstract 1
- 238000009501 film coating Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 126
- 239000000843 powder Substances 0.000 description 90
- 239000011162 core material Substances 0.000 description 87
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 30
- 229910052751 metal Inorganic materials 0.000 description 29
- 239000002184 metal Substances 0.000 description 29
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 29
- 229910001004 magnetic alloy Inorganic materials 0.000 description 28
- 239000000463 material Substances 0.000 description 27
- 230000001590 oxidative effect Effects 0.000 description 22
- 239000010410 layer Substances 0.000 description 21
- 229910019064 Mg-Si Inorganic materials 0.000 description 20
- 229910019406 Mg—Si Inorganic materials 0.000 description 20
- 239000006247 magnetic powder Substances 0.000 description 19
- 238000002156 mixing Methods 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 239000002243 precursor Substances 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 17
- 229910017135 Fe—O Inorganic materials 0.000 description 16
- 229910052814 silicon oxide Inorganic materials 0.000 description 15
- 230000004907 flux Effects 0.000 description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 238000010304 firing Methods 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 235000019353 potassium silicate Nutrition 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 229910017060 Fe Cr Inorganic materials 0.000 description 4
- 229910002544 Fe-Cr Inorganic materials 0.000 description 4
- 229910017082 Fe-Si Inorganic materials 0.000 description 4
- 229910017133 Fe—Si Inorganic materials 0.000 description 4
- 229910002796 Si–Al Inorganic materials 0.000 description 4
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005469 granulation Methods 0.000 description 4
- 230000003179 granulation Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- -1 oxides Chemical class 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- 229910020516 Co—V Inorganic materials 0.000 description 2
- 229910017061 Fe Co Inorganic materials 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 101000993059 Homo sapiens Hereditary hemochromatosis protein Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、モータ、アクチュエータ、リアクトル、トランス、チョークコア、磁気センサコアなどの各種電磁気回路部品の素材として使用される軟磁性複合圧密コアの製造方法に関する。 The present invention relates to a method for manufacturing a soft magnetic composite compacted core used as a material for various electromagnetic circuit components such as a motor, an actuator, a reactor, a transformer, a choke core, and a magnetic sensor core.
従来、モータ、アクチュエータ、磁気センサなどの磁心用材料として、鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末(以下、これらを軟磁性金属粒子と総称する)を圧密し、熱処理して得られた軟磁性焼結材が知られている。この種の軟磁性焼結材にあっては、磁束密度が高い反面、比抵抗が低いために、高周波特性が悪いという問題がある。そこで比抵抗を高めて高周波特性を向上させるために、軟磁性金属粒子を水ガラスまたは低融点ガラスにより結合した圧粉軟磁性材料などが提案されている(特許文献1または特許文献2参照)。
Conventionally, as magnetic core materials for motors, actuators, magnetic sensors, etc., iron powder, Fe-Al iron-based soft magnetic alloy powder, Fe-Ni iron-based soft magnetic alloy powder, Fe-Cr iron-based soft magnetic alloy powder , Fe-Si-based iron-based soft magnetic alloy powders, Fe-Si-Al-based iron-based soft magnetic alloy powders (hereinafter collectively referred to as soft magnetic metal particles) and heat treatment to obtain a soft magnetic firing The binding material is known. This type of soft magnetic sintered material has a high magnetic flux density but a low specific resistance, which has a problem of poor high frequency characteristics. Therefore, in order to increase the specific resistance and improve the high frequency characteristics, a dust soft magnetic material in which soft magnetic metal particles are bonded with water glass or low-melting glass has been proposed (see
しかし、前記軟磁性金属粒子を水ガラスまたは低融点ガラスで結合した複合軟磁性焼結材は、軟磁性金属粒子と水ガラスまたは低融点ガラスとは密着性が悪いために、軟磁性金属粒子を水ガラスまたは低融点ガラスで結合して強度を確保しようとすると、水ガラスまたは低融点ガラスの中に軟磁性金属粒子が分散する程度に大量の水ガラスまたは低融点ガラスと混合しなければならず、このように水ガラスまたは低融点ガラスを大量に使用して得られた圧粉軟磁性材料の比抵抗は大きくなるものの磁束密度が極端に低下し、モータ、アクチュエータ、磁気センサの磁心など各種電子部品の材料として使用することができない問題があった。 However, the composite soft magnetic sintered material obtained by bonding the soft magnetic metal particles with water glass or low melting glass has poor adhesion between the soft magnetic metal particles and water glass or low melting glass. In order to secure strength by bonding with water glass or low melting glass, it must be mixed with a large amount of water glass or low melting glass to such an extent that soft magnetic metal particles are dispersed in water glass or low melting glass. The powder soft magnetic material obtained by using a large amount of water glass or low-melting glass in this way has a large specific resistance, but the magnetic flux density is extremely reduced, and various electronic devices such as motors, actuators, magnetic sensor magnetic cores, etc. There was a problem that it could not be used as a material for parts.
そこで、高磁束密度と高比抵抗の両立を図る目的において、軟磁性金属粒子相とこれを包囲する粒界相からなり、前記粒界相が六方晶構造を有するZnO型相、立方晶構造を有するFeとZnの混合酸化物相およびガラス相とからなり、前記六方晶構造を有するZnO型相が前記軟磁性金属粒子相に接して分散されており、前記ガラス相が前記立方晶構造を有するFeとZnの混合酸化物相が前記ZnO型相に接して分散されており、前記ガラス相が前記立方晶構造を有するFeとZnの混合酸化物相に接して挟まれて分散されている組織を有する複合軟磁性焼結材が提供されている。(特許文献3参照)
一方、化学メッキなどの化学的な方法あるいは塗布法などによりMg含有フェライト膜を被覆したMg含有酸化鉄被覆鉄粉末を低融点ガラス粉末とともに混合してから圧密形成し、熱処理して圧粉磁性材を製造する方法も知られている。(特許文献4参照)
Therefore, for the purpose of achieving both high magnetic flux density and high specific resistance, a soft magnetic metal particle phase and a grain boundary phase surrounding the soft magnetic metal particle phase, the grain boundary phase has a hexagonal crystal structure, a ZnO type phase and a cubic crystal structure. A ZnO type phase having the hexagonal crystal structure is dispersed in contact with the soft magnetic metal particle phase, and the glass phase has the cubic crystal structure. A structure in which a mixed oxide phase of Fe and Zn is dispersed in contact with the ZnO-type phase, and the glass phase is sandwiched and dispersed in contact with the mixed oxide phase of Fe and Zn having the cubic structure A composite soft magnetic sintered material having the following is provided. (See Patent Document 3)
On the other hand, Mg-containing iron oxide coated iron powder coated with Mg-containing ferrite film by chemical method such as chemical plating or coating method is mixed with low melting point glass powder, then compacted, heat treated and powdered magnetic material A method of manufacturing is also known. (See Patent Document 4)
また、金属磁性粒子を含む磁性体粉末を前記金属磁性粒子間の絶縁を確保しつつ結合して圧粉磁性体コアを製造する方法において、磁性体粉末と金型との摩擦により成形体であるコアの表面に膜状の導電部が形成されてしまい、表面における渦電流損失が大きくなることの対策として圧粉磁性体コアの表層部を塩酸などの無機酸で除去する技術が開示されている。(特許文献5参照)
前記特許文献3に記載されている複合軟磁性焼結材によれば、FeとZnの混合酸化物相が600℃を越える温度で加熱すると分解してしまう問題がある。しかし、この分解が生じない程度の温度での焼成、例えば、600℃での焼成では特許文献3に記載されているガラス粉末は溶融しないために、軟磁性金属粒子相同士の結着性を高めることが難しかった。
また、ガラス粉末を酸化亜鉛被覆軟磁性金属粒子に添加混合して成形すると、ガラス粉末−酸化亜鉛被膜(絶縁層)の摩擦が発生し、酸化亜鉛被膜が損傷しやすいために、高比抵抗の軟磁性複合圧密焼成材を得ることが難しかった。
According to the composite soft magnetic sintered material described in
In addition, when glass powder is added to zinc oxide-coated soft magnetic metal particles and molded, friction between the glass powder and zinc oxide coating (insulating layer) occurs, and the zinc oxide coating is easily damaged. It was difficult to obtain a soft magnetic composite compacted fired material.
次に、前記特許文献5に記載されている技術では、Fe又はFe合金の圧粉成形体を無機酸で処理することが開示されてはいるものの、磁性体粉末に使用する金属磁性粒子及びそれらの粒子を絶縁分離する絶縁材とそれらを覆うバインダにおいて、酸化物、硫化物、窒化物等の酸に溶解し易いものは絶縁材の材料としては不向きであると記載されているのみであり、具体的な絶縁材が開示されていない。
そこで本発明者らは、Feを溶解するために塩酸を使用した場合、磁性体粉末の周囲を囲む絶縁材として著名なリン酸絶縁皮膜を用い、有機系バインダを用いて実験したところ、塩酸の酸洗によりリン酸絶縁皮膜と有機系バインダの双方が溶解されて酸洗部分が絶縁破壊されることがわかり、圧粉成型体を単に酸洗したとしても、比抵抗の高いものは容易には得られない問題があることを知見した。
Next, in the technique described in
Therefore, when using hydrochloric acid to dissolve Fe, the present inventors conducted an experiment using an organic binder, using a phosphoric acid insulating film that is a prominent insulating material surrounding the magnetic substance powder. It can be seen that both the phosphoric acid insulating film and the organic binder are dissolved by the pickling, and the pickled part is dielectrically broken. Even if the compacted body is simply pickled, the one with high specific resistance is easily I found that there was a problem that could not be obtained.
本発明は前記の問題に鑑みて創案されたものであり、その目的は、酸洗により表面の絶縁破壊を引き起こすことなく表面の酸化スケールと塑性変形による導通部を除去することにより、高比抵抗であり、渦電流損失の少ない軟磁性複合圧密コアの製造方法の提供を目的とする。 The present invention was devised in view of the above-described problems, and its purpose is to remove surface oxide scale and conductive parts due to plastic deformation without causing dielectric breakdown of the surface by pickling, thereby providing a high specific resistance. Therefore, an object of the present invention is to provide a method for producing a soft magnetic composite consolidated core with little eddy current loss.
本発明者らは、Fe系の軟磁性焼結材の研究を行い、金型を用いたプレス成形後においても表面の絶縁状態が破壊されることがない軟磁性複合圧密コアを提供できる技術の一具体例として、Mg含有酸化物被覆型あるいはAl2O3酸化物被覆型の軟磁性金属粒子を用いることを基本とする。
即ち、Fe系の軟磁性金属粉末を予め酸化雰囲気中で加熱することにより軟磁性金属粒子の表面に酸化鉄の膜を形成した酸化処理軟磁性金属粒子を作製し、この酸化処理軟磁性金属粒子にMg粉末を添加し、造粒転動攪拌混合装置で混合して得られた混合粉末を不活性ガス雰囲気または真空雰囲気中において加熱するなどした後、更に、必要に応じて酸化性雰囲気中で加熱する酸化処理を施してMg含有酸化物被覆型の軟磁性金属粒子を得る技術によるMg含有酸化物被膜を用いる。
この技術によれば、一般に知られているMgO−FeO−Fe2O3系の中で代表される(Mg,Fe)O、(Mg,Fe)3O4などのMg−Fe−O三元系各種酸化物のうちで、少なくとも(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜が軟磁性粒子の表面に形成されたものを得ることができる。
The inventors of the present invention have studied Fe-based soft magnetic sintered materials and are able to provide a soft magnetic composite consolidated core that does not break the insulation state of the surface even after press molding using a mold. As a specific example, it is fundamental to use Mg-containing oxide-coated or Al 2 O 3 oxide-coated soft magnetic metal particles.
That is, by heating an Fe-based soft magnetic metal powder in an oxidizing atmosphere in advance, an oxidized soft magnetic metal particle having an iron oxide film formed on the surface of the soft magnetic metal particle is produced. Mg powder is added to the mixture, and the mixed powder obtained by mixing with a granulation rolling stirring and mixing apparatus is heated in an inert gas atmosphere or a vacuum atmosphere, and then further in an oxidizing atmosphere as necessary. An Mg-containing oxide film obtained by a technique for obtaining an Mg-containing oxide-coated soft magnetic metal particle by performing a heating oxidation treatment is used.
According to this technique, Mg—Fe—O ternary elements such as (Mg, Fe) O and (Mg, Fe) 3 O 4 represented by the generally known MgO—FeO—Fe 2 O 3 system. Among various system oxides, an oxide in which an Mg—Fe—O ternary oxide deposition film containing at least (Mg, Fe) O is formed on the surface of soft magnetic particles can be obtained.
この少なくとも(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜をFe系の軟磁性金属粒子の表面に形成したMg含有酸化物被覆軟磁性金属粒子にあっては、Fe系の軟磁性金属粒子に対する酸化膜の密着性が従来材料に比べて格段に優れていることから、プレス成形時に絶縁皮膜である酸化膜が破壊されることが少なく、酸化膜がFe系の軟磁性金属粒子同士の間に確実に存在するので、プレス成形後に高温歪取り焼成を行っても酸化膜の絶縁性が低下することがなく、高比抵抗を維持できるので、渦電流損失が低くなり、更に歪取り焼成後に保磁力を低減できることから、ヒステリシス損失を低く抑えることができ、従って低損失の軟磁性複合圧密焼成材を得ることができる技術である。
本発明者らはこの技術に着目し、前述のMg含有酸化物被覆軟磁性金属粒子を圧密成形して得られる圧密材を研究したところ、本願発明に到達した。
In the Mg-containing oxide-coated soft magnetic metal particles in which the Mg—Fe—O ternary oxide deposited film containing at least (Mg, Fe) O is formed on the surface of the Fe-based soft magnetic metal particles, Fe Since the adhesion of the oxide film to the soft magnetic metal particles is far superior to that of the conventional material, the oxide film, which is an insulating film, is less likely to break during press molding, and the oxide film is Fe-based soft. Since it exists reliably between magnetic metal particles, even if high-temperature strain relief firing is performed after press molding, the insulating properties of the oxide film do not decrease and high resistivity can be maintained, so eddy current loss is reduced. In addition, since the coercive force can be reduced after the strain relief firing, the hysteresis loss can be kept low, and thus a low loss soft magnetic composite compacted fired material can be obtained.
The present inventors paid attention to this technique and studied a compacting material obtained by compacting the above-mentioned Mg-containing oxide-coated soft magnetic metal particles, and reached the present invention.
(1)上記目的を達成するために本発明の軟磁性複合圧密コアの製造方法は、Fe系の軟磁性金属粒子及び該軟磁性金属粒子の表面に被覆されたMg含有酸化膜あるいはAl2O3の酸化膜を具備してなる酸化物被覆軟磁性粒子と無機系バインダとを混合して金型により圧密し、酸化物被覆軟磁性粒子を前記無機系バインダにより接合してなる軟磁性複合圧密コアを製造し、該軟磁性複合圧密コアを金型から取り出した後、その表面を塩酸により酸洗し、圧密後の軟磁性金属粒子が表面に沿って延伸した塑性変形による導通部を除去することにより、その内側の圧密軟磁性金属粒子とそれを覆っている酸化膜を表面に露出させた状態として高比抵抗化することを特徴とする。 (1) In order to achieve the above object, the method for producing a soft magnetic composite compacted core according to the present invention comprises Fe-based soft magnetic metal particles and an Mg-containing oxide film or Al 2 O coated on the surface of the soft magnetic metal particles. The oxide-coated soft magnetic particles comprising an oxide film 3 and an inorganic binder are mixed and consolidated by a mold, and the oxide-coated soft magnetic particles are joined by the inorganic binder. After the core is manufactured and the soft magnetic composite compacted core is taken out of the mold, the surface is pickled with hydrochloric acid, and the conductive part due to plastic deformation in which the soft magnetic metal particles after compaction are stretched along the surface is removed. Thus, the specific resistance is increased by setting the inside soft magnetic metal particles and the oxide film covering the particles to the surface.
(2)上記目的を達成するために本発明の軟磁性複合圧密コアの製造方法は、前記無機酸として濃塩酸を用いることを特徴とする。
(3)上記目的を達成するために本発明の軟磁性複合圧密コアの製造方法は、前記Mg含有酸化膜として(Mg,Fe)Oを主体とする酸化膜を用いることを特徴とする。
(4)上記目的を達成するために本発明の軟磁性複合圧密コアの製造方法は、前記Fe系の軟磁性金属粒子が、Feに、Si、Al、Ni、Cr、Co、Vのうちの少なくとも1種以上を添加してなる組成系とされてなることを特徴とする。
(5)上記目的を達成するために本発明の軟磁性複合圧密コアの製造方法は、前記無機系バインダとして、Siレジン、低融点ガラス、金属酸化物のいずれかを用いることを特徴とする。
(2) In order to achieve the above object, the method for producing a soft magnetic composite consolidated core of the present invention is characterized by using concentrated hydrochloric acid as the inorganic acid.
(3) In order to achieve the above object, the soft magnetic composite consolidated core manufacturing method of the present invention is characterized in that an oxide film mainly composed of (Mg, Fe) O is used as the Mg-containing oxide film.
(4) In order to achieve the above object, the method for producing a soft magnetic composite compacted core of the present invention is characterized in that the Fe-based soft magnetic metal particles are Fe, Si, Al, Ni, Cr, Co, V It is characterized in that it is a composition system formed by adding at least one kind.
(5) In order to achieve the above object, the method for producing a soft magnetic composite consolidated core of the present invention is characterized in that any one of Si resin, low-melting glass, and metal oxide is used as the inorganic binder.
本発明の製造方法においては、Fe系の軟磁性金属粒子と該軟磁性金属粒子の表面に被覆したMg含有酸化物被覆膜とを良好な密着性でもって形成することができ、更にMg含有酸化物被覆膜を備えたFe系の軟磁性金属粒子どうしを、それらの粒界に存在するバインダで接合しているので、粒界部分におけるMg含有酸化物被覆膜との密着力も高いものとできるので、高強度な軟磁性複合圧密コアを得ることができる。
しかも、前記Mg含有酸化物被覆膜は圧密成形後もFe系の軟磁性金属粒子の周囲に確実に存在させることができるので高い比抵抗を得ることができ、渦電流損失の低い軟磁性複合圧密コアを得ることができる。
その上、該軟磁性複合圧密コアの表面を塩酸などの無機酸により酸洗すると、Mg含有酸化物被覆膜はFeを溶解する酸にも極めて強く、耐酸性に優れ、酸洗により表面部分の酸化スケールや塑性変形による導通部を能率良く溶解除去できるので、表面部分での比抵抗の低下を防止して渦電流損失の少ない軟磁性複合圧密コアを得ることができる。
In the production method of the present invention, Fe-based soft magnetic metal particles and an Mg-containing oxide coating film coated on the surface of the soft magnetic metal particles can be formed with good adhesion, and further Mg-containing Fe-based soft magnetic metal particles with oxide coating film are joined together by a binder existing at the grain boundary, so that the adhesion between the grain boundary portion and the Mg-containing oxide coating film is high. Therefore, a high-strength soft magnetic composite consolidated core can be obtained.
Moreover, since the Mg-containing oxide coating film can be reliably present around the Fe-based soft magnetic metal particles even after the compacting, a high specific resistance can be obtained and a soft magnetic composite with low eddy current loss. A consolidated core can be obtained.
In addition, when the surface of the soft magnetic composite compacted core is pickled with an inorganic acid such as hydrochloric acid, the Mg-containing oxide-coated film is extremely strong against acids that dissolve Fe, and has excellent acid resistance. Since the conductive portion due to the oxide scale and plastic deformation can be efficiently dissolved and removed, a decrease in specific resistance at the surface portion can be prevented, and a soft magnetic composite consolidated core with little eddy current loss can be obtained.
前記電磁気回路部品として、例えば、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトルコア、トランスコア、チョークコイルコアまたは磁気センサコアなどとしての利用が可能であり、いずれにおいても優れた特性を発揮し得る電磁気回路部品を提供できる。
そして、これら電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、これら電気機器の高効率高性能化や小型軽量化を行うことができる効果がある。
The electromagnetic circuit component can be used as, for example, a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core, a magnetic sensor core, etc. It is possible to provide an electromagnetic circuit component capable of exhibiting the above.
Electric devices incorporating these electromagnetic circuit components include motors, generators, solenoids, injectors, electromagnetically driven valves, inverters, converters, transformers, relays, magnetic sensor systems, etc. There is an effect that performance and size and weight can be reduced.
本発明ではまず、(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜が軟磁性金属粒子の表面に被覆形成されたMg含有酸化物被覆軟磁性金属粒子(軟磁性金属粒子)を作製する。
この被覆軟磁性金属粒子を得るためには、以下の各種の原料粉末を用い、後述する(A)〜(D)に記載の方法のいずれかを選択して実施すれば良い。
この発明のMg含有酸化物被覆軟磁性金属粒子の製造方法において使用する原料粉末としてのFe系軟磁性金属粒子は、従来から一般に知られている鉄粉末、絶縁処理鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末であることが好ましい。
更に具体的には、鉄粉末は純鉄粉末であり、絶縁処理鉄粉末は、リン酸塩被覆鉄粉末、またはシリカのゾルゲル溶液(シリケート)もしくはアルミナのゾルゲル溶液などの湿式溶液を添加し混合して鉄粉末表面に被覆したのち乾燥して焼成した酸化ケイ素もしくは酸化アルミニウム被覆鉄粉末であり、Fe−Al系鉄基軟磁性合金粉末はA1:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Al系鉄基軟磁性合金粉末(例えば、Fe−15%Alからなる組成を有するアルパーム粉末)であることが好ましい。
In the present invention, first, an Mg-containing oxide-coated soft magnetic metal particle (soft magnetic metal) in which a Mg—Fe—O ternary oxide deposited film containing (Mg, Fe) O is coated on the surface of the soft magnetic metal particle. Particles).
In order to obtain the coated soft magnetic metal particles, the following various raw material powders may be used by selecting one of the methods described in (A) to (D) described later.
Fe-based soft magnetic metal particles as a raw material powder used in the method for producing Mg-containing oxide-coated soft magnetic metal particles of the present invention are conventionally known iron powder, insulated iron powder, Fe-Al based iron. -Based soft magnetic alloy powder, Fe-Ni-based iron-based soft magnetic alloy powder, Fe-Cr-based iron-based soft magnetic alloy powder, Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy Preferably, it is a powder, Fe-Co iron-based soft magnetic alloy powder, Fe-Co-V iron-based soft magnetic alloy powder or Fe-P iron-based soft magnetic alloy powder.
More specifically, the iron powder is a pure iron powder, and the insulation-treated iron powder is a phosphate-coated iron powder or a wet solution such as a silica sol-gel solution (silicate) or an alumina sol-gel solution. This is a silicon oxide or aluminum oxide coated iron powder that is coated on the surface of the iron powder and then dried and fired. The Fe—Al-based iron-based soft magnetic alloy powder contains A1: 0.1 to 20%, and the balance is Fe. And an Fe—Al-based iron-based soft magnetic alloy powder (for example, an alpalm powder having a composition of Fe-15% Al) made of inevitable impurities.
また、Fe−Ni系鉄基軟磁性合金粉末はNi:35〜85%を含有し、必要に応じてMo:5%以下、Cu:5%以下、Cr:2%以下、Mn:0.5%以下の内の1種または2種以上を含有し、残部がFeおよび不可避不純物からなるニッケル基軟磁性合金粉末(例えば、Fe−49%Ni粉末)であり、Fe−Cr系鉄基軟磁性合金粉末はCr:1〜20%を含有し、必要に応じてAl:5%以下、Nil5%以下の内の1種または2種を含有し、残部がFeおよび不可避不純物からなるFe−Cr系鉄基軟磁性合金粉末であり、Fe−Si系鉄基軟磁性合金粉末は、Si:0.1〜10%を含有し、残部がFeおよび不可避不純物からなるFe−Si系鉄基軟磁性合金粉末であることが好ましい。
また、Fe−Si−Al系鉄基軟磁性合金粉末は、Si:0.1〜10%、Al:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Si−Al系鉄基軟磁性合金粉末であり、Fe−C−V系鉄基軟磁性合金粉末は、C:0.1〜52%、V:0.1〜3%を含有し、残部がFeおよび不可避不純物からなるFe−Co−V系鉄基軟磁性合金粉末であり、Fe−C系鉄基軟磁性合金粉末は、C:0.1〜52%を含有し、残部がFeおよび不可避不純物からなるFe−Co系鉄基軟磁性合金粉末であり、Fe−P系鉄基軟磁性合金粉末は、P:0.5〜1%を含有し、残部がFeおよび不可避不純物からなるFe−P系鉄基軟磁性合金粉末(以上、%は質量%を示す)であることが好ましい。
Further, the Fe—Ni-based iron-based soft magnetic alloy powder contains Ni: 35 to 85%, and Mo: 5% or less, Cu: 5% or less, Cr: 2% or less, Mn: 0.5 if necessary. % Nickel-based soft magnetic alloy powder (for example, Fe-49% Ni powder) containing one or two or more of Fe and inevitable impurities, and Fe-Cr-based iron-based soft magnetism The alloy powder contains Cr: 1-20%, and if necessary, contains Al: 5% or less,
The Fe-Si-Al-based iron-based soft magnetic alloy powder contains Si: 0.1 to 10%, Al: 0.1 to 20%, and the balance is Fe-Si-Al composed of Fe and inevitable impurities. Iron-based soft magnetic alloy powder, Fe-CV-based iron-based soft magnetic alloy powder contains C: 0.1-52%, V: 0.1-3%, the balance is Fe and inevitable Fe-Co-V iron-based soft magnetic alloy powder made of impurities, Fe-C iron-based soft magnetic alloy powder contains C: 0.1-52%, the balance consists of Fe and inevitable impurities Fe-Co-based iron-based soft magnetic alloy powder, Fe-P-based iron-based soft magnetic alloy powder contains P: 0.5 to 1%, the balance is Fe-P-based iron consisting of Fe and inevitable impurities It is preferably a base soft magnetic alloy powder (wherein% indicates mass%).
そして、これらFe系の軟磁性金属粒子は平均粒径:5〜500μmの範囲内にある軟磁性金属粒子を使用することが好ましい。その理由は、平均粒径が5μmより小さすぎると、粉末の圧縮性が低下し、軟磁性金属粒子の体積割合が低くなるために磁束密度の値が低下するので好ましくなく、一方、平均粒径が500μmより大きすぎると、軟磁性金属粒子内部の渦電流が増大して高周波における透磁率が低下することによるものである。 These Fe-based soft magnetic metal particles are preferably soft magnetic metal particles having an average particle size in the range of 5 to 500 μm. The reason is that if the average particle size is less than 5 μm, the compressibility of the powder is lowered, and the volume ratio of the soft magnetic metal particles is lowered, so the value of the magnetic flux density is lowered. If it is larger than 500 μm, the eddy current inside the soft magnetic metal particles increases and the magnetic permeability at high frequency decreases.
(A)これらの各種軟磁性金属粒子のいずれかを原料粉末とし、酸化雰囲気中で室温〜500℃に保持する酸化処理を施した後、この原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱し、さらに必要に応じて酸化雰囲気中、温度:50〜400℃で加熱すると、軟磁性金属粒子表面にMgを含む酸化絶縁被膜を有するMg含有酸化物被覆軟磁性金属粒子が得られる。
このMg含有酸化物被覆軟磁性金属粒子は、従来のMgフェライト膜を形成したMg含有酸化物被覆軟磁性粒子に比べて密着性が格段に優れたものとなり、このMg含有酸化物被覆軟磁性粒子をプレス成形して圧粉体を作製しても絶縁被膜が破壊し剥離することが少なく、また、このMg含有酸化物被覆軟磁性金属粒子の圧粉体を温度:400〜1300℃で焼成して得られた軟磁性複合圧密コアは粒界にMg含有酸化膜が均一に分散し、粒界三重点にMg含有酸化膜が集中して分散することのない組織が得られる。
(A) It is obtained by using any one of these various soft magnetic metal particles as a raw material powder and subjecting it to an oxidation treatment in which it is maintained at room temperature to 500 ° C. in an oxidizing atmosphere, and then adding and mixing Mg powder to this raw material powder. The mixed powder was heated in an inert gas atmosphere or a vacuum atmosphere at a temperature of 150 to 1100 ° C. and a pressure of 1 × 10 −12 to 1 × 10 −1 MPa, and further in an oxidizing atmosphere if necessary, a temperature of 50 When heated at ˜400 ° C., Mg-containing oxide-coated soft magnetic metal particles having an oxide insulating film containing Mg on the surface of the soft magnetic metal particles are obtained.
The Mg-containing oxide-coated soft magnetic metal particles have much better adhesion than the conventional Mg-containing oxide-coated soft magnetic particles on which an Mg ferrite film is formed. Even if a green compact is produced by press molding, the insulating coating is less likely to break and peel off, and the green compact of the Mg-containing oxide-coated soft magnetic metal particles is fired at a temperature of 400 to 1300 ° C. The soft magnetic composite compacted core thus obtained has a structure in which the Mg-containing oxide film is uniformly dispersed at the grain boundaries and the Mg-containing oxide film is not concentrated and dispersed at the triple points of the grain boundaries.
前述の製造方法の場合、酸化処理した軟磁性金属粒子を原料粉末とし、この原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱するには、前記混合粉末を転動させながら加熱することが好ましい。 In the case of the above-mentioned production method, oxidized soft magnetic metal particles are used as raw material powder, and mixed powder obtained by adding and mixing Mg powder to this raw material powder is temperature: 150 to 1100 ° C., pressure: 1 × 10 − In order to heat in an inert gas atmosphere or a vacuum atmosphere of 12 to 1 × 10 −1 MPa, it is preferable to heat the mixed powder while rolling.
(B)前記軟磁性金属粒子を酸化雰囲気中で室温〜500℃に保持することにより軟磁性粉末の表面に酸化物を形成した酸化物被覆軟磁性粉末に一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱し、さらにMg粉末を添加し混合した後または混合しながら真空雰囲気中、温度:400〜800℃保持の条件で加熱すると、軟磁性粉末の表面にMg−Si含有酸化膜が形成されたMg−Si含有酸化物被膜軟磁性粉末が得られ、この方法で作製したMg−Si含有酸化物被膜軟磁性粉末を用いて作製した軟磁性複合圧密コアは、従来のSiOを生成する化合物とMgCOまたはMgOの粉末からなる混合物を圧縮成形し焼結して得られた複合軟磁性焼結材よりも密度、抗折強度、比抵抗および磁束密度が優れている。 (B) After adding and mixing the silicon monoxide powder to the oxide-coated soft magnetic powder in which an oxide is formed on the surface of the soft magnetic powder by maintaining the soft magnetic metal particles in an oxidizing atmosphere at room temperature to 500 ° C. Alternatively, heating is performed in a vacuum atmosphere with mixing at a temperature of 600 to 1200 ° C., and further, after adding and mixing Mg powder or heating in a vacuum atmosphere with mixing at a temperature of 400 to 800 ° C. An Mg-Si-containing oxide-coated soft magnetic powder in which an Mg-Si-containing oxide film is formed on the surface of the soft magnetic powder is obtained, and is produced using the Mg-Si-containing oxide-coated soft magnetic powder produced by this method. The soft magnetic composite compacted core has a higher density and bending strength than the composite soft magnetic sintered material obtained by compression molding and sintering a mixture of a compound that produces SiO and MgCO or MgO powder. , Resistivity and magnetic flux density is excellent.
(C)前記軟磁性金属粒子を酸化雰囲気中で室温〜500℃に保持することにより軟磁性金属粒子の表面に鉄の酸化膜を形成した酸化物被覆軟磁性金属粉末に一酸化ケイ素粉末およびMg粉末を同時に添加し混合した後、または、混合しながら真空雰囲気中、温度:400〜1200℃保持の条件で加熱すると、軟磁性金属粒子の表面にMg−Si含有酸化物膜が形成されたMg−Si含有酸化物被膜軟磁性金属粉末が得られる。この方法で作製したMg−Si含有酸化物被覆軟磁性金属粉末を用いて作製した軟磁性複合圧密コアは、従来のSiO2を生成する化合物とMgCO3またはMgOの粉末からなる混合物を圧縮成形し焼結して得られた複合軟磁性焼結材よりも密度、抗折強度、比抵抗および磁束密度を優れさせることができる。 (C) An oxide-coated soft magnetic metal powder in which an iron oxide film is formed on the surface of the soft magnetic metal particles by holding the soft magnetic metal particles in an oxidizing atmosphere at room temperature to 500 ° C. After the powders are added and mixed at the same time, or when mixed and heated in a vacuum atmosphere at a temperature of 400 to 1200 ° C., the Mg—Si-containing oxide film is formed on the surface of the soft magnetic metal particles. A Si-containing oxide-coated soft magnetic metal powder is obtained. The soft magnetic composite compacted core produced using the Mg-Si-containing oxide-coated soft magnetic metal powder produced by this method is a compression molding of a conventional mixture of a compound that generates SiO 2 and MgCO 3 or MgO powder. The density, bending strength, specific resistance, and magnetic flux density can be made superior to the composite soft magnetic sintered material obtained by sintering.
(D)前記軟磁性金属粒子を酸化雰囲気中で室温〜500℃に保持することにより軟磁性金属粒子の表面に鉄の酸化膜を形成した酸化物被覆軟磁性金属粉末にMg粉末を添加し混合した後または混合しながら真空雰囲気中、温度:400〜800℃保持の条件で加熱すると軟磁性金属粉末の表面にMg含有酸化膜が形成されたMg含有酸化物被覆軟磁性金属粉末が得られる。
このMg含有酸化物被覆軟磁性金属粉末にさらに一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱すると、軟磁性粉末の表面にMg−Si含有酸化物膜が形成されたMg−Si含有酸化物被覆軟磁性金属粉末が得られ、この方法で作製したMg−Si含有酸化物被覆軟磁性金属粉末を用いて作製した軟磁性複合圧密コアであれば、従来のSiO2を生成する化合物とMgCOまたはMgOの粉末からなる混合物を圧縮成形し焼結して得られた複合軟磁性焼結材よりも密度、抗折強度、比抵抗およぴ磁束密度が優れさせることができる。
前記一酸化ケイ素粉末の添加量は0.01〜1質量%の範囲内にあることが好ましく、前記Mg粉末の添加量は0.05〜1質量%の範囲内にあることが好ましい。
前記真空雰囲気は、圧力:1×10−12〜1×10−1MPaの真空雰囲気であることが好ましい。
(D) Mg powder is added to and mixed with the oxide-coated soft magnetic metal powder in which an iron oxide film is formed on the surface of the soft magnetic metal particle by holding the soft magnetic metal particle at room temperature to 500 ° C. in an oxidizing atmosphere. After heating or heating in a vacuum atmosphere under mixing and at a temperature of 400 to 800 ° C., an Mg-containing oxide-coated soft magnetic metal powder in which an Mg-containing oxide film is formed on the surface of the soft magnetic metal powder is obtained.
After adding and mixing silicon monoxide powder to this Mg-containing oxide-coated soft magnetic metal powder or heating it in a vacuum atmosphere while mixing and maintaining the temperature at 600 to 1200 ° C., the surface of the soft magnetic powder is coated with Mg. An Mg-Si-containing oxide-coated soft magnetic metal powder on which an Si-containing oxide film is formed is obtained, and a soft magnetic composite compaction produced using the Mg-Si-containing oxide-coated soft magnetic metal powder produced by this method In the case of the core, the density, bending strength, specific resistance and resistance are higher than those of a composite soft magnetic sintered material obtained by compression molding and sintering a mixture of a compound that generates SiO 2 and MgCO or MgO powder. The good magnetic flux density can be improved.
The addition amount of the silicon monoxide powder is preferably in the range of 0.01 to 1% by mass, and the addition amount of the Mg powder is preferably in the range of 0.05 to 1% by mass.
The vacuum atmosphere is preferably a vacuum atmosphere at a pressure of 1 × 10 −12 to 1 × 10 −1 MPa.
前記の製造方法に用いる一酸化ケイ素(SiO)粉末は、酸化ケイ素の内でも最も蒸気圧が高い酸化物であるところから、加熱により軟磁性金属粒子の表面に酸化ケイ素成分を蒸着させ易く、蒸気圧の低い二酸化ケイ素(SiO2)粉末を混合して加熱しても軟磁性金属粒子の表面に十分な厚さの酸化ケイ素膜が形成されないおそれがある。酸化物被覆軟磁性粉末に一酸化ケイ素(SiO)粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃に保持することにより軟磁性金属粒子の表面にSiOx(ただし、x;1〜2)膜を形成した酸化ケイ素膜被覆軟磁性粉末が生成し、この酸化ケイ素膜被覆軟磁性粉末にさらにMg粉末を添加し混合しながら真空雰囲気中で加熱すると、Mg−Si−Fe−OからなるMg−Si含有酸化物膜が軟磁性粉末に被覆したMg−Si含有酸化物被覆軟磁性粉末が得られる。 The silicon monoxide (SiO) powder used in the above production method is an oxide having the highest vapor pressure among silicon oxides. Therefore, it is easy to deposit a silicon oxide component on the surface of soft magnetic metal particles by heating. Even if silicon dioxide (SiO 2 ) powder having a low pressure is mixed and heated, a silicon oxide film having a sufficient thickness may not be formed on the surface of the soft magnetic metal particles. After the silicon monoxide (SiO) powder is added to the oxide-coated soft magnetic powder and mixed, or in a vacuum atmosphere with mixing, the temperature is maintained at 600 to 1200 ° C., so that SiOx (however, x: 1-2) A silicon oxide film-coated soft magnetic powder having a film formed thereon was formed, and when Mg powder was further added to the silicon oxide film-coated soft magnetic powder and heated in a vacuum atmosphere while mixing, Mg-Si- An Mg—Si-containing oxide-coated soft magnetic powder in which an Mg—Si-containing oxide film made of Fe—O is coated on a soft magnetic powder is obtained.
前述の酸化物被覆軟磁性金属粒子は、軟磁性金属粒子を酸化雰囲気中(例えば、大気中)、温度:室温〜500℃に保持することにより軟磁性粉末の表面に鉄酸化膜を形成して作製することができる。そして、この鉄酸化膜はSiOおよび/またはMgの被覆性を向上させる効果がある。酸化物被覆軟磁性金属粒子を作製する際に酸化雰囲気中で500℃を越えて加熱すると、軟磁性金属粒子が凝集して軟磁性金属粒子の集合体が生成し、焼結したりして均一な表面酸化ができなくなるので好ましくない。したがって、酸化物被覆軟磁性金属粒子の製造時の加熱温度は室温〜500℃に定めた。一層好ましい範囲は室温〜300℃である。酸化雰囲気は乾燥した酸化雰囲気であることが一層好ましい。 The aforementioned oxide-coated soft magnetic metal particles are formed by forming an iron oxide film on the surface of the soft magnetic powder by maintaining the soft magnetic metal particles in an oxidizing atmosphere (for example, in the air) at a temperature of room temperature to 500 ° C. Can be produced. This iron oxide film has the effect of improving the coverage of SiO and / or Mg. When the oxide-coated soft magnetic metal particles are produced and heated above 500 ° C. in an oxidizing atmosphere, the soft magnetic metal particles are aggregated to form an aggregate of soft magnetic metal particles, which are sintered and uniform. This is not preferable because surface oxidation cannot be performed. Therefore, the heating temperature during the production of the oxide-coated soft magnetic metal particles was set to room temperature to 500 ° C. A more preferred range is from room temperature to 300 ° C. More preferably, the oxidizing atmosphere is a dry oxidizing atmosphere.
この発明で用いるMg−Si含有酸化物被覆軟磁性金属粒子において、酸化物被覆軟磁性金属粒子に添加するSiO粉末量を0.01〜1質量%に限定したのは、SiO粉末の添加量が0.01質量%未満では酸化物被覆軟磁性金属粒子の表面に形成される酸化ケイ素膜の厚さが不足するのでMg−Si含有酸化物膜に含まれるSiの量が不足し、したがって、比抵抗の高いMg−Si含有酸化物膜が得られないので好ましくなく、一方、1質量%を越えて添加すると、形成されるSiOx(x;1〜2)酸化ケイ素膜の厚さが厚くなり過ぎて、得られたMg−Si含有酸化物被覆軟磁性金属粒子を圧粉し焼成して得られた軟磁性複合圧密焼成材の密度が低下するようになるおそれがある。 In the Mg-Si-containing oxide-coated soft magnetic metal particles used in the present invention, the amount of SiO powder added to the oxide-coated soft magnetic metal particles is limited to 0.01 to 1% by mass. If it is less than 0.01% by mass, the thickness of the silicon oxide film formed on the surface of the oxide-coated soft magnetic metal particles is insufficient, so that the amount of Si contained in the Mg-Si-containing oxide film is insufficient. An Mg-Si-containing oxide film with high resistance cannot be obtained, and it is not preferable. On the other hand, when it exceeds 1% by mass, the thickness of the SiOx (x; 1-2) silicon oxide film formed becomes too thick. Thus, the density of the soft magnetic composite compacted fired material obtained by compacting and firing the obtained Mg-Si-containing oxide-coated soft magnetic metal particles may be reduced.
また、この発明のMg−Si含有酸化物被覆軟磁性金属粒子の製造方法において、Mg粉末の添加量を0.05〜1質量%の範囲に設定したのは、Mg粉末の添加量が0.05質量%未満では酸化物被覆軟磁性金属粒子の表面に形成されるMg膜の厚さが不足してMg−Si含有酸化物膜に含まれるMgの量が不足し、従って、十分な厚さのMg−Si酸化物膜が得られないので好ましくなく、一方、1質量%を越えて添加すると、形成されるMg膜の厚さが厚くなり過ぎて、得られたMg−Si含有酸化物被覆軟磁性粉末を圧粉し焼成して得られた軟磁性複合圧密焼成材の密度が低下するようになるので好ましくないからである。 In the method for producing Mg-Si-containing oxide-coated soft magnetic metal particles according to the present invention, the amount of Mg powder added is set in the range of 0.05 to 1% by mass. If it is less than 05% by mass, the thickness of the Mg film formed on the surface of the oxide-coated soft magnetic metal particles is insufficient, and the amount of Mg contained in the Mg—Si-containing oxide film is insufficient. Mg-Si oxide film cannot be obtained, but it is not preferable. On the other hand, if it is added in excess of 1% by mass, the thickness of the formed Mg film becomes too thick, and the resulting Mg-Si-containing oxide coating is obtained. This is because the density of the soft magnetic composite compacted fired material obtained by compacting and firing the soft magnetic powder is not preferable.
この発明で用いるMg−Si含有酸化物被覆軟磁性金属粒子の製造方法において、酸化物被覆軟磁性金属粒子にSiO粉末、Mg粉末またはSiO粉末およびMg粉末の混合粉末を添加し混合する条件を温度600〜1200℃の真空雰囲気としたのは、600℃未満で加熱してもSiOの蒸気圧が小さいために十分な厚さのSiO膜またはMg−Si含有酸化物被膜が得られないためであり、一方、1200℃を越えて混合すると軟磁性金属粒子が焼結するようになって所望のMg−Si含有酸化物被覆軟磁性金属粒子が得られないので好ましくないからである。また、その時の加熱雰囲気は圧力:1×10−12〜1×10−1MPaの真空雰囲気中であることが好ましく、更に転動しながら加熱することが一層好ましい。 In the method for producing Mg-Si-containing oxide-coated soft magnetic metal particles used in the present invention, the conditions for adding and mixing SiO powder, Mg powder, or a mixed powder of SiO powder and Mg powder to oxide-coated soft magnetic metal particles are set to a temperature. The reason why the vacuum atmosphere is 600 to 1200 ° C. is that even when heated at a temperature lower than 600 ° C., the vapor pressure of SiO is small, so that a sufficiently thick SiO film or Mg—Si-containing oxide film cannot be obtained. On the other hand, if the mixing temperature exceeds 1200 ° C., the soft magnetic metal particles are sintered, and the desired Mg—Si-containing oxide-coated soft magnetic metal particles cannot be obtained. Further, the heating atmosphere at that time is preferably in a vacuum atmosphere at a pressure of 1 × 10 −12 to 1 × 10 −1 MPa, and more preferably heated while rolling.
酸化物被覆軟磁性金属粒子を作製するときに使用する軟磁性金属粒子は平均粒径:5〜500μmの範囲内にある軟磁性粉末を使用することが好ましい。その理由は、平均粒径が5μmより小さすぎると、粉末の圧縮性が低下し、軟磁性粉末の体積割合が低くなるために磁束密度の値が低下するので好ましくなく、一方、平均粒径が500μmより大きすぎると、軟磁性粉末内部の渦電流が増大して高周波における透磁率が低下することによるものである。
軟磁性金属粒子の酸化処理は、Mgの被覆性を向上させる効果があり、酸化雰囲気中、温度150〜500℃または蒸留水または純水中、温度:50〜100℃に保持することにより行う。この場合、いずれも50℃未満では効率的でなく、一方、酸化雰囲気中で500℃を越えて保持すると焼結が起るために好ましくないからである。酸化雰囲気は乾燥した酸化雰囲気であることが一層好ましい。
The soft magnetic metal particles used for producing the oxide-coated soft magnetic metal particles are preferably soft magnetic powders having an average particle diameter of 5 to 500 μm. The reason is that if the average particle size is less than 5 μm, the compressibility of the powder is lowered, and the volume ratio of the soft magnetic powder is lowered, so the value of the magnetic flux density is lowered. If it is larger than 500 μm, the eddy current inside the soft magnetic powder increases and the magnetic permeability at high frequency decreases.
The oxidation treatment of the soft magnetic metal particles has an effect of improving the coverage of Mg, and is performed by maintaining the temperature at 50 to 100 ° C. in an oxidizing atmosphere at a temperature of 150 to 500 ° C. or distilled water or pure water. In this case, it is not efficient when the temperature is less than 50 ° C., and on the other hand, if the temperature exceeds 500 ° C. in an oxidizing atmosphere, sintering occurs, which is not preferable. More preferably, the oxidizing atmosphere is a dry oxidizing atmosphere.
「堆積膜」という用語は、通常、真空蒸着やスパッタされた皮膜構成原子が例えば基板上に堆積された皮膜を示すが、本発明において用いる堆積膜とは、酸化鉄膜を有するFe系軟磁性金属粒子の酸化鉄(Fe−O)とMgが反応を伴って当該Fe系軟磁性金属粒子表面に堆積した皮膜、本発明ではMg含有酸化膜を示す。このFe系軟磁性金属粒子の表面に形成されているMg−Fe−O三元系酸化膜の膜厚は、圧粉成形後に軟磁性複合圧密コアの高磁束密度と高比抵抗を得るために、5nm〜500nmの範囲内にあることが好ましい。ここでの膜厚が5nmより薄いと、圧粉成形した軟磁性複合圧密焼成材の比抵抗が充分ではなく、渦電流損失が増加するので好ましくなく、膜厚が500nmを越える厚さでは、圧粉成形した軟磁性複合圧密焼成材の磁束密度が低下するので好ましくない。このような範囲において更に好ましいMg含有酸化膜の膜厚は、5nm〜200nmの範囲内である。
ただし、後述する酸洗処理する場合を考慮してMg含有酸化膜の好ましい膜厚範囲は、50nm〜200nmの範囲である。膜厚範囲が50nm未満では、後述の酸洗工程において堆積膜が薄すぎて、本来耐酸性に強い本願発明の堆積膜であっても、軟磁性金属粒子の絶縁被覆状態が不十分となり易く、比抵抗の向上効果を満足に得ることができなくなる傾向がある。
The term “deposited film” usually indicates a film in which atoms constituting a film deposited by vacuum evaporation or sputtering are deposited on a substrate, for example. The deposited film used in the present invention is an Fe-based soft magnetic film having an iron oxide film. A film in which iron oxide (Fe—O) and Mg of metal particles are deposited on the surface of the Fe-based soft magnetic metal particle with a reaction, in the present invention, shows an Mg-containing oxide film. The film thickness of the Mg-Fe-O ternary oxide film formed on the surface of the Fe-based soft magnetic metal particles is to obtain a high magnetic flux density and a high specific resistance of the soft magnetic composite compacted core after compacting. It is preferably in the range of 5 nm to 500 nm. If the film thickness is less than 5 nm, the specific resistance of the compacted soft magnetic composite compacted fired material is not sufficient, and eddy current loss increases. Since the magnetic flux density of the powder-molded soft magnetic composite compacted fired material is lowered, it is not preferable. In such a range, the more preferable thickness of the Mg-containing oxide film is in the range of 5 nm to 200 nm.
However, a preferable film thickness range of the Mg-containing oxide film is in the range of 50 nm to 200 nm in consideration of the case of the pickling treatment described later. If the film thickness range is less than 50 nm, the deposited film is too thin in the later-described pickling step, and even the deposited film of the present invention which is inherently resistant to acid resistance, the insulating coating state of the soft magnetic metal particles tends to be insufficient, There is a tendency that the effect of improving the specific resistance cannot be obtained satisfactorily.
前述の方法により作製されたMg含有酸化物被覆軟磁性金属粒子は、その表面にMg含有酸化膜が形成され、このMg含有酸化膜は酸化ケイ素や酸化アルミニウムと反応して複合酸化物が形成され、軟磁性金属粒子の粒界に高抵抗を有する複合酸化物が介在した高比抵抗を有する軟磁性複合圧密焼成材が最終的に得られるとともに、酸化ケイ素や酸化アルミニウムを介して焼結されるために機械的強度の優れた軟磁性複合圧密焼成材を製造することができる。この場合、酸化ケイ素や酸化アルミニウムが主体となって焼結されるところから保磁力を小さく保つことができ、したがって、ヒステリシス損の少ない軟磁性複合圧密焼成材を製造することができる、前記焼成は、不活性ガス雰囲気中あるいは非酸化性ガス雰囲気中において、温度:400〜1300℃で行われることが好ましい。 The Mg-containing oxide-coated soft magnetic metal particles produced by the above-described method have an Mg-containing oxide film formed on the surface, and this Mg-containing oxide film reacts with silicon oxide or aluminum oxide to form a composite oxide. Finally, a soft magnetic composite compacted fired material having a high specific resistance in which a composite oxide having a high resistance is interposed at the grain boundary of the soft magnetic metal particles is finally obtained, and sintered through silicon oxide or aluminum oxide. Therefore, a soft magnetic composite compacted fired material having excellent mechanical strength can be produced. In this case, the coercive force can be kept small from being sintered mainly with silicon oxide or aluminum oxide, and thus a soft magnetic composite compacted fired material with less hysteresis loss can be produced. In an inert gas atmosphere or a non-oxidizing gas atmosphere, the temperature is preferably 400 to 1300 ° C.
「軟磁性複合圧密コアの製造」
以上説明した方法により前述の如く作製したMg含有酸化膜で被覆した軟磁性金属粒子を使用して軟磁性複合圧密コアを製造するには、まず、前述の方法で作製したMg含有酸化膜被覆軟磁性金属粒子に絶縁性のバインダ(結着材)としてのSiレジン、低融点ガラスあるいは金属酸化物のいずれかを混合してから通常の方法で圧粉成形し、不活性ガス雰囲気中、あるいは、非酸化性雰囲気中において焼成して軟磁性複合圧密コアの前駆体を製造する。
"Production of soft magnetic composite compacted core"
In order to manufacture a soft magnetic composite compacted core using soft magnetic metal particles coated with the Mg-containing oxide film prepared as described above by the method described above, first, the Mg-containing oxide film-coated soft film prepared by the above-described method is used. The magnetic metal particles are mixed with either an Si resin as an insulating binder (binder), a low-melting glass or a metal oxide and then compacted by a conventional method, in an inert gas atmosphere, or A precursor of a soft magnetic composite compacted core is produced by firing in a non-oxidizing atmosphere.
この工程においては、第1に、前述の方法により作製したMg含有酸化物被覆軟磁性金属粒子に、無機系バインダとしてのSiレジン、あるいは、Bi2O3−B2O3、SnO−P2O3、SiO2−B2O3−ZnO、SiO2−B2O3−R2O、Li2O−ZnOのいずれかからなる低融点ガラスを規定量配合する。
Siレジンの添加量は、0.2〜1.5質量%の範囲内とすることができる。
あるいは、先のSiレジンあるいは低融点ガラスに代えて、Mg含有酸化物被覆軟磁性金属粒子に、酸化アルミニウム、酸化棚素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの内の1種または2種以上の金属酸化物をB2O3、V2O5、Bi2O3、Sb2O3、MoO3換算で0.05〜1質量%の範囲内で配合しても良い。
前述のバインダを混合した後に金型を用いて圧粉成形し、得られた圧粉成形体を温度:500〜1000℃で非酸化性雰囲気中において焼成し、軟磁性複合圧密コアの前駆体を製造する。また、金属酸化物としてステアリン酸亜鉛を用いることもできる。
先の焼成雰囲気として例えば、窒素ガス雰囲気などの不活性ガス雰囲気、あるいは水素ガス雰囲気などの非酸化性雰囲気を選択することができる。
In this step, first, the Mg-containing oxide-coated soft magnetic metal particles produced by the above-described method are added to Si resin as an inorganic binder, or Bi 2 O 3 —B 2 O 3 , SnO—P 2. A specified amount of low melting point glass composed of any of O 3 , SiO 2 —B 2 O 3 —ZnO, SiO 2 —B 2 O 3 —R 2 O, and Li 2 O—ZnO is blended.
The addition amount of Si resin can be in the range of 0.2 to 1.5 mass%.
Alternatively, instead of the above Si resin or low melting point glass, Mg-containing oxide-coated soft magnetic metal particles may be replaced with one or two of aluminum oxide, shelf oxide, vanadium oxide, bismuth oxide, antimony oxide, and molybdenum oxide. species or
After mixing the above-mentioned binder, compacting is performed using a mold, and the resulting compacted body is fired in a non-oxidizing atmosphere at a temperature of 500 to 1000 ° C. to obtain a precursor of a soft magnetic composite compacted core. To manufacture. Moreover, zinc stearate can also be used as a metal oxide.
For example, an inert gas atmosphere such as a nitrogen gas atmosphere or a non-oxidizing atmosphere such as a hydrogen gas atmosphere can be selected as the previous firing atmosphere.
本発明では、先の軟磁性複合圧密コアの前駆体の抗折強度を高めるなどの目的において、酸化性雰囲気中において、400℃〜600℃の温度範囲内に加熱する熱処理を施しておくことが好ましい。
ここでの酸化性雰囲気における熱処理により、前駆体における(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜を軟磁性金属粒子の表面に被覆形成した被覆軟磁性金属粒子と、それらの界面に存在する(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜が変成し、軟磁性金属粒子と該軟磁性金属粒子の表面に被覆されたMg含有酸化物とを具備してなるMg含有酸化物被覆軟磁性粒子が、酸化鉄を含むシリコン酸化物、低融点ガラスの成分を含む酸化物、Mgを含有する鉄酸化物のいずれかを主体とする粒界層を介し複数結合されてなる構造となり、軟磁性複合圧密コアの前駆体を得ることができる。
In the present invention, for the purpose of increasing the bending strength of the precursor of the soft magnetic composite compacted core, heat treatment is performed in an oxidizing atmosphere within a temperature range of 400 ° C. to 600 ° C. preferable.
The coated soft magnetic metal particles formed by coating the surface of the soft magnetic metal particles with the Mg—Fe—O ternary oxide deposited film containing (Mg, Fe) O in the precursor by heat treatment in an oxidizing atmosphere The Mg—Fe—O ternary oxide deposited film containing (Mg, Fe) O present at the interface between them is transformed, and the Mg-containing oxidation coated on the surface of the soft magnetic metal particles and the soft magnetic metal particles The Mg-containing oxide-coated soft magnetic particles comprising a material mainly composed of a silicon oxide containing iron oxide, an oxide containing a low-melting glass component, or an iron oxide containing Mg A structure in which a plurality of layers are bonded via a boundary layer, and a precursor of a soft magnetic composite consolidated core can be obtained.
以上説明の方法により得られた軟磁性複合圧密コアの前駆体は、前記複数のMg含有酸化物被覆軟磁性金属粒子の粒界層を介する結合が、前記軟磁性金属粒子と該軟磁性金属粒子の表面に被覆されたMg含有酸化膜とを具備してなるMg含有酸化物被覆軟磁性金属粒子と、前述の低融点ガラスまたは金属酸化物との混合圧密熱処理により得られた結合であり、前記Mg含有酸化物被覆軟磁性金属粒子間の粒界層に存在する酸化鉄が、前記軟磁性金属粒子から粒界にFe成分が析出され酸化物とされて分散成長されたものであり、前記粒界層に隣接するMg含有酸化膜が、前記混合圧密焼成処理以前のMg含有酸化物被覆軟磁性金属粒子に備えられていたMg含有酸化膜から得られたものである。
前記Mg含有酸化膜被覆軟磁性粒子を囲む粒界層にあっては、酸化鉄を含むシリコン酸化物、低融点ガラスの成分を含む酸化物、Mgを含有する鉄酸化物のいずれかを主体とする組織を有する。
The precursor of the soft magnetic composite compacted core obtained by the above-described method is such that the bond through the grain boundary layer of the plurality of Mg-containing oxide-coated soft magnetic metal particles is combined with the soft magnetic metal particles and the soft magnetic metal particles. A Mg-containing oxide-coated soft magnetic metal particle comprising a Mg-containing oxide film coated on the surface of the metal and a low-melting glass or a metal oxide obtained by the above-described mixed consolidation heat treatment, The iron oxide present in the grain boundary layer between the Mg-containing oxide-coated soft magnetic metal particles is obtained by dispersing and growing the Fe component from the soft magnetic metal particles at the grain boundaries to form an oxide. The Mg-containing oxide film adjacent to the boundary layer is obtained from the Mg-containing oxide film provided in the Mg-containing oxide-coated soft magnetic metal particles before the mixed consolidation firing process.
In the grain boundary layer surrounding the Mg-containing oxide film-coated soft magnetic particles, the main component is one of silicon oxide containing iron oxide, oxide containing a component of low-melting glass, and iron oxide containing Mg. Have an organization to do.
以上の製造方法により得られた軟磁性複合圧密コアの前駆体は高密度、高強度、高比抵抗および高磁束密度を有し、この軟磁性複合圧密焼成材は、高磁束密度で高周波低鉄損の特徴を有する事からこの特徴を生かした各種電磁気回路部品の材料として使用できる。
また、以上の製造方法により得られた軟磁性複合コアの前駆体にあっては、(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜とその界面に存在する低融点ガラスあるいは金属酸化物を酸化雰囲気において焼成することにより、成長させた酸化鉄を含む低融点ガラスの成分を含む粒界層、または、酸化鉄を含む金属酸化物を主体とする粒界層を備えているので、特にMg含有酸化物被覆軟磁性金属粒子同士の接合が良好になされていて、抗折強度を更に高くすることができ、高強度軟磁性複合圧密コアを得ることができる。その上、本製造方法により得られた軟磁性複合圧密焼成材は、高磁束密度で高周波低鉄損の特徴を兼ね備える優れた特徴を有する。
The precursor of the soft magnetic composite compacted core obtained by the above manufacturing method has high density, high strength, high specific resistance, and high magnetic flux density. Since it has a characteristic of loss, it can be used as a material for various electromagnetic circuit components utilizing this characteristic.
In addition, in the precursor of the soft magnetic composite core obtained by the above manufacturing method, the Mg—Fe—O ternary oxide deposited film containing (Mg, Fe) O and the low melting point present at the interface thereof By firing glass or metal oxide in an oxidizing atmosphere, it has a grain boundary layer containing a component of low melting point glass containing iron oxide grown or a grain boundary layer mainly composed of metal oxide containing iron oxide Therefore, the Mg-containing oxide-coated soft magnetic metal particles are particularly well bonded to each other, the bending strength can be further increased, and a high-strength soft magnetic composite consolidated core can be obtained. In addition, the soft magnetic composite compacted fired material obtained by this production method has excellent characteristics that combine high magnetic flux density with high frequency and low iron loss.
前記構成の軟磁性複合圧密コアの前駆体は、前述の高密度、高強度、高比抵抗および高磁束密度を有し、高周波低鉄損の特徴を本来は有するはずであるが、金型に前記軟磁性金属粒子とバインダなどを挿入して圧密後、金型から取り出した状態においては、特に表面の比抵抗が低下した状態となり易い。
これは、軟磁性複合圧密コアの前駆体を構成する軟磁性金属粒子がFeを主体としてなり、Fe含有量の高い材料であるので、Fe主体の軟磁性金属粒子自体の伸びが大きいという性質を有するが故に、金型の内面と擦り合う部分においては、軟磁性金属粒子が金型の面方向に伸びる結果、先に説明した如く粒径を揃えた粒子状の軟磁性金属粒子を混合していたとしても、高温高圧にて圧密した場合、塑性加工により伸びた軟磁性金属粒子が軟磁性複合圧密コアの面方向に層状となって、軟磁性金属粒子同士を磁気的に短絡する塑性変形に伴う導通部が存在するので、表面の比抵抗が低下し、渦電流損失が増加する問題がある。特に高周波電気部品として用いる場合に、渦電流損失はコアの表面部分において特に影響を受けると考えられる。
従って本願発明では、軟磁性複合圧密コアの前駆体に以下に説明する酸洗処理を行い、表面における比抵抗の低下を防止した状態の軟磁性複合圧密コアを製造する。
The precursor of the soft magnetic composite compacted core having the above structure has the above-mentioned high density, high strength, high specific resistance and high magnetic flux density, and should have the characteristics of high frequency and low iron loss. In the state where the soft magnetic metal particles and the binder are inserted and compacted, and then taken out from the mold, the surface resistivity tends to be lowered.
This is because the soft magnetic metal particles constituting the precursor of the soft magnetic composite compacted core are mainly composed of Fe and are a material having a high Fe content, so that the Fe-based soft magnetic metal particles themselves have a large elongation. Therefore, in the portion that rubs against the inner surface of the mold, as a result of the soft magnetic metal particles extending in the surface direction of the mold, particulate soft magnetic metal particles having a uniform particle size as described above are mixed. Even when the compaction is performed at high temperature and high pressure, the soft magnetic metal particles stretched by plastic working are layered in the plane direction of the soft magnetic composite compacted core, resulting in a plastic deformation that magnetically short-circuits the soft magnetic metal particles. Since there is a conductive portion that accompanies, there is a problem that the specific resistance of the surface decreases and eddy current loss increases. In particular, when used as a high-frequency electrical component, eddy current loss is considered to be particularly affected at the surface portion of the core.
Therefore, in the present invention, the precursor of the soft magnetic composite compacted core is subjected to a pickling treatment described below to produce a soft magnetic composite compacted core in a state in which a decrease in specific resistance on the surface is prevented.
図1は酸洗する前の金型取り出し後の軟磁性複合圧密コアの部分断面を示す顕微鏡写真の模式図であるが、表面よりも内側では多数の不定形の軟磁性金属粉末の圧密粒子1が粒界層を介して結合された組織を有するが、表面部分においては、組織が図1の縦方向(表面の面方向)、換言すると、圧密方向に沿って長く伸びるように形成された塑性変形による導通部3を有する組織とされている。
図1に示す圧密粒子1の間の粒界には拡大してみると、(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜とバインダ層が存在し、各圧密粒子1を絶縁分離している。しかし、塑性変形による導通部3にあっては、圧粉粒子が面方向に広く薄く伸ばされるとともに(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜は表面の面方向に平行になるように引き延ばされて配置されている。
この状態では表面部分において比抵抗が低下するので、以下の酸洗処理を行う。
FIG. 1 is a schematic view of a microphotograph showing a partial cross section of a soft magnetic composite compacted core after taking out a mold before pickling. On the inner side of the surface, compacted
When it expands in the grain boundary between the compaction particle |
In this state, since the specific resistance is reduced at the surface portion, the following pickling treatment is performed.
まず、濃度35%程度の濃塩酸を用いて室温にて軟磁性複合圧密コアを酸洗し、軟磁性複合圧密コアの表面の酸化スケールとその下の圧密変形流動域を除去する。
前記構造の軟磁性複合圧密コアにおいて、軟磁性複合圧密コア内部の軟磁性金属粒子の表面部分には(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜が形成されているので、図2に示す軟磁性複合圧密コアの表面部分の顕微鏡写真の模式図の如く酸化スケールと塑性変形による導通部とが除去された後の圧密粒子1が多数結合された組織とすることができ、目的の軟磁性複合圧密コアAを得ることができる。
これにより(Mg,Fe)Oを含むMg−Fe−O三元系酸化膜を有する軟磁性金属粒子をバインダと混合して圧密して個々に軟磁性金属粒子どうしを絶縁分離した組織状態であって、内部側から表面側まで一貫した組織状態の軟磁性複合圧密コアAを得ることができる。この図2に示す組織を有する軟磁性複合圧密コアAであるならば、表面の比抵抗を高くすることができるので、渦電流損失を抑制した高周波特性に優れた軟磁性複合圧密コアを提供することができる。
First, the soft magnetic composite compacted core is pickled at room temperature using concentrated hydrochloric acid having a concentration of about 35% to remove the oxide scale on the surface of the soft magnetic composite compacted core and the compacted deformation flow region below it.
In the soft magnetic composite compacted core having the above structure, a Mg—Fe—O ternary oxide deposited film containing (Mg, Fe) O is formed on the surface portion of the soft magnetic metal particles inside the soft magnetic composite compacted core. Therefore, as shown in the schematic diagram of the micrograph of the surface portion of the soft magnetic composite compacted core shown in FIG. 2, a structure in which a large number of compacted
As a result, the soft magnetic metal particles having the Mg—Fe—O ternary oxide film containing (Mg, Fe) O were mixed with the binder and consolidated, and the soft magnetic metal particles were individually insulated and separated. Thus, it is possible to obtain the soft magnetic composite consolidated core A having a consistent textured state from the inner side to the surface side. If the soft magnetic composite compacted core A having the structure shown in FIG. 2 is used, the specific resistance of the surface can be increased, so that a soft magnetic composite compacted core excellent in high frequency characteristics with suppressed eddy current loss is provided. be able to.
また、Fe系の軟磁性金属粒子1と該軟磁性金属粒子1の表面に被覆したMg含有酸化物被覆膜とを良好な密着性でもって形成することができ、更にMg含有酸化物被覆膜を備えたFe系の軟磁性金属粒子どうしを、それらの粒界に存在するバインダで接合しているので、粒界部分におけるMg含有酸化物被覆膜との密着力も高いものとできるので、高強度な軟磁性複合圧密コアを得ることができる。
しかも、前記Mg含有酸化物被覆膜は圧密成形後もFe系の軟磁性金属粒子の周囲に確実に存在させることができるので高い比抵抗を得ることができ、渦電流損失の低い軟磁性複合圧密コアを得ることができる。
なお、酸洗後の軟磁性複合圧密コアAの表面においては、複数の圧密粒子1においてそれらの粒界部分にはMgO酸化層とバインダの層が存在するが、圧密粒子1の表面に露出している部分の大部分は酸洗によりFeを主体とする圧密粒子1が溶解されて露出した面1aが連続され、隣接する圧密粒子1の境界部分にMgO酸化層とバインダの層からなる境界層1bが露出された面として構成される。なお、軟磁性複合圧密コアAにおいて比抵抗を測定する場合、表面に露出している圧密粒子1はMgO酸化層とバインダの層からなる境界層1bと空気により絶縁分離されるので比抵抗は充分に高い値とされる。
なお、得られた軟磁性複合圧密コアAは別途絶縁容器やケースに封入して使用されたり、樹脂層により覆って実使用に供されるので、具体的な使用形態において圧密粒子1が表面に露出していることに問題はない。
Further, the Fe-based soft
Moreover, since the Mg-containing oxide coating film can be reliably present around the Fe-based soft magnetic metal particles even after the compacting, a high specific resistance can be obtained and a soft magnetic composite with low eddy current loss. A consolidated core can be obtained.
In addition, on the surface of the soft magnetic composite compacted core A after pickling, a plurality of compacted
The obtained soft magnetic composite compacted core A is used separately enclosed in an insulating container or case, or is covered with a resin layer for actual use. There is no problem with exposure.
平均粒径100μmの軟磁性金属粉末(純鉄粉)に対して0.1質量%のMg粉末を配合し、この配合粉末をアルゴンガス雰囲気中、造粒転動攪拌混合装置によって転動することによりMg含有酸化物被覆軟磁性粒子を作製した。なお、この造粒転動攪拌混合装置によって転動する前段階の処理において例えば大気中220℃にて加熱処理を0〜60分間行うことができ、この加熱処理時間に応じて軟磁性金属粒子に生成する酸化膜厚に応じて得られるMgO膜「(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜」の厚さを調整することができる。 A 0.1% by mass Mg powder is blended with a soft magnetic metal powder (pure iron powder) having an average particle size of 100 μm, and this blended powder is rolled by a granulation rolling agitation and mixing device in an argon gas atmosphere. Thus, Mg-containing oxide-coated soft magnetic particles were produced. In addition, in the process of the previous stage which rolls with this granulation rolling stirring and mixing apparatus, for example, heat treatment can be performed at 220 ° C. in the atmosphere for 0 to 60 minutes. The thickness of the MgO film “Mg—Fe—O ternary oxide deposition film containing (Mg, Fe) O” obtained according to the oxide film thickness to be generated can be adjusted.
前記各MgO膜を形成した軟磁性複合金属粒子に対し、シリコーンレジンを0.3質量%混合し、金型にて8t/cm2(784MPa)の成形圧力にて圧密形成して軟磁性複合圧密コアの前駆体試料(サイズ60×10×5mm)を複数製造した。
これらの前駆体試料に対し、35%濃塩酸に室温で浸漬する酸洗い試験を行い、酸洗時間を、0分、1分、2分、3分、5分、10分、15分、20分、25分の各値にセットして酸洗した各前駆体試料の比抵抗を測定した結果を試料1の各試験例として以下の表1に示す。
The soft magnetic composite metal particles formed with each MgO film were mixed with 0.3% by mass of a silicone resin and formed into a compact with a molding pressure of 8 t / cm 2 (784 MPa) using a mold. A plurality of core precursor samples (size 60 × 10 × 5 mm) were produced.
These precursor samples were subjected to a pickling test immersed in 35% concentrated hydrochloric acid at room temperature, and the pickling times were 0 minutes, 1 minute, 2 minutes, 3 minutes, 5 minutes, 10 minutes, 15 minutes, 20 Table 1 below shows the results of measuring the specific resistance of each of the precursor samples pickled and set at respective values of 25 minutes and 25 minutes as test examples of
次に、MgO層の被覆に代えて、先の例と同じ材料の軟磁性金属粉末にリン酸絶縁皮膜を被覆してなる軟磁性複合金属粉末を準備した。
リン酸絶縁皮膜付鉄粉は圧粉磁心用に一般に市販されているものを用いた。ベースの軟磁性金属粉末は、先の例と同じく、平均粒径100μmの純鉄粉であり、皮膜の厚さは100nm程度である。
このリン酸絶縁皮膜付きの軟磁性複合金属粉末に有機系バインダとしてシリコーンレジンを0.3質量%混合し、8t/cm2(784MPa)の成形圧力にて圧密形成して軟磁性複合圧密コアの前駆体(サイズ60×10×5mm)を複数製造した。
これらの前駆体に対し、35%濃塩酸に室温で浸漬する酸洗試験を行い、酸洗時間を、0分、1分、2分、3分、5分、10分、15分、20分、25分の各値に設定して酸洗した各前駆体試料の比抵抗(μΩm)を測定した結果を試料2の各試験例として、以下の表1に示す。
Next, instead of coating the MgO layer, a soft magnetic composite metal powder prepared by coating a soft magnetic metal powder of the same material as the previous example with a phosphoric acid insulating film was prepared.
As the iron powder with a phosphoric acid insulating film, a commercially available powder for a dust core was used. The base soft magnetic metal powder is pure iron powder having an average particle diameter of 100 μm as in the previous example, and the thickness of the film is about 100 nm.
This soft magnetic composite metal powder with a phosphoric acid insulating film was mixed with 0.3% by mass of a silicone resin as an organic binder, and compacted with a molding pressure of 8 t / cm 2 (784 MPa) to form a soft magnetic composite compacted core. A plurality of precursors (size 60 × 10 × 5 mm) were produced.
These precursors were pickled in 35% concentrated hydrochloric acid at room temperature, and pickling times were 0 minutes, 1 minute, 2 minutes, 3 minutes, 5 minutes, 10 minutes, 15 minutes, and 20 minutes. Table 1 below shows the results of measuring the specific resistance (μΩm) of each of the precursor samples pickled by setting each value for 25 minutes.
「表1」
酸洗時間
試料1 0分:比抵抗 2343、 1分:比抵抗 3970、
2分:比抵抗 5530、 3分:比抵抗 7240、
5分:比抵抗 10849、
10分:比抵抗 13070、 15分:比抵抗 12568、
20分:比抵抗 14378、 25分:比抵抗 12896、
試料2 0分:比抵抗 683、 1分:比抵抗 889、
2分:比抵抗 1341、 3分:比抵抗 1946、
5分:比抵抗 2549、
10分:比抵抗 2837、 15分:比抵抗 2089、
20分:比抵抗 1893、 25分:比抵抗 983、
"Table 1"
2 minutes:
5 minutes: specific resistance 10849,
10 minutes:
20 minutes:
2 minutes:
5 minutes: specific resistance 2549,
10 minutes:
20 minutes:
表1に示す結果を図3に示す。表1と図3に示す結果から明らかなように、(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜を有する軟磁性金属粒子を圧密した軟磁性複合圧密コアの各試料1は、同じ酸洗時間で比較すると、試料2に対して遙かに高い比抵抗を示した。
特に、試料2は酸洗しても試料1の酸洗前と同レベルの比抵抗にしかならず、酸洗時間が25分と長くなるにつれて逆に比抵抗が劣化し始めている。これは、試料2の組織構造では酸洗時間が長くなると、絶縁皮膜が破壊され始めることを意味する。また、試料2では酸洗したとしても、比抵抗の向上効果は少ないことが判明した。
こられに対して試料1は、酸洗前の段階で試料2の3倍以上の比抵抗を示す上、酸洗を数分間行うことにより急激に比抵抗が向上し、5分で10000(μΩm)を超え、10分以上の処理では12000(μΩm)を超える優れた比抵抗を示した。
以上の結果から、試料1においては比抵抗値に対する酸洗処理の効果が著しく高いことを確認できた。
The results shown in Table 1 are shown in FIG. As is apparent from the results shown in Table 1 and FIG. 3, each of the soft magnetic composite compacted cores in which the soft magnetic metal particles having the Mg—Fe—O ternary oxide deposited film containing (Mg, Fe) O are compacted.
In particular, even if the
In contrast,
From the above results, it was confirmed that in
図4は表1の試料1において酸洗する前の状態の金属組織断面写真を示し、図5は10分間酸洗した試料の金属組織断面写真を示し、図6は図4に示す金属組織の部分拡大写真、図7は図5に示す金属組織の部分拡大写真を示すが、図4または図6に示す如く表面に酸化スケールが形成され、その内側に塑性変形による導通部が形成されていた状態から、酸洗によりこれらの組織を除去することができ、図4と図6に示す写真から、軟磁性金属粒子が個々に絶縁膜に覆われた状態で表面に存在する軟磁性複合圧密コアとなっていることが明らかである。
4 shows a cross-sectional photograph of the metal structure of the
次に、MgO膜厚を変更した試料による酸洗後の電気比抵抗の変化について試験した。先の軟磁性複合金属粉末を製造する際、前述した造粒転動攪拌混合装置によって転動する前段階の処理において大気中220℃にて加熱処理を0〜60分間行う際、この加熱処理時間に応じて軟磁性金属粒子に生成する酸化膜厚を調整し、この酸化膜厚に応じてMgO膜厚を変更した試料を複数製造し、酸洗前と10分間酸洗した後の電気比抵抗を測定した。その結果を以下の表2と図8に示す。
「表2」
MgO膜厚(nm) 酸洗前比抵抗 酸洗後比抵抗
試料3 30 760 2500
試料4 32 890 3310
試料5 42 1768 6680
試料6 45 2076 9300
試料7 61 2456 14210
試料8 84 3843 13070
試料9 98 3541 14230
試料10 103 3182 16730
試料11 155 4654 14220
Next, a change in electrical specific resistance after pickling using a sample with a changed MgO film thickness was tested. When the previous soft magnetic composite metal powder is produced, when the heat treatment is performed at 220 ° C. in the atmosphere for 0 to 60 minutes in the previous stage of rolling by the granulation rolling stirring and mixing device described above, this heat treatment time The electrical resistivity after adjusting the thickness of the oxide film generated on the soft magnetic metal particles according to the thickness, producing a plurality of samples with the MgO thickness changed according to the thickness of the oxide film, and before pickling and pickling for 10 minutes Was measured. The results are shown in Table 2 below and FIG.
"Table 2"
MgO film thickness (nm) Specific resistance before pickling Specific resistance after pickling
Sample 4 32 890 3310
Sample 6 45 2076 9300
Sample 7 61 2456 14210
Sample 8 84 3843 13070
Sample 9 98 3541 14230
Sample 11 155 4654 14220
また、先の試験に加え、MgO膜厚を変更した試料による成形体密度を測定した結果を以下の表3と図9に示す。
「表3」
MgO膜厚(nm) 成形体密度(Mg/cm3)
試料3 30 7.49
試料4 32 7.51
試料5 42 7.48
試料6 45 7.47
試料7 61 7.45
試料8 84 7.44
試料9 98 7.39
試料10 103 7.4
試料11 155 7.37
試料12 200 7.35
試料13 270 7.08
試料14 400 6.5
Moreover, in addition to the previous test, the result of having measured the compact density by the sample which changed MgO film thickness is shown in the following Table 3 and FIG.
"Table 3"
MgO film thickness (nm) Density of compact (Mg / cm 3 )
Sample 4 32 7.51
Sample 6 45 7.47
Sample 7 61 7.45
Sample 8 84 7.44
Sample 9 98 7.39
Sample 11 155 7.37
Sample 12 200 7.35
Sample 13 270 7.08
Sample 14 400 6.5
先に記載した表2と図8に示す試験結果から見て、MgOの膜厚30〜155nmの範囲において酸洗効果によりいずれの試料も酸洗後の比抵抗が向上していることが明らかとなり、酸洗による効果が明らかになった。なお、MgO膜厚30nm、32nmの試料の酸洗後の比抵抗の上昇割合より、MgO膜厚42nm、45nmの試料の方が酸洗後の比抵抗の上昇割合が大きく、MgO膜厚61nm〜155nmの試料の方が酸洗後の比抵抗の上昇割合がより一層大きくなっている。
これは、MgO膜厚が小さい範囲では、酸洗により表面部分の酸化膜が除去された上にそれよりも内側のMgO膜まで酸洗による影響を受けた結果と推定される。このことから、酸洗後において、より高い比抵抗を得るためには、MgO膜厚42nm以上であることが好ましく、MgO膜厚61nm以上であることがより好ましいと思われる。
次に、表3と図9に示す結果から、30nm〜200nmの範囲でMgO膜厚を大きくした場合、成形体密度として、7.35〜7.51Mg/cm3の範囲の高い密度を得られるが、MgO膜厚270nmにおいて成形体密度が7.08Mg/cm3と低下を始め、MgO膜厚400nmでは形成体密度が6.5Mg/cm3の低い値となる。
このことから成形体密度として7Mg/cm3を超える値を得るためにはMgO膜厚として270nm以下とすることが望ましく、より高い成形体密度を得るためには、MgO膜厚を30nm〜200nmの範囲とすることがより望ましいことが分かる。
From the test results shown in Table 2 and FIG. 8 described above, it is clear that the specific resistance after pickling is improved by the pickling effect in the thickness range of 30 to 155 nm of MgO. The effect of pickling was revealed. In addition, the increase rate of the specific resistance after pickling is larger in the sample with the MgO film thickness of 42 nm and 45 nm than the increase rate of the specific resistance after the pickling in the sample with the MgO film thickness of 30 nm and 32 nm. The rate of increase in the specific resistance after pickling is even greater in the 155 nm sample.
This is presumably because the oxide film on the surface portion was removed by pickling and the inner MgO film was affected by pickling in the range where the MgO film thickness was small. From this, in order to obtain a higher specific resistance after pickling, it is preferable that the MgO film thickness is 42 nm or more, and it is more preferable that the MgO film thickness is 61 nm or more.
Next, from the results shown in Table 3 and FIG. 9, when the MgO film thickness is increased in the range of 30 nm to 200 nm, a high density in the range of 7.35 to 7.51 Mg / cm 3 can be obtained as the compact density. However, when the MgO film thickness is 270 nm, the green body density starts to decrease to 7.08 Mg / cm 3, and when the MgO film thickness is 400 nm, the green body density is a low value of 6.5 Mg / cm 3 .
Accordingly, in order to obtain a value exceeding 7 Mg / cm 3 as the green density, it is desirable that the MgO film thickness be 270 nm or less, and in order to obtain a higher green density, the MgO film thickness is 30 nm to 200 nm. It can be seen that the range is more desirable.
本発明による軟磁性材は、電磁気回路部品として、例えば、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトルコア、トランスコア、チョークコイルコアまたは磁気センサコアなどとしての利用が可能であり、いずれにおいても優れた特性を発揮し得る電磁気回路部品へ適用ができる。
そして、これら電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、これら電気機器の高効率高性能化や小型軽量化ができる。
The soft magnetic material according to the present invention can be used as an electromagnetic circuit component, for example, as a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core, or a magnetic sensor core. In any case, the present invention can be applied to an electromagnetic circuit component that can exhibit excellent characteristics.
Electric devices incorporating these electromagnetic circuit components include motors, generators, solenoids, injectors, electromagnetically driven valves, inverters, converters, transformers, relays, magnetic sensor systems, etc. Performance and small size can be reduced.
1 軟磁性金属粒子、
2 酸化スケール、
3 塑性変形による導通部
1 soft magnetic metal particles,
2 Oxidation scale,
3 Conducting part by plastic deformation
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008000074A JP2009164317A (en) | 2008-01-04 | 2008-01-04 | Method for manufacturing soft magnetism composite consolidated core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008000074A JP2009164317A (en) | 2008-01-04 | 2008-01-04 | Method for manufacturing soft magnetism composite consolidated core |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009164317A true JP2009164317A (en) | 2009-07-23 |
Family
ID=40966599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008000074A Pending JP2009164317A (en) | 2008-01-04 | 2008-01-04 | Method for manufacturing soft magnetism composite consolidated core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009164317A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012120754A1 (en) * | 2011-03-04 | 2012-09-13 | 住友電気工業株式会社 | Green compact, green compact production method, reactor, converter, and power conversion device |
JP2012199568A (en) * | 2011-03-04 | 2012-10-18 | Sumitomo Electric Ind Ltd | Green compact, production method of green compact, reactor, converter, and power converter |
CN102103918B (en) * | 2009-12-18 | 2013-03-20 | 北京有色金属研究总院 | Thin low-frequency wave-absorbing material and preparation method thereof |
JP2013131676A (en) * | 2011-12-22 | 2013-07-04 | Sumitomo Electric Ind Ltd | Green compact, core for reactor, reactor, converter, and electric power conversion system |
JP2018129357A (en) * | 2017-02-07 | 2018-08-16 | 株式会社トーキン | Composite magnetic body, magnetic component, and method of manufacturing composite magnetic body |
CN112735801A (en) * | 2020-12-22 | 2021-04-30 | 横店集团东磁股份有限公司 | Modified nanocrystalline strip and preparation method and application thereof |
US11854726B2 (en) | 2019-03-29 | 2023-12-26 | Taiyo Yuden Co., Ltd. | Magnetic base body containing metal magnetic particles composed mainly of Fe and electronic component including the same |
-
2008
- 2008-01-04 JP JP2008000074A patent/JP2009164317A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102103918B (en) * | 2009-12-18 | 2013-03-20 | 北京有色金属研究总院 | Thin low-frequency wave-absorbing material and preparation method thereof |
WO2012120754A1 (en) * | 2011-03-04 | 2012-09-13 | 住友電気工業株式会社 | Green compact, green compact production method, reactor, converter, and power conversion device |
JP2012199568A (en) * | 2011-03-04 | 2012-10-18 | Sumitomo Electric Ind Ltd | Green compact, production method of green compact, reactor, converter, and power converter |
JP2012199513A (en) * | 2011-03-04 | 2012-10-18 | Sumitomo Electric Ind Ltd | Green compact, production method of green compact, reactor, converter, and power converter |
KR101834600B1 (en) * | 2011-03-04 | 2018-03-05 | 스미토모덴키고교가부시키가이샤 | Compact, method for producing compact, reactor, converter, and power conversion device |
US9978490B2 (en) | 2011-03-04 | 2018-05-22 | Sumitomo Electric Industries, Ltd. | Compact, method for producing compact |
JP2013131676A (en) * | 2011-12-22 | 2013-07-04 | Sumitomo Electric Ind Ltd | Green compact, core for reactor, reactor, converter, and electric power conversion system |
JP2018129357A (en) * | 2017-02-07 | 2018-08-16 | 株式会社トーキン | Composite magnetic body, magnetic component, and method of manufacturing composite magnetic body |
US11854726B2 (en) | 2019-03-29 | 2023-12-26 | Taiyo Yuden Co., Ltd. | Magnetic base body containing metal magnetic particles composed mainly of Fe and electronic component including the same |
CN112735801A (en) * | 2020-12-22 | 2021-04-30 | 横店集团东磁股份有限公司 | Modified nanocrystalline strip and preparation method and application thereof |
CN112735801B (en) * | 2020-12-22 | 2022-05-13 | 横店集团东磁股份有限公司 | Modified nanocrystalline strip and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4782058B2 (en) | Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material | |
US8409371B2 (en) | Method for producing soft magnetic metal powder coated with Mg-containing oxide film | |
JP2009117651A (en) | High-strength soft-magnetic composite material obtained by compaction/burning, and method of manufacturing the same | |
JP6071211B2 (en) | Low magnetostrictive high magnetic flux density composite soft magnetic material and its manufacturing method | |
JP4903101B2 (en) | High specific resistance and low loss composite soft magnetic material and manufacturing method thereof | |
EP2248617A2 (en) | Iron powder coated with Mg-containing oxide film | |
JPH05109520A (en) | Composite soft magnetic material | |
JP5049845B2 (en) | High-strength, high-resistivity, low-loss composite soft magnetic material, manufacturing method thereof, and electromagnetic circuit component | |
JP2009164317A (en) | Method for manufacturing soft magnetism composite consolidated core | |
JP2004297036A (en) | Method of manufacturing iron soft magnetic powder coated with spinel ferrite film containing zinc and soft magnetic sintered composite material produced by this method | |
JP4863628B2 (en) | Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder | |
JP4480015B2 (en) | Laminated oxide film coated iron powder | |
JP2009141346A (en) | High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component | |
JP4883755B2 (en) | Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment | |
JP2005303006A (en) | Method of manufacturing dust core and dust core | |
JP2011216571A (en) | High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part | |
CN110462764B (en) | Powder magnetic core with terminal and method for manufacturing the same | |
JP6556780B2 (en) | Powder magnetic core, powder for magnetic core, and production method thereof | |
JP6563348B2 (en) | Soft magnetic powder, soft magnetic body molded with soft magnetic powder, and soft magnetic powder and method for producing soft magnetic body | |
JP4761835B2 (en) | Mg-containing iron oxide coated iron powder | |
JP2022168543A (en) | Magnetic metal/ferrite composite and method of producing the same | |
WO2007052772A1 (en) | Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME | |
JP2008297622A (en) | Soft magnetic material, dust core, method for manufacturing soft magnetic material and method for manufacturing dust core | |
JP2002075721A (en) | Dust core | |
JP4761836B2 (en) | Mg-containing iron oxide coated iron powder |