JP4903101B2 - High specific resistance and low loss composite soft magnetic material and manufacturing method thereof - Google Patents

High specific resistance and low loss composite soft magnetic material and manufacturing method thereof Download PDF

Info

Publication number
JP4903101B2
JP4903101B2 JP2007228219A JP2007228219A JP4903101B2 JP 4903101 B2 JP4903101 B2 JP 4903101B2 JP 2007228219 A JP2007228219 A JP 2007228219A JP 2007228219 A JP2007228219 A JP 2007228219A JP 4903101 B2 JP4903101 B2 JP 4903101B2
Authority
JP
Japan
Prior art keywords
soft magnetic
containing oxide
low
magnetic material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007228219A
Other languages
Japanese (ja)
Other versions
JP2009060050A (en
Inventor
宗明 渡辺
学司 魚住
和則 五十嵐
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Diamet Corp
Original Assignee
Mitsubishi Materials Corp
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Diamet Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007228219A priority Critical patent/JP4903101B2/en
Publication of JP2009060050A publication Critical patent/JP2009060050A/en
Application granted granted Critical
Publication of JP4903101B2 publication Critical patent/JP4903101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、モータ、アクチュエータ、リアクトル、トランス、チョークコア、磁気センサコアなどの各種電磁気回路部品の素材として使用される高比抵抗低損失複合軟磁性材とその製造方法に関する。   The present invention relates to a high specific resistance and low loss composite soft magnetic material used as a material for various electromagnetic circuit components such as a motor, an actuator, a reactor, a transformer, a choke core, and a magnetic sensor core, and a method for manufacturing the same.

従来、モータ、アクチュエータ、磁気センサなどの磁心用材料として、鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末( 以下、これらを軟磁性金属粒子と総称する)を焼結して得られた軟磁性焼結材が知られている。この種の軟磁性焼結材にあっては、磁束密度が高い反面、比抵抗が低いために、高周波特性が悪いという問題がある。そこで比抵抗を高めて高周波特性を向上させるために、軟磁性金属粒子を水ガラスまたは低融点ガラスにより結合した圧粉軟磁性材料などが提案されている(特許文献1または特許文献2参照)。   Conventionally, as magnetic core materials for motors, actuators, magnetic sensors, etc., iron powder, Fe-Al iron-based soft magnetic alloy powder, Fe-Ni iron-based soft magnetic alloy powder, Fe-Cr iron-based soft magnetic alloy powder Soft magnetic sintered material obtained by sintering Fe-Si based iron-based soft magnetic alloy powder, Fe-Si-Al based iron-based soft magnetic alloy powder (hereinafter collectively referred to as soft magnetic metal particles) It has been known. This type of soft magnetic sintered material has a high magnetic flux density but a low specific resistance, which has a problem of poor high frequency characteristics. Therefore, in order to increase the specific resistance and improve the high frequency characteristics, a dust soft magnetic material in which soft magnetic metal particles are bonded with water glass or low-melting glass has been proposed (see Patent Document 1 or Patent Document 2).

しかし、前記軟磁性金属粒子を水ガラスまたは低融点ガラスで結合した複合軟磁性焼結材は、軟磁性金属粒子と水ガラスまたは低融点ガラスとは密着性が悪いために、軟磁性金属粒子を水ガラスまたは低融点ガラスで結合して強度を確保しようとすると、水ガラスまたは低融点ガラスの中に軟磁性金属粒子が分散する程度に大量の水ガラスまたは低融点ガラスと混合しなければならず、このように水ガラスまたは低融点ガラスを大量に使用して得られた圧粉軟磁性材料の比抵抗は大きくなるものの磁束密度が極端に低下し、モータ、アクチュエータ、磁気センサの磁心など各種電子部品の材料として使用することができない問題があった。   However, the composite soft magnetic sintered material obtained by bonding the soft magnetic metal particles with water glass or low melting glass has poor adhesion between the soft magnetic metal particles and water glass or low melting glass. In order to secure strength by bonding with water glass or low melting glass, it must be mixed with a large amount of water glass or low melting glass to such an extent that soft magnetic metal particles are dispersed in water glass or low melting glass. The powder soft magnetic material obtained by using a large amount of water glass or low-melting glass in this way has a large specific resistance, but the magnetic flux density is extremely reduced, and various electronic devices such as motors, actuators, magnetic sensor magnetic cores, etc. There was a problem that it could not be used as a material for parts.

そこで、高磁束密度と高比抵抗の両立を図る目的において、軟磁性金属粒子相とこれを包囲する粒界相からなり、前記粒界相が六方晶構造を有するZnO型相、立方晶構造を有するFeとZnの混合酸化物相およびガラス相とからなり、前記六方晶構造を有するZnO型相が前記軟磁性金属粒子相に接して分散されており、前記ガラス相が前記立方晶構造を有するFeとZnの混合酸化物相が前記ZnO型相に接して分散されており、前記ガラス相が前記立方晶構造を有するFeとZnの混合酸化物相に接して挟まれて分散されている組織を有する複合軟磁性焼結材が提供されている。(特許文献3参照)
一方、化学メッキなどの化学的な方法あるいは塗布法などによりMg含有フェライト膜を被覆したMg含有酸化鉄被覆鉄粉末を低融点ガラス粉末とともに混合してから圧密形成し、熱処理して圧粉磁性材を製造する方法も知られている。(特許文献4参照)
特開平5−258934号公報 特開昭63−158810号公報 特開2004−253787号公報 特開2004−297036号公報
Therefore, for the purpose of achieving both high magnetic flux density and high specific resistance, a soft magnetic metal particle phase and a grain boundary phase surrounding the soft magnetic metal particle phase, the grain boundary phase has a hexagonal crystal structure, a ZnO type phase and a cubic crystal structure. A ZnO type phase having the hexagonal crystal structure is dispersed in contact with the soft magnetic metal particle phase, and the glass phase has the cubic crystal structure. A structure in which a mixed oxide phase of Fe and Zn is dispersed in contact with the ZnO-type phase, and the glass phase is sandwiched and dispersed in contact with the mixed oxide phase of Fe and Zn having the cubic structure A composite soft magnetic sintered material having the following is provided. (See Patent Document 3)
On the other hand, Mg-containing iron oxide coated iron powder coated with Mg-containing ferrite film by chemical method such as chemical plating or coating method is mixed with low melting point glass powder, then compacted, heat treated and powdered magnetic material A method of manufacturing is also known. (See Patent Document 4)
JP-A-5-258934 JP 63-158810 A JP 2004-253787 A JP 2004-297036 A

前記特許文献3に記載されている複合軟磁性焼結材によれば、FeとZnの混合酸化物相が600℃を越える温度で加熱すると分解してしまう問題がある。しかし、この分解が生じない程度の温度での焼成、例えば、600℃での焼成では特許文献3に記載されているガラス粉末は溶融しないために、軟磁性金属粒子相同士の結着性を高めることが難しく、高強度の軟磁性複合圧密焼成材を得ることが難しかった。
また、ガラス粉末を酸化亜鉛被覆軟磁性金属粒子に添加混合して成形すると、ガラス粉末−酸化亜鉛被膜(絶縁層)の摩擦が発生し、酸化亜鉛被膜が損傷しやすいために、高比抵抗の軟磁性複合圧密焼成材を得ることが難しかった。
According to the composite soft magnetic sintered material described in Patent Document 3, there is a problem that the mixed oxide phase of Fe and Zn is decomposed when heated at a temperature exceeding 600 ° C. However, since the glass powder described in Patent Document 3 is not melted by firing at a temperature at which this decomposition does not occur, for example, firing at 600 ° C., the binding property between the soft magnetic metal particle phases is increased. It was difficult to obtain a high strength soft magnetic composite compacted fired material.
In addition, when glass powder is added to zinc oxide-coated soft magnetic metal particles and molded, friction between the glass powder and zinc oxide coating (insulating layer) occurs, and the zinc oxide coating is easily damaged. It was difficult to obtain a soft magnetic composite compacted fired material.

一方、Mg含有酸化鉄被覆鉄粉末を圧密焼成してなる軟磁性複合圧密焼成材では、軟磁性金属粒子の表面にMg含有フェライト膜を化学的方法によって被覆しているために、フェライト膜が不安定となり変化して絶縁性が低下するとともに、軟磁性金属粒子の表面に対するMg含有フェライト膜の密着性が充分ではなくなり、Mg含有酸化鉄膜被覆粉末を低融点ガラスとプレス成形した後に焼成しても、充分な強度の軟磁性複合圧密焼成材を提供することができなくなるおそれがあった。   On the other hand, in the soft magnetic composite compacted calcined material obtained by compacting the Mg-containing iron oxide-coated iron powder, the ferrite film is not formed because the surface of the soft magnetic metal particles is coated with the Mg-containing ferrite film by a chemical method. It becomes stable and changes in insulation, and the adhesion of the Mg-containing ferrite film to the surface of the soft magnetic metal particles is not sufficient, and the Mg-containing iron oxide film-coated powder is fired after being press-molded with a low-melting glass. However, there is a possibility that a soft magnetic composite compacted fired material having sufficient strength cannot be provided.

本発明は前記の問題に鑑みて創案されたものであり、その目的は、600℃以上、例えば、7000℃での焼成を可能とする耐熱性に優れるMgO皮膜を備えた構造とすることで、前記温度にて歪取り焼鈍により低保磁力を図りつつ、軟磁性金属粒子同士を結合する界面をシリコーンレジン、低融点ガラスまたは金属酸化物成分とMg含有酸化物被覆層との高比抵抗を有するMg−Fe−バインダー成分−Oの成分系のウスタイト化合物層を形成し、優れた低鉄損および機械強度を有する高比抵抗低損失複合軟磁性材とその製造方法の提供を目的とする。   The present invention was devised in view of the above problems, and its purpose is to provide a structure with an excellent MgO film that can be fired at 600 ° C. or higher, for example, 7000 ° C. While maintaining low coercive force by strain relief annealing at the above temperature, the interface connecting soft magnetic metal particles has high specific resistance between the silicone resin, low melting point glass or metal oxide component and Mg-containing oxide coating layer. An object of the present invention is to provide a high specific resistance, low loss composite soft magnetic material having an excellent low iron loss and mechanical strength by forming a component wustite compound layer of Mg-Fe-binder component-O and a method for producing the same.

本発明者らは、Fe系の軟磁性焼結材の研究を行い、圧密成形時においても絶縁被膜が破壊される虞が少ない技術の一例として、Mg含有酸化物被覆型の軟磁性粉末を提供している。
即ち、Fe系の軟磁性粉末を予め酸化雰囲気中で加熱することにより軟磁性粉末の表面に酸化鉄の膜を形成した酸化処理軟磁性粉末を作製し、この酸化処理軟磁性粉末にMg粉末を添加し、造粒転動攪拌混合装置で混合して得られた混合粉末を不活性ガス雰囲気または真空雰囲気中において加熱するなどしたのち、更に、必要に応じて酸化性雰囲気中で加熱する酸化処理を施す技術により得られる軟磁性粉末である。この技術によれば、一般に知られているMgO−FeO−Fe系の中で代表される(Mg,Fe)O、(Mg,Fe)などのMg−Fe−O三元系各種酸化物のうちで、少なくとも(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜が軟磁性粉末粒子の表面に形成されたものを得ることができる。
The present inventors conducted research on Fe-based soft magnetic sintered materials and provided Mg-containing oxide-coated soft magnetic powder as an example of a technique that is less likely to break the insulating coating even during compaction molding. is doing.
That is, by heating an Fe-based soft magnetic powder in an oxidizing atmosphere in advance, an oxidized soft magnetic powder in which an iron oxide film is formed on the surface of the soft magnetic powder is produced, and Mg powder is added to the oxidized soft magnetic powder. Addition and heating the mixed powder obtained by mixing with a granulation rolling agitation and mixing device in an inert gas atmosphere or vacuum atmosphere, and further heating in an oxidizing atmosphere as necessary It is a soft magnetic powder obtained by the technology of applying. According to this technique, Mg—Fe—O ternary elements such as (Mg, Fe) O and (Mg, Fe) 3 O 4 represented by the generally known MgO—FeO—Fe 2 O 3 system. Among various oxides of the series, it is possible to obtain an Mg—Fe—O ternary oxide deposited film containing at least (Mg, Fe) O formed on the surface of the soft magnetic powder particles.

この少なくとも(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜をFe系の軟磁性粉末の表面に形成したMg含有酸化物被覆軟磁性粉末にあっては、Fe系の軟磁性粉末に対する酸化膜の密着性が従来材料に比べて格段に優れていることから、圧密成形時に絶縁皮膜である酸化膜が破壊されることが少なく、酸化膜がFe系の軟磁性粉末同士の間に確実に存在するので、圧密成形後に高温歪取り焼成を行っても酸化膜の絶縁性が低下することがなく、高比抵抗を維持できるので、渦電流損失が低くなり、更に歪取り焼成後に保磁力を低減できることから、ヒステリシス損失を低く抑えることができ、従って低損失の軟磁性複合圧密焼成材を得ることができる技術であった。
本発明者らはこの技術に着目し、前述のMg含有酸化物被覆軟磁性粉末を圧密成形して得られる圧密材を研究したところ、本願発明に到達した。
In the Mg-containing oxide-coated soft magnetic powder in which the Mg—Fe—O ternary oxide deposited film containing at least (Mg, Fe) O is formed on the surface of the Fe-based soft magnetic powder, Since the adhesion of the oxide film to the soft magnetic powder is much better than the conventional material, the oxide film that is an insulating film is less likely to be destroyed during compaction molding, and the oxide film is composed of Fe-based soft magnetic powders. Therefore, even if high temperature strain relief firing is performed after compaction molding, the insulating properties of the oxide film are not lowered, and a high specific resistance can be maintained, resulting in low eddy current loss and further strain relief. Since the coercive force can be reduced after firing, the hysteresis loss can be kept low, and thus a low-loss soft magnetic composite compacted fired material can be obtained.
The inventors of the present invention paid attention to this technique and studied a compacting material obtained by compacting the above-mentioned Mg-containing oxide-coated soft magnetic powder, and reached the present invention.

(1)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材は、Fe系の軟磁性金属粒子と該軟磁性金属粒子の表面に被覆された膜厚20〜200nmのMg含有酸化物皮膜を具備してなり、800〜1000℃の非酸化性雰囲気における熱処理がなされたMg含有酸化物被覆軟磁性粒子が、シリコン化合物とMg含有酸化物皮膜、低融点ガラスとMg含有酸化物皮膜、または、金属酸化物とMg含有酸化物皮膜のいずれかバインダーとの複合化合物からなる粒界層であって、前記バインダーと前記Mg含有酸化物被覆軟磁性粒子との圧密焼成により前記軟磁性金属粒子から拡散されたFeを有するウスタイト相を含む粒界層を介し複数結合されていることを特徴とする。
(2)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材は、前記(1)に記載の粒界層が、2θ法によるX線回折ピークにおいて、36度近傍位置と42度近傍位置にピークを有するウスタイト相を有し、Feを10〜20at%分散させた粒界層であることを特徴とする。
(3)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材は、前記バインダーが、シリコーンレジン、低融点ガラス、金属酸化物のいずれかであり、前記焼成により前記粒界層を少なくともシリコン化合物とMg含有酸化物とFeからなる化合物、低融点ガラスとMg含有酸化物とFeからなる化合物、金属酸化物とMg含有酸化物とFeからなる化合物のいずれかにウスタイト相が含まれた粒界層とされたことを特徴とする。
(1) In order to achieve the above object, the high specific resistance and low loss composite soft magnetic material of the present invention comprises an Fe-based soft magnetic metal particle and a Mg film having a thickness of 20 to 200 nm coated on the surface of the soft magnetic metal particle. Mg-containing oxide-coated soft magnetic particles comprising an oxide-containing oxide film and heat-treated in a non-oxidizing atmosphere at 800 to 1000 ° C. are composed of a silicon compound, an Mg-containing oxide film, a low-melting glass, and an Mg-containing oxide. object film, or a grain boundary layer of a composite compound of any binder for the metal oxide and the Mg-containing oxide film, the soft by compaction firing of the said binder Mg-containing oxide-coated soft-magnetic particles A plurality of bonds are formed through a grain boundary layer including a wustite phase having Fe diffused from magnetic metal particles .
(2) In order to achieve the above object, the high resistivity low loss composite soft magnetic material of the present invention is such that the grain boundary layer described in (1) has a position near 36 degrees in the X-ray diffraction peak by the 2θ method. It is a grain boundary layer having a wustite phase having a peak at a position near 42 degrees and in which Fe is dispersed in an amount of 10 to 20 at% .
(3) In order to achieve the above object, in the high specific resistance, low loss composite soft magnetic material of the present invention, the binder is any one of a silicone resin, a low melting glass, and a metal oxide, and the grain boundary is formed by the firing. The layer includes at least a compound comprising a silicon compound, an Mg-containing oxide and Fe, a low melting glass, a compound comprising an Mg-containing oxide and Fe, or a compound comprising a metal oxide, an Mg-containing oxide and Fe, and a wustite phase. The grain boundary layer is included .

(4)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材は、前記Fe系の軟磁性金属粒子が、Feに、Si、Al、Ni、Cr、Vのうち少なくとも1種以上を添加してなることを特徴とする。
(5)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材は、前記シリコン化合物がSi−O−C化合物であることを特徴とする。
(6)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材は、前記低融点ガラスがBi −B 、SnO−P 、SiO −B −ZnO、SiO −B −R O(Rはアルカリ土類金属)、Li O−ZnOのいずれかであることを特徴とする。
(7)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材は、前記金属酸化物がV 、Al 、B 、Sb 、MoO のいずれかであることを特徴とする。
(8)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材は、前記非酸化性雰囲気が、真空雰囲気、アルゴンガス雰囲気、水素雰囲気のいずれかであることを特徴とする。
(4) In order to achieve the above object, in the high specific resistance, low loss composite soft magnetic material of the present invention, the Fe-based soft magnetic metal particles are Fe, and at least one of Si, Al, Ni, Cr, and V. It is characterized by adding more than seeds .
(5) In order to achieve the above object, the high resistivity and low loss composite soft magnetic material of the present invention is characterized in that the silicon compound is a Si—O—C compound .
(6) In order to achieve the above object, in the high resistivity low loss composite soft magnetic material of the present invention, the low melting point glass is Bi 2 O 3 —B 2 O 3 , SnO—P 2 O 5 , SiO 2 —B. 2 O 3 —ZnO, SiO 2 —B 2 O 3 —R 2 O (R is an alkaline earth metal), or Li 2 O—ZnO.
(7) In order to achieve the above object, the high resistivity low loss composite soft magnetic material of the present invention is such that the metal oxide is V 2 O 5 , Al 2 O 3 , B 2 O 3 , Sb 2 O 3 , MoO. It is any one of 2 .
(8) In order to achieve the above object, the high resistivity low loss composite soft magnetic material of the present invention is characterized in that the non-oxidizing atmosphere is any one of a vacuum atmosphere, an argon gas atmosphere, and a hydrogen atmosphere. .

(9)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材の製造方法は、Fe系の軟磁性金属粒子と該軟磁性金属粒子の表面に被覆された膜厚20〜200nmのMg含有酸化物皮膜を具備してなるMg含有酸化物被覆軟磁性粒子を水素雰囲気、真空雰囲気、アルゴン雰囲気のうち、いずれかの非酸化性雰囲気において800〜1100℃で加熱処理した後、加熱処理済みのMg含有酸化物被覆軟磁性粒子に、シリコーンレジン、低融点ガラス、金属酸化物のうち、少なくとも1種をバインダーとして混合して圧密し、真空雰囲気、アルゴン雰囲気、大気中、窒素雰囲気、水素雰囲気のいずれかの雰囲気において焼成することにより、前記バインダーの成分と前記Mg含有酸化物皮膜の成分と前記軟磁性金属粒子から拡散させたFeとの複合化合物からなり、ウスタイト相を有する粒界層を介して前記Mg含有酸化物被覆軟磁性粒子を複数結合してなる焼成体とすることを特徴とする。 (9) In order to achieve the above object, the method for producing a high resistivity and low loss composite soft magnetic material of the present invention comprises Fe-based soft magnetic metal particles and a film thickness of 20 to 20 coated on the surface of the soft magnetic metal particles. After heat-treating Mg-containing oxide-coated soft magnetic particles comprising a 200-nm Mg-containing oxide film at 800 to 1100 ° C. in any non-oxidizing atmosphere of hydrogen atmosphere, vacuum atmosphere, and argon atmosphere, Heat-treated Mg-containing oxide-coated soft magnetic particles are mixed and consolidated by mixing at least one of silicone resin, low melting point glass, and metal oxide as a binder, vacuum atmosphere, argon atmosphere, air, nitrogen atmosphere And diffusing from the component of the binder, the component of the Mg-containing oxide film, and the soft magnetic metal particles by firing in any one of hydrogen atmospheres made of a composite compound with e, characterized by a plurality formed by bonding sintered body the Mg-containing oxide-coated soft-magnetic particles through the grain boundary layer having a wustite phase.

(10)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材の製造方法は、前記粒界層として、2θ法によるX線回折ピークにおいて、36度近傍位置と42度近傍位置にピークを有するウスタイト相を有し、Feを10〜20at%分散させた粒界層とすることを特徴とする。
(11)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材の製造方法は、前記バインダーを、シリコーンレジン、低融点ガラス、金属酸化物のいずれかを主体としたものとし、前記焼成により前記粒界層を少なくともシリコン化合物とMg含有酸化物とFeからなる化合物、低融点ガラスとMg含有酸化物とFeからなる化合物、金属酸化物とMg含有酸化物とFeからなる化合物のいずれかにウスタイト相が含まれたことを特徴とする。
(12)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材の製造方法は、前記バインダーをSi−O−C化合物とすることを特徴とする。
(10) In order to achieve the above object, the method for producing a high specific resistance, low loss composite soft magnetic material of the present invention uses a position near 36 degrees and 42 degrees in the X-ray diffraction peak by the 2θ method as the grain boundary layer. A grain boundary layer having a wustite phase having a peak at a position and Fe dispersed in an amount of 10 to 20 at% is characterized.
(11) In order to achieve the above object, in the method for producing a high specific resistance, low loss composite soft magnetic material of the present invention, the binder is mainly composed of any one of a silicone resin, a low melting glass, and a metal oxide. , The grain boundary layer by the firing is a compound comprising at least a silicon compound, an Mg-containing oxide and Fe, a low melting point glass, a compound comprising an Mg-containing oxide and Fe, a compound comprising a metal oxide, an Mg-containing oxide and Fe One of these is characterized by containing a wustite phase .
(12) In order to achieve the above object, the method for producing a high resistivity and low loss composite soft magnetic material of the present invention is characterized in that the binder is a Si-O-C compound .

(13)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材の製造方法は、前記低融点ガラスをBi −B 、SnO−P 、SiO −B −ZnO、SiO −B −R O(Rはアルカリ土類金属)、Li O−ZnOのいずれかとすることを特徴とする。
(14)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材の製造方法は、前記金属酸化物をV 、Al 、B 、Sb 、MoO のいずれかとすることを特徴とする。
(15)上記目的を達成するために本発明の高比抵抗低損失複合軟磁性材の製造方法は、前記Fe系の軟磁性金属粒子として、Feに、Si、Al、Ni、Cr、Vのうち少なくとも1種以上を添加してなるものを用いることを特徴とする。

(13) In order to achieve the above object, in the method for producing a high specific resistance, low loss composite soft magnetic material of the present invention, the low melting point glass is made of Bi 2 O 3 —B 2 O 3 , SnO—P 2 O 5 , SiO 2. It is characterized by being any one of 2- B 2 O 3 —ZnO, SiO 2 —B 2 O 3 —R 2 O (R is an alkaline earth metal), and Li 2 O—ZnO .
(14) In order to achieve the above object, in the method for producing a high specific resistance, low loss composite soft magnetic material of the present invention, the metal oxide is changed to V 2 O 5 , Al 2 O 3 , B 2 O 3 , Sb 2 O. 3, characterized by either of MoO 2.
(15) In order to achieve the above object, the high resistivity and low loss composite soft magnetic material manufacturing method of the present invention includes Fe, Si, Al, Ni, Cr, and V as Fe-based soft magnetic metal particles. Among them, a material obtained by adding at least one kind is used .

本発明の製造方法においては、Fe系の軟磁性金属粒子と該軟磁性金属粒子の表面に被覆したMg含有酸化物被覆膜とを良好な密着性でもって形成することができ、更にMg含有酸化物被覆膜を備えたFe系の軟磁性金属粒子どうしを、それらの粒界層に存在する前記の如く混合したバインダーとしてのシリコン化合物、低融点ガラス、金属酸化物のいずれかとMg含有酸化物被覆膜の元素の拡散成長してなる複合化合物粒界層で接合し、しかも接合部分の粒界にも鉄を分散成長させているので、高比抵抗かつ低鉄損の高比抵抗低損失複合軟磁性材を得ることができる。
しかも、前記Mg含有酸化物被覆膜は圧密成形後もFe系の軟磁性金属粒子の周囲に確実に存在させることができるので高い比抵抗を得ることができ、渦電流損失の低い高比抵抗低損失複合軟磁性材を得ることができる。
更に、Mg含有酸化物皮膜を有したMg含有酸化物被覆軟磁性粒子を非酸化性雰囲気において800〜1100℃で加熱処理することで、簡単には固着し難いMg含有酸化物皮膜どうしがバインダーの成分を含んだウスタイト相となって固着する。
In the production method of the present invention, Fe-based soft magnetic metal particles and an Mg-containing oxide coating film coated on the surface of the soft magnetic metal particles can be formed with good adhesion, and further Mg-containing Fe-based soft magnetic metal particles provided with an oxide coating film are mixed in the grain boundary layer as described above as a binder, silicon compound, low melting point glass, metal oxide and Mg-containing oxidation Bonding is performed at the composite compound grain boundary layer formed by diffusion growth of the elements of the material coating film, and iron is also distributed and grown at the grain boundary of the joint part, so that the high specific resistance and the low specific resistance are low. A lossy composite soft magnetic material can be obtained.
Moreover, the Mg-containing oxide coating film can be reliably present around the Fe-based soft magnetic metal particles even after the compacting, so that a high specific resistance can be obtained and a high specific resistance with low eddy current loss. A low-loss composite soft magnetic material can be obtained.
Furthermore, the Mg-containing oxide-coated soft magnetic particles having the Mg-containing oxide film are heat-treated at 800 to 1100 ° C. in a non-oxidizing atmosphere, so that the Mg-containing oxide films that are not easily fixed can be bonded to each other. It adheres as a wustite phase containing ingredients.

本発明の製造方法により得られた高比抵抗低損失複合軟磁性材は、高密度、高比抵抗および高磁束密度を有するので、本発明の軟磁性複合圧密焼成材は、高磁束密度、かつ、高周波低鉄損の特徴を兼ね備えた優れたものであり、これらの特徴を生かした各種電磁気回路部品の材料として使用できる。   Since the high specific resistance and low loss composite soft magnetic material obtained by the manufacturing method of the present invention has high density, high specific resistance and high magnetic flux density, the soft magnetic composite compacted fired material of the present invention has high magnetic flux density and It is excellent because it has the characteristics of high-frequency and low iron loss, and can be used as a material for various electromagnetic circuit components that make use of these characteristics.

前記電磁気回路部品として、例えば、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトルコア、トランスコア、チョークコイルコアまたは磁気センサコアなどとしての利用が可能であり、いずれにおいても優れた特性を発揮し得る電磁気回路部品を提供できる。
そして、これら電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、これら電気機器の高効率高性能化や小型軽量化を行うことができる効果がある。
The electromagnetic circuit component can be used as, for example, a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core, a magnetic sensor core, etc. It is possible to provide an electromagnetic circuit component that can exhibit the above.
Electric devices incorporating these electromagnetic circuit components include motors, generators, solenoids, injectors, electromagnetically driven valves, inverters, converters, transformers, relays, magnetic sensor systems, etc. There is an effect that performance and size and weight can be reduced.

本発明ではまず、(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜が軟磁性金属粒子の表面に被覆形成されたMg含有酸化物被覆軟磁性粒子(粉末)を作製する。
この被覆軟磁性金属粒子を得るためには、以下の各種の原料粉末を用い、後述する(A)〜(D)に記載の方法のいずれかを選択して実施すれば良い。
この発明のMg含有酸化物被覆軟磁性金属粒子の製造方法において使用する原料粉末としてのFe系軟磁性金属粒子は、従来から一般に知られている鉄粉末、絶縁処理鉄粉末、Fe−Al系鉄基軟磁性合金粉末、Fe−Ni系鉄基軟磁性合金粉末、Fe−Cr系鉄基軟磁性合金粉末、Fe−Si系鉄基軟磁性合金粉末、Fe−Si−Al系鉄基軟磁性合金粉末、Fe−Co系鉄基軟磁性合金粉末、Fe−Co−V系鉄基軟磁性合金粉末またはFe−P系鉄基軟磁性合金粉末であることが好ましい。
更に具体的には、鉄粉末は純鉄粉末であり、絶縁処理鉄粉末は、リン酸塩被覆鉄粉末、またはシリカのゾルゲル溶液(シリケート)もしくはアルミナのゾルゲル溶液などの湿式溶液を添加し混合して鉄粉末表面に被覆したのち乾燥して焼成した酸化ケイ素もしくは酸化アルミニウム被覆鉄粉末であり、Fe−Al系鉄基軟磁性合金粉末はA1:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Al系鉄基軟磁性合金粉末(例えば、Fe−15%Alからなる組成を有するアルパーム粉末)であることが好ましい。
In the present invention, first, Mg-containing oxide-coated soft magnetic particles (powder) in which a Mg—Fe—O ternary oxide deposition film containing (Mg, Fe) O is coated on the surface of soft magnetic metal particles are produced. To do.
In order to obtain the coated soft magnetic metal particles, the following various raw material powders may be used by selecting one of the methods described in (A) to (D) described later.
Fe-based soft magnetic metal particles as a raw material powder used in the method for producing Mg-containing oxide-coated soft magnetic metal particles of the present invention are conventionally known iron powder, insulated iron powder, Fe-Al based iron. -Based soft magnetic alloy powder, Fe-Ni-based iron-based soft magnetic alloy powder, Fe-Cr-based iron-based soft magnetic alloy powder, Fe-Si-based iron-based soft magnetic alloy powder, Fe-Si-Al-based iron-based soft magnetic alloy Preferably, it is a powder, Fe-Co iron-based soft magnetic alloy powder, Fe-Co-V iron-based soft magnetic alloy powder or Fe-P iron-based soft magnetic alloy powder.
More specifically, the iron powder is a pure iron powder, and the insulation-treated iron powder is a phosphate-coated iron powder or a wet solution such as a silica sol-gel solution (silicate) or an alumina sol-gel solution. This is a silicon oxide or aluminum oxide coated iron powder that is coated on the surface of the iron powder and then dried and fired. The Fe—Al-based iron-based soft magnetic alloy powder contains A1: 0.1 to 20%, and the balance is Fe. And an Fe—Al-based iron-based soft magnetic alloy powder (for example, an alpalm powder having a composition of Fe-15% Al) made of inevitable impurities.

また、Fe−Ni系鉄基軟磁性合金粉末はNi:35〜85%を含有し、必要に応じてMo:5%以下、Cu:5%以下、Cr:2%以下、Mn:0.5%以下の内の1種または2種以上を含有し、残部がFeおよび不可避不純物からなるニッケル基軟磁性合金粉末(例えば、Fe−49%Ni粉末)であり、Fe−Cr系鉄基軟磁性合金粉末はCr:1〜20%を含有し、必要に応じてAl:5%以下、Nil5%以下の内の1種または2種を含有し、残部がFeおよび不可避不純物からなるFe−Cr系鉄基軟磁性合金粉末であり、Fe−Si系鉄基軟磁性合金粉末は、Si:0.1〜10%を含有し、残部がFeおよび不可避不純物からなるFe−Si系鉄基軟磁性合金粉末であることが好ましい。
また、Fe−Si−Al系鉄基軟磁性合金粉末は、Si:0.1〜10%、Al:0.1〜20%を含有し、残部がFeおよび不可避不純物からなるFe−Si−Al系鉄基軟磁性合金粉末であり、Fe−C−V系鉄基軟磁性合金粉末は、C:0.1〜52%、V:0.1〜3%を含有し、残部がFeおよび不可避不純物からなるFe−Co−V系鉄基軟磁性合金粉末であり、Fe−C系鉄基軟磁性合金粉末は、C:0.1〜52%を含有し、残部がFeおよび不可避不純物からなるFe−Co系鉄基軟磁性合金粉末であり、Fe−P系鉄基軟磁性合金粉末は、P:0.5〜1%を含有し、残部がFeおよび不可避不純物からなるFe−P系鉄基軟磁性合金粉末(以上、%は質量%を示す)であることが好ましい。
Further, the Fe—Ni-based iron-based soft magnetic alloy powder contains Ni: 35 to 85%, and Mo: 5% or less, Cu: 5% or less, Cr: 2% or less, Mn: 0.5 if necessary. % Nickel-based soft magnetic alloy powder (for example, Fe-49% Ni powder) containing one or two or more of Fe and inevitable impurities, and Fe-Cr-based iron-based soft magnetism The alloy powder contains Cr: 1-20%, and if necessary, contains Al: 5% or less, Nil 5% or less, one or two of them, the balance being Fe-Cr based on Fe and inevitable impurities This is an iron-based soft magnetic alloy powder, and the Fe-Si-based iron-based soft magnetic alloy powder contains Si: 0.1 to 10%, and the balance is Fe-Si-based iron-based soft magnetic alloy composed of Fe and inevitable impurities. A powder is preferred.
The Fe-Si-Al-based iron-based soft magnetic alloy powder contains Si: 0.1 to 10%, Al: 0.1 to 20%, and the balance is Fe-Si-Al composed of Fe and inevitable impurities. Iron-based soft magnetic alloy powder, Fe-CV-based iron-based soft magnetic alloy powder contains C: 0.1-52%, V: 0.1-3%, the balance is Fe and inevitable Fe-Co-V iron-based soft magnetic alloy powder made of impurities, Fe-C iron-based soft magnetic alloy powder contains C: 0.1-52%, the balance consists of Fe and inevitable impurities Fe-Co-based iron-based soft magnetic alloy powder, Fe-P-based iron-based soft magnetic alloy powder contains P: 0.5 to 1%, the balance is Fe-P-based iron consisting of Fe and inevitable impurities It is preferably a base soft magnetic alloy powder (wherein% indicates mass%).

そして、これらFe系の軟磁性金属粒子は平均粒径:5〜500μmの範囲内にある軟磁性金属粒子を使用することが好ましい。その理由は、平均粒径が5μmより小さすぎると、粉末の圧縮性が低下し、軟磁性金属粒子の体積割合が低くなるために磁束密度の値が低下するので好ましくなく、一方、平均粒径が500μmより大きすぎると、軟磁性金属粒子内部の渦電流が増大して高周波における透磁率が低下することによるものである。   These Fe-based soft magnetic metal particles are preferably soft magnetic metal particles having an average particle size in the range of 5 to 500 μm. The reason is that if the average particle size is less than 5 μm, the compressibility of the powder is lowered, and the volume ratio of the soft magnetic metal particles is lowered, so the value of the magnetic flux density is lowered. If it is larger than 500 μm, the eddy current inside the soft magnetic metal particles increases and the magnetic permeability at high frequency decreases.

(A)これらの各種軟磁性金属粒子のいずれかを原料粉末とし、酸化雰囲気中で室温〜500℃に保持する酸化処理を施した後、この原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱し、さらに必要に応じて酸化雰囲気中、温度:50〜400℃で加熱すると、軟磁性金属粒子表面にMgを含む酸化絶縁被膜を有するMg含有酸化物被覆軟磁性粒子(粉末)が得られる。
このMg含有酸化物被覆軟磁性粒子は、従来のMgフェライト膜を形成したMg含有酸化物被覆軟磁性粒子に比べて密着性が格段に優れたものとなり、このMg含有酸化物被覆軟磁性粒子をプレス成形して圧粉体を作製しても絶縁被膜が破壊し剥離することが少なく、また、このMg含有酸化物被覆軟磁性粒子の圧粉体を温度:400〜1300℃で焼成して得られた軟磁性複合圧密焼成材は粒界にMg含有酸化膜が均一に分散し、粒界三重点にMg含有酸化膜が集中して分散することのない組織が得られる。
(A) It is obtained by using any one of these various soft magnetic metal particles as a raw material powder and subjecting it to an oxidation treatment in which it is maintained at room temperature to 500 ° C. in an oxidizing atmosphere, and then adding and mixing Mg powder to this raw material powder. The mixed powder was heated in an inert gas atmosphere or a vacuum atmosphere at a temperature of 150 to 1100 ° C. and a pressure of 1 × 10 −12 to 1 × 10 −1 MPa, and further in an oxidizing atmosphere if necessary, a temperature of 50 When heated at ˜400 ° C., Mg-containing oxide-coated soft magnetic particles (powder) having an oxide insulating film containing Mg on the surface of the soft magnetic metal particles are obtained.
The Mg-containing oxide-coated soft magnetic particles have much better adhesion than the conventional Mg-containing oxide-coated soft magnetic particles formed with an Mg ferrite film. Even if the green compact is produced by press molding, the insulating coating is less likely to break and peel off, and the green compact of the Mg-containing oxide-coated soft magnetic particles is obtained by firing at a temperature of 400 to 1300 ° C. The resulting soft magnetic composite compacted fired material has a structure in which the Mg-containing oxide film is uniformly dispersed at the grain boundaries, and the Mg-containing oxide film is not concentrated and dispersed at the grain boundary triple points.

前述の製造方法の場合、酸化処理した軟磁性金属粒子を原料粉末とし、この原料粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱するには、前記混合粉末を転動させながら加熱することが好ましい。 In the case of the above-mentioned production method, oxidized soft magnetic metal particles are used as raw material powder, and mixed powder obtained by adding and mixing Mg powder to this raw material powder is temperature: 150 to 1100 ° C., pressure: 1 × 10 − In order to heat in an inert gas atmosphere or a vacuum atmosphere of 12 to 1 × 10 −1 MPa, it is preferable to heat the mixed powder while rolling.

(B)前記軟磁性金属粒子を酸化雰囲気中で室温〜500℃に保持することにより軟磁性粉末の表面に酸化物を形成した酸化物被覆軟磁性粉末に一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱し、さらにMg粉末を添加し混合した後または混合しながら真空雰囲気中、温度:400〜800℃保持の条件で加熱すると、軟磁性粉末の表面にMg−Si含有酸化膜が形成されたMg−Si含有酸化物被膜軟磁性粉末が得られ、この方法で作製したMg−Si含有酸化物被膜軟磁性粉末を用いて作製した複合軟磁性焼結材は、従来のSiOを生成する化合物とMgCOまたはMgOの粉末からなる混合物を圧縮成形し焼結して得られた複合軟磁性焼結材よりも密度、抗折強度、比抵抗および磁束密度が優れている。   (B) After adding and mixing the silicon monoxide powder to the oxide-coated soft magnetic powder in which an oxide is formed on the surface of the soft magnetic powder by maintaining the soft magnetic metal particles in an oxidizing atmosphere at room temperature to 500 ° C. Alternatively, heating is performed in a vacuum atmosphere with mixing at a temperature of 600 to 1200 ° C., and further, after adding and mixing Mg powder or heating in a vacuum atmosphere with mixing at a temperature of 400 to 800 ° C. An Mg-Si-containing oxide-coated soft magnetic powder in which an Mg-Si-containing oxide film is formed on the surface of the soft magnetic powder is obtained, and is produced using the Mg-Si-containing oxide-coated soft magnetic powder produced by this method. The composite soft magnetic sintered material is higher in density and bending strength than the composite soft magnetic sintered material obtained by compression molding and sintering a mixture of a compound that generates SiO and MgCO or MgO. Resistivity and magnetic flux density is excellent.

(C)前記軟磁性金属粒子を酸化雰囲気中で室温〜500℃に保持することにより軟磁性金属粒子の表面に鉄の酸化膜を形成した酸化物被覆軟磁性粉末に一酸化ケイ素粉末およびMg粉末を同時に添加し混合した後、または、混合しながら真空雰囲気中、温度:400〜1200℃保持の条件で加熱すると、軟磁性金属粒子の表面にMg−Si含有酸化物膜が形成されたMg−Si含有酸化物被膜軟磁性粉末が得られる。この方法で作製したMg−Si含有酸化物被覆軟磁性粉末を用いて作製した複合軟磁性焼結材は、従来のSiOを生成する化合物とMgCOまたはMgOの粉末からなる混合物を圧縮成形し焼結して得られた複合軟磁性焼結材よりも密度、抗折強度、比抵抗および磁束密度を優れさせることができる。
(D)前記軟磁性金属粒子を酸化雰囲気中で室温〜500℃に保持することにより軟磁性金属粒子の表面に鉄の酸化膜を形成した酸化物被覆軟磁性粉末にMg粉末を添加し混合した後または混合しながら真空雰囲気中、温度:400〜800℃保持の条件で加熱すると軟磁性粉末の表面にMg含有酸化膜が形成されたMg含有酸化物被覆軟磁性粉末が得られる。
このMg含有酸化物被覆軟磁性粉末にさらに一酸化ケイ素粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃保持の条件で加熱するすると、軟磁性粉末の表面にMg−Si含有酸化物膜が形成されたMg−Si含有酸化物被覆軟磁性粉末が得られ、この方法で作製したMg−Si含有酸化物被覆軟磁性粉末を用いて作製した複合軟磁性焼結材であれば、従来のSiOを生成する化合物とMgCOまたはMgOの粉末からなる混合物を圧縮成形し焼結して得られた複合軟磁性焼結材よりも密度、抗折強度、比抵抗および磁束密度が優れさせることができる。
前記一酸化ケイ素粉末の添加量は0.01〜1質量%の範囲内にあることが好ましく、前記Mg粉末の添加量は0.05〜1質量%の範囲内にあることが好ましい。
前記真空雰囲気は、圧力:1×10−12〜1×10−1MPaの真空雰囲気であることが好ましい。
(C) A silicon monoxide powder and an Mg powder in an oxide-coated soft magnetic powder in which an iron oxide film is formed on the surface of the soft magnetic metal particles by maintaining the soft magnetic metal particles in an oxidizing atmosphere at room temperature to 500 ° C. Are added and mixed at the same time, or when mixed and heated in a vacuum atmosphere at a temperature of 400 to 1200 ° C., Mg—Si-containing oxide film is formed on the surface of the soft magnetic metal particles. Si-containing oxide-coated soft magnetic powder is obtained. The composite soft magnetic sintered material produced using the Mg-Si-containing oxide-coated soft magnetic powder produced by this method is a compression molding of a conventional mixture of a compound that generates SiO 2 and MgCO 3 or MgO powder. The density, bending strength, specific resistance, and magnetic flux density can be made superior to the composite soft magnetic sintered material obtained by sintering.
(D) Mg powder was added to and mixed with the oxide-coated soft magnetic powder in which an iron oxide film was formed on the surface of the soft magnetic metal particles by maintaining the soft magnetic metal particles in an oxidizing atmosphere at room temperature to 500 ° C. When heated at a temperature of 400 to 800 ° C. in a vacuum atmosphere after or while mixing, an Mg-containing oxide-coated soft magnetic powder in which an Mg-containing oxide film is formed on the surface of the soft magnetic powder is obtained.
After adding silicon monoxide powder to the Mg-containing oxide-coated soft magnetic powder and mixing it or heating it in a vacuum atmosphere while mixing, the temperature is maintained at 600 to 1200 ° C., and the surface of the soft magnetic powder is coated with Mg. -A composite soft magnetic sintered material produced using an Mg-Si-containing oxide-coated soft magnetic powder obtained by this method, wherein an Mg-Si-containing oxide-coated soft magnetic powder having a Si-containing oxide film formed thereon is obtained If so, the density, bending strength, specific resistance and resistance are higher than those of a composite soft magnetic sintered material obtained by compression molding and sintering a mixture of a compound that generates SiO 2 and MgCO 3 or MgO powder. Magnetic flux density can be improved.
The addition amount of the silicon monoxide powder is preferably in the range of 0.01 to 1% by mass, and the addition amount of the Mg powder is preferably in the range of 0.05 to 1% by mass.
The vacuum atmosphere is preferably a vacuum atmosphere at a pressure of 1 × 10 −12 to 1 × 10 −1 MPa.

前記の製造方法に用いる一酸化ケイ素(SiO)粉末は、酸化ケイ素の内でも最も蒸気圧が高い酸化物であるところから、加熱により軟磁性金属粒子の表面に酸化ケイ素成分を蒸着させ易く、蒸気圧の低い二酸化ケイ素(SiO)粉末を混合して加熱しても軟磁性金属粒子の表面に十分な厚さの酸化ケイ素膜が形成されないおそれがある。酸化物被覆軟磁性粉末に一酸化ケイ素(SiO)粉末を添加し混合した後または混合しながら真空雰囲気中、温度:600〜1200℃に保持することにより軟磁性金属粒子の表面にSiOx(ただし、x;1〜2)膜を形成した酸化ケイ素膜被覆軟磁性粉末が生成し、この酸化ケイ素膜被覆軟磁性粉末にさらにMg粉末を添加し混合しながら真空雰囲気中で加熱すると、Mg−Si−Fe−OからなるMg−Si含有酸化物膜が軟磁性粉末に被覆したMg−Si含有酸化物被覆軟磁性粉末が得られる。 The silicon monoxide (SiO) powder used in the above production method is an oxide having the highest vapor pressure among silicon oxides. Therefore, it is easy to deposit a silicon oxide component on the surface of soft magnetic metal particles by heating. Even if silicon dioxide (SiO 2 ) powder having a low pressure is mixed and heated, a silicon oxide film having a sufficient thickness may not be formed on the surface of the soft magnetic metal particles. After the silicon monoxide (SiO) powder is added to the oxide-coated soft magnetic powder and mixed, or in a vacuum atmosphere with mixing, the temperature is maintained at 600 to 1200 ° C., so that SiOx (however, x: 1-2) A silicon oxide film-coated soft magnetic powder having a film formed thereon was formed, and when Mg powder was further added to the silicon oxide film-coated soft magnetic powder and heated in a vacuum atmosphere while mixing, Mg-Si- An Mg—Si-containing oxide-coated soft magnetic powder in which an Mg—Si-containing oxide film made of Fe—O is coated on a soft magnetic powder is obtained.

前述の酸化物被覆軟磁性粉末は、軟磁性金属粒子を酸化雰囲気中(例えば、大気中)、温度:室温〜500℃に保持することにより軟磁性粉末の表面に鉄酸化膜を形成して作製することができる。そして、この鉄酸化膜はSiOおよび/またはMgの被覆性を向上させる効果がある。酸化物被覆軟磁性粉末を作製する際に酸化雰囲気中で500℃を越えて加熱すると、軟磁性金属粒子が凝集して軟磁性金属粒子の集合体が生成し、焼結したりして均一な表面酸化ができなくなるので好ましくない。したがって、酸化物被覆軟磁性粉末の製造時の加熱温度は室温〜500℃に定めた。一層好ましい範囲は室温〜300℃である。酸化雰囲気は乾燥した酸化雰囲気であることが一層好ましい。   The above oxide-coated soft magnetic powder is produced by forming an iron oxide film on the surface of the soft magnetic powder by maintaining the soft magnetic metal particles in an oxidizing atmosphere (for example, in the air) at a temperature of room temperature to 500 ° C. can do. This iron oxide film has the effect of improving the coverage of SiO and / or Mg. When an oxide-coated soft magnetic powder is produced and heated above 500 ° C. in an oxidizing atmosphere, the soft magnetic metal particles agglomerate to form an aggregate of soft magnetic metal particles, which can be uniformly sintered. It is not preferable because the surface cannot be oxidized. Therefore, the heating temperature during the production of the oxide-coated soft magnetic powder was set to room temperature to 500 ° C. A more preferred range is from room temperature to 300 ° C. More preferably, the oxidizing atmosphere is a dry oxidizing atmosphere.

この発明で用いるMg−Si含有酸化物被覆軟磁性粉末において、酸化物被覆軟磁性粉末に添加するSiO粉末量を0.01〜1質量%に限定したのは、SiO粉末の添加量が0.01質量%未満では酸化物被覆軟磁性粉末の表面に形成される酸化ケイ素膜の厚さが不足するのでMg−Si含有酸化物膜に含まれるSiの量が不足し、したがって、比抵抗の高いMg−Si含有酸化物膜が得られないので好ましくなく、一方、1質量%を越えて添加すると、形成されるSiOx(x;1〜2)酸化ケイ素膜の厚さが厚くなり過ぎて、得られたMg−Si含有酸化物被覆軟磁性金属粒子を圧粉し焼成して得られた軟磁性複合圧密焼成材の密度が低下するようになるおそれがある。   In the Mg—Si-containing oxide-coated soft magnetic powder used in the present invention, the amount of SiO powder added to the oxide-coated soft magnetic powder is limited to 0.01 to 1% by mass. If it is less than 01% by mass, the thickness of the silicon oxide film formed on the surface of the oxide-coated soft magnetic powder is insufficient, so the amount of Si contained in the Mg-Si-containing oxide film is insufficient, and therefore the specific resistance is high. An Mg-Si-containing oxide film cannot be obtained, which is not preferable. On the other hand, if it exceeds 1% by mass, the thickness of the SiOx (x; 1-2) silicon oxide film to be formed becomes too thick. There is a possibility that the density of the soft magnetic composite compacted fired material obtained by compacting and firing the Mg-Si-containing oxide-coated soft magnetic metal particles may be lowered.

また、この発明のMg−Si含有酸化物被覆軟磁性粉末の製造方法において、Mg粉末の添加量を0.05〜1質量%に限定したのは、Mg粉末の添加量が0.05質量%未満では酸化物被覆軟磁性粉末の表面に形成されるMg膜の厚さが不足してMg−Si含有酸化物膜に含まれるMgの量が不足し、従って、十分な厚さのMg−Si酸化物膜が得られないので好ましくなく、一方、1質量%を越えて添加すると、形成されるMg膜の厚さが厚くなり過ぎて、得られたMg−Si含有酸化物被覆軟磁性粉末を圧粉し焼成して得られた軟磁性複合圧密焼成材の密度が低下するようになるので好ましくないからである。   Moreover, in the manufacturing method of Mg-Si containing oxide covering soft magnetic powder of this invention, the addition amount of Mg powder was limited to 0.05-1 mass%, the addition amount of Mg powder was 0.05 mass% Is less than the thickness of the Mg film formed on the surface of the oxide-coated soft magnetic powder, the amount of Mg contained in the Mg-Si-containing oxide film is insufficient. Since an oxide film cannot be obtained, it is not preferable. On the other hand, when it exceeds 1% by mass, the formed Mg film becomes too thick, and the obtained Mg-Si-containing oxide-coated soft magnetic powder is reduced. This is because the density of the soft magnetic composite compacted fired material obtained by compacting and firing becomes undesirably low.

この発明で用いるMg−Si含有酸化物被覆軟磁性粉末の製造方法において、酸化物被覆軟磁性粉末にSiO粉末、Mg粉末またはSiO粉末およびMg粉末の混合粉末を添加し混合する条件を温度600〜1200℃の真空雰囲気としたのは、600℃未満で加熱してもSiOの蒸気圧が小さいために十分な厚さのSiO膜またはMg−Si含有酸化物被膜が得られないためであり、一方、1200℃を越えて混合すると軟磁性粉末が焼結するようになって所望のMg−Si含有酸化物被覆軟磁性粉末が得られないので好ましくないからである。また、その時の加熱雰囲気は圧力:1×10−12〜1×10−1MPaの真空雰囲気中であることが好ましく、更に転動しながら加熱することが一層好ましい。 In the method for producing an Mg-Si-containing oxide-coated soft magnetic powder used in the present invention, the conditions for adding and mixing SiO powder, Mg powder, or a mixed powder of SiO powder and Mg powder to the oxide-coated soft magnetic powder are set at a temperature of 600 to The reason why the vacuum atmosphere is 1200 ° C. is that a SiO film having a sufficient thickness or an Mg—Si-containing oxide film cannot be obtained even when heated below 600 ° C. because the vapor pressure of SiO is small. This is because mixing above 1200 ° C. is not preferable because the soft magnetic powder is sintered and the desired Mg—Si-containing oxide-coated soft magnetic powder cannot be obtained. Further, the heating atmosphere at that time is preferably in a vacuum atmosphere at a pressure of 1 × 10 −12 to 1 × 10 −1 MPa, and more preferably heated while rolling.

酸化物被覆軟磁性粉末を作製するときに使用する軟磁性金属粒子は平均粒径:5〜500μmの範囲内にある軟磁性粉末を使用することが好ましい。その理由は、平均粒径が5μmより小さすぎると、粉末の圧縮性が低下し、軟磁性粉末の体積割合が低くなるために磁束密度の値が低下するので好ましくなく、一方、平均粒径が500μmより大きすぎると、軟磁性粉末内部の渦電流が増大して高周波における透磁率が低下することによるものである。
軟磁性金属粒子の酸化処理は、Mgの被覆性を向上させる効果があり、酸化雰囲気中、温度150〜500℃または蒸留水または純水中、温度:50〜100℃に保持することにより行う。この場合、いずれも50℃未満では効率的でなく、一方、酸化雰囲気中で500℃を越えて保持すると焼結が起るために好ましくないからである。酸化雰囲気は乾燥した酸化雰囲気であることが一層好ましい。
The soft magnetic metal particles used when producing the oxide-coated soft magnetic powder are preferably soft magnetic powders having an average particle size in the range of 5 to 500 μm. The reason is that if the average particle size is less than 5 μm, the compressibility of the powder is lowered, and the volume ratio of the soft magnetic powder is lowered, so the value of the magnetic flux density is lowered. If it is larger than 500 μm, the eddy current inside the soft magnetic powder increases and the magnetic permeability at high frequency decreases.
The oxidation treatment of the soft magnetic metal particles has an effect of improving the coverage of Mg, and is performed by maintaining the temperature at 50 to 100 ° C. in an oxidizing atmosphere at a temperature of 150 to 500 ° C. or distilled water or pure water. In this case, it is not efficient when the temperature is less than 50 ° C., and on the other hand, if the temperature exceeds 500 ° C. in an oxidizing atmosphere, sintering occurs, which is not preferable. More preferably, the oxidizing atmosphere is a dry oxidizing atmosphere.

「堆積膜」という用語は、通常、真空蒸着やスパッタされた皮膜構成原子が例えば基板上に堆積された皮膜を示すが、本発明において用いる堆積膜とは、酸化鉄膜を有するFe系軟磁性粉末の酸化鉄(Fe−O)とMgが反応を伴って当該Fe系軟磁性金属粒子表面に堆積した皮膜を示す。このFe系軟磁性金属粒子の表面に形成されているMg−Fe−O三元系酸化物堆積膜の膜厚は、圧粉成形後に軟磁性複合圧密焼成材の高磁束密度と高比抵抗を得るために、5nm〜500nmの範囲内にあることが好ましい。ここでの膜厚が5nmより薄いと、圧粉成形した軟磁性複合圧密焼成材の比抵抗が充分ではなく、渦電流損失が増加するので好ましくなく、膜厚が500nmを越える厚さでは、圧粉成形した軟磁性複合圧密焼成材の磁束密度が低下するので好ましくない。このような範囲において更に好ましい膜厚は、膜厚20〜200nmの範囲内である。   The term “deposited film” usually indicates a film in which atoms constituting a film deposited by vacuum evaporation or sputtering are deposited on a substrate, for example. The deposited film used in the present invention is an Fe-based soft magnetic film having an iron oxide film. A film in which powdered iron oxide (Fe—O) and Mg are deposited on the surface of the Fe-based soft magnetic metal particles with a reaction is shown. The film thickness of the Mg-Fe-O ternary oxide deposited film formed on the surface of the Fe-based soft magnetic metal particles is such that the high magnetic flux density and high specific resistance of the soft magnetic composite compacted fired material after compacting are reduced. In order to obtain it, it is preferable to exist in the range of 5 nm-500 nm. If the film thickness is less than 5 nm, the specific resistance of the compacted soft magnetic composite compacted fired material is not sufficient, and eddy current loss increases. Since the magnetic flux density of the powder-molded soft magnetic composite compacted fired material is lowered, it is not preferable. In such a range, a more preferable film thickness is in the range of 20 to 200 nm.

前述の方法により作製されたMg含有酸化物被覆軟磁性粒子は、その表面にMg含有酸化膜が形成され、このMg含有酸化膜は酸化ケイ素や酸化アルミニウムと反応して複合酸化物が形成され、軟磁性粉末の粒界に高抵抗を有する複合酸化物が介在した高比抵抗を有する軟磁性複合圧密焼成材が最終的に得られるとともに、酸化ケイ素や酸化アルミニウムを介して焼結されるために機械的強度の優れた軟磁性複合圧密焼成材を製造することができる。この場合、酸化ケイ素や酸化アルミニウムが主体となって焼結されるところから保磁力を小さく保つことができ、したがって、ヒステリシス損の少ない軟磁性複合圧密焼成材を製造することができる、前記焼成は、不活性ガス雰囲気中あるいは非酸化性ガス雰囲気中において、温度:400〜1300℃で行われることが好ましい。   The Mg-containing oxide-coated soft magnetic particles produced by the above-described method have an Mg-containing oxide film formed on the surface thereof, and this Mg-containing oxide film reacts with silicon oxide or aluminum oxide to form a composite oxide. In order to finally obtain a soft magnetic composite compacted fired material having a high specific resistance in which a composite oxide having a high resistance is interposed at the grain boundary of the soft magnetic powder and to be sintered through silicon oxide or aluminum oxide A soft magnetic composite compacted fired material having excellent mechanical strength can be produced. In this case, the coercive force can be kept small from being sintered mainly with silicon oxide or aluminum oxide, and thus a soft magnetic composite compacted fired material with less hysteresis loss can be produced. In an inert gas atmosphere or a non-oxidizing gas atmosphere, the temperature is preferably 400 to 1300 ° C.

「軟磁性複合圧密焼成材の製造方法」
以上説明した方法により前述の如く作製したMg含有酸化物被覆軟磁性粒子を使用して高比抵抗低損失複合軟磁性材を製造するには、まず、前述の方法で作製したMg含有酸化物被覆軟磁性粒子を非酸化性雰囲気中、望ましくは水素雰囲気中において800〜1000℃で加熱処理を行った後、バインダー材としてのシリコーンレジン、低融点ガラスあるいは金属酸化物のいずれかを混合してから通常の方法で圧粉成形し、次いでアルゴン雰囲気中、窒素雰囲気中、水素雰囲気中あるいは大気中において500〜1000℃で焼成することにより高比抵抗低損失複合軟磁性材を得ることができる。
"Production method of soft magnetic composite compacted fired material"
In order to produce a high resistivity and low loss composite soft magnetic material using the Mg-containing oxide-coated soft magnetic particles prepared as described above by the method described above, first, the Mg-containing oxide coating prepared by the method described above is used. The soft magnetic particles are heated in a non-oxidizing atmosphere, preferably in a hydrogen atmosphere at 800 to 1000 ° C., and then mixed with a silicone resin, a low-melting glass or a metal oxide as a binder material. A high resistivity and low loss composite soft magnetic material can be obtained by compacting by a normal method and then firing at 500 to 1000 ° C. in an argon atmosphere, a nitrogen atmosphere, a hydrogen atmosphere or the air.

前記低融点ガラスはBi−B、SnO−P、SiO−B−ZnO、SiO−B−RO(Rはアルカリ土類金属)、LiO−ZnOのいずれかを用いることができる。これらの添加量は、0.2〜1.5質量%の範囲内とすることができる。
あるいは、Mg含有酸化物被覆軟磁性粒子に、酸化アルミニウム、酸化ホウ素、酸化バナジウム、酸化ビスマス、酸化アンチモンおよび酸化モリブデンの内の1種または2種以上の金属酸化物をB、V、Bi、Sb、MoO換算で0.05〜1質量%の範囲内で配合し、混合した後に圧粉、成形し、得られた圧粉体を温度500〜1000℃で真空中、アルゴン雰囲気、窒素雰囲気、水素雰囲気、大気中のいずれかにおいて焼成することにより高比抵抗低損失複合軟磁性材を作製することができる。前記焼成雰囲気は、望ましくは窒素雰囲気、水素雰囲気が良く、中でも水素雰囲気が好ましい。
前記バインダーとして混合する低融点ガラス、金属酸化物は、粉末状態でも良く、ゾルゲル溶液あるいは金属有機物などの前駆体溶液なども用いることができる。
The low melting point glass is Bi 2 O 3 —B 2 O 3 , SnO—P 2 O 5 , SiO 2 —B 2 O 3 —ZnO, SiO 2 —B 2 O 3 —R 2 O (R is an alkaline earth metal) ), Li 2 O—ZnO can be used. These addition amounts can be in the range of 0.2 to 1.5 mass%.
Alternatively, one or more metal oxides of aluminum oxide, boron oxide, vanadium oxide, bismuth oxide, antimony oxide, and molybdenum oxide are added to Mg-containing oxide-coated soft magnetic particles with B 2 O 3 , V 2. O 5, Bi 2 O 3, Sb 2 O 3, mixed with MoO 3 in the range of 0.05 to 1 mass% in terms of dust after mixing, molding, temperature 500 to the resulting powder compact A high specific resistance and low loss composite soft magnetic material can be produced by firing at 1000 ° C. in vacuum, argon atmosphere, nitrogen atmosphere, hydrogen atmosphere, or air. The firing atmosphere is desirably a nitrogen atmosphere or a hydrogen atmosphere, and a hydrogen atmosphere is particularly preferable.
The low-melting glass and metal oxide to be mixed as the binder may be in a powder state, and a precursor solution such as a sol-gel solution or a metal organic substance can also be used.

以上説明した如く本発明においては、Mg含有酸化物被覆軟磁性粒子を温度800〜1000℃、水素雰囲気中などで熱処理することにより、Mg含有酸化物被覆軟磁性粒子の表面部分を活性化することができ、これにより焼成時のバインダー成分との化合物生成を促進することができる。
(Mg,Fe)Oを含む酸化物堆積膜を軟磁性金属粒子の表面に被覆形成したMg含有酸化物被覆軟磁性粒子(粉末)については、(Mg,Fe)Oを含む酸化物堆積膜はウスタイト相を主とした堆積膜であるが、非酸化性雰囲気中、800〜1000℃で加熱すると堆積膜の最表面部が(Mg,Fe)Oを含む明確なウスタイト相となり、より活性なことから、焼成時にバインダー層中に拡散し、Mg、Fe、バインダー成分、Oからなるウスタイト相を主とした粒界層を形成する。例えば、バインダーがシリコーンレジンの場合に粒界層は、Mg、Si、O、Fe、Cからなるウスタイト相を主体とした粒界化合物を形成し、比抵抗の増大を図ることができる。
As described above, in the present invention, the surface portion of the Mg-containing oxide-coated soft magnetic particles is activated by heat-treating the Mg-containing oxide-coated soft magnetic particles at a temperature of 800 to 1000 ° C. in a hydrogen atmosphere. This can promote the formation of a compound with the binder component during firing.
For the Mg-containing oxide-coated soft magnetic particles (powder) in which the oxide-deposited film containing (Mg, Fe) O is formed on the surface of the soft magnetic metal particles, the oxide-deposited film containing (Mg, Fe) O is Although it is a deposited film mainly composed of a wustite phase, when heated at 800 to 1000 ° C. in a non-oxidizing atmosphere, the outermost surface portion of the deposited film becomes a clear wustite phase containing (Mg, Fe) O, and is more active. From this, it diffuses into the binder layer during firing to form a grain boundary layer mainly composed of a wustite phase composed of Mg, Fe, a binder component, and O. For example, when the binder is a silicone resin, the grain boundary layer can form a grain boundary compound mainly composed of a wustite phase composed of Mg, Si, O, Fe, and C to increase the specific resistance.

以上説明の方法により得られた高比抵抗低損失複合軟磁性材は、前記複数のMg含有酸化物被覆軟磁性粒子の粒界層を介する結合が、前記軟磁性金属粒子と該軟磁性金属粒子の表面に被覆されたMg含有酸化膜とを具備してなるMg含有酸化物被覆軟磁性粒子と、前述の低融点ガラスまたは金属酸化物などのバインダー成分との混合圧密熱処理により得られた結合であり、前記Mg含有酸化物被覆軟磁性粒子間の粒界層に存在する酸化鉄が、前記軟磁性金属粒子から粒界にFe成分が析出され酸化物とされて分散成長されたものであり、前記粒界層に隣接するMg含有酸化膜が、前記混合圧密焼成処理以前のMg含有酸化物被覆軟磁性粒子に備えられていたMg含有酸化膜から得られたものである。   The high specific resistance and low loss composite soft magnetic material obtained by the above-described method is such that the bond through the grain boundary layer of the plurality of Mg-containing oxide-coated soft magnetic particles is the soft magnetic metal particles and the soft magnetic metal particles. A bond obtained by a mixed compaction heat treatment of Mg-containing oxide-coated soft magnetic particles comprising a Mg-containing oxide film coated on the surface of the binder and a binder component such as the low-melting glass or metal oxide described above. Yes, the iron oxide present in the grain boundary layer between the Mg-containing oxide-coated soft magnetic particles, the Fe component is precipitated from the soft magnetic metal particles to the grain boundary and is oxide-dispersed and grown. The Mg-containing oxide film adjacent to the grain boundary layer is obtained from the Mg-containing oxide film provided in the Mg-containing oxide-coated soft magnetic particles before the mixed consolidation firing process.

以上の製造方法により得られた高比抵抗低損失複合軟磁性材は、高密度、高強度、高比抵抗および高磁束密度を有し、この高比抵抗低損失複合軟磁性材は、高磁束密度で高周波低鉄損の特徴を有する事からこの特徴を生かした各種電磁気回路部品の材料として使用できる。
また、以上の製造方法により得られた高比抵抗低損失複合軟磁性材にあっては、(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜とその界面に存在する低融点ガラスあるいは金属酸化物などのバインダー成分を拡散させた粒界層を備えているので、特にMg含有酸化物被覆軟磁性粒子同士の接合が良好になされていて、比抵抗の高い、渦電流損失の少ない、低鉄損失の軟磁気特性に優れた高比抵抗低損失複合軟磁性材を得ることができる。
The high specific resistance and low loss composite soft magnetic material obtained by the above manufacturing method has high density, high strength, high specific resistance and high magnetic flux density. Since it has the characteristics of high frequency and low iron loss in terms of density, it can be used as a material for various electromagnetic circuit components that take advantage of this characteristic.
Further, in the high resistivity and low loss composite soft magnetic material obtained by the above manufacturing method, it exists at the interface between the Mg—Fe—O ternary oxide deposited film containing (Mg, Fe) O and its interface. Since it has a grain boundary layer in which a binder component such as low-melting glass or metal oxide is diffused, the Mg-containing oxide-coated soft magnetic particles are particularly well-bonded and have high specific resistance and eddy currents. It is possible to obtain a high resistivity and low loss composite soft magnetic material with low loss and excellent soft magnetic properties with low iron loss.

粒径100μmの軟磁性粉末(純鉄粉末)に対して大気中220℃にて加熱処理を10〜60分間行った。ここでMg含有酸化皮膜は前段の220℃大気中加熱処理で生成される酸化膜厚に比例する。次に、Mgの添加量は必要最小限度で良く、鉄粉に対して0.1〜0.3質量%のMg粉末を配合し、この配合粉末を真空雰囲気中、造粒転動攪拌混合装置によって転動することによりMg含有酸化物被覆軟磁性粒子(以降及び表1にはMgO膜と略記)を作製した。
Mg含有酸化物被覆軟磁性粒子の外周面に形成されている(Mg,Fe)Oを含むMg−Fe−O三元系酸化物堆積膜(以降及び表1にはMgO膜と略記する)の膜厚を測定した結果を表1に示す。この膜の膜厚は、前述の大気中加熱処理で生成される酸化膜厚に比例するので、MgO膜厚20〜200nmの範囲が望ましく、MgO膜厚20〜100μmの範囲がより好ましい。
A soft magnetic powder (pure iron powder) having a particle size of 100 μm was subjected to heat treatment at 220 ° C. in the atmosphere for 10 to 60 minutes. Here, the Mg-containing oxide film is proportional to the oxide film thickness generated by the heat treatment in the air at 220 ° C. in the previous stage. Next, the addition amount of Mg may be the minimum necessary, and 0.1 to 0.3% by mass of Mg powder is blended with respect to the iron powder, and this blended powder is granulated, tumbled and stirred in a vacuum atmosphere. To produce Mg-containing oxide-coated soft magnetic particles (hereinafter abbreviated as MgO film in Table 1).
Mg-Fe-O ternary oxide deposited film containing (Mg, Fe) O formed on the outer peripheral surface of the Mg-containing oxide-coated soft magnetic particle (hereinafter abbreviated as MgO film in Table 1) The results of measuring the film thickness are shown in Table 1. Since the film thickness is proportional to the oxide film thickness generated by the above-described heat treatment in the atmosphere, the MgO film thickness is preferably in the range of 20 to 200 nm, and more preferably in the range of MgO film thickness of 20 to 100 μm.

前記各膜厚のMgO膜を備えたMg含有酸化物被覆軟磁性粒子を800〜1000℃で60〜180分、水素雰囲気、真空雰囲気、アルゴン雰囲気のいずれかの雰囲気において熱処理した。
また、従来例として、上述の800〜1000℃での熱処理を行わない試料、比較例として、本発明において望ましいとされる範囲から外れた条件に基づく試料も製造した。
用いた鉄粉粒径(μm)、Mg添加量(質量%)、MgO膜の膜厚(nm)、Mg含有酸化物被覆軟磁性粒子の熱処理条件を以下の表1に示す。
The Mg-containing oxide-coated soft magnetic particles provided with the MgO films having the respective film thicknesses were heat-treated at 800 to 1000 ° C. for 60 to 180 minutes in any one of a hydrogen atmosphere, a vacuum atmosphere, and an argon atmosphere.
In addition, as a conventional example, a sample not subjected to the above-described heat treatment at 800 to 1000 ° C. was prepared, and as a comparative example, a sample based on conditions deviating from the range desired in the present invention was also manufactured.
The used iron powder particle size (μm), Mg addition amount (% by mass), MgO film thickness (nm), and heat treatment conditions for the Mg-containing oxide-coated soft magnetic particles are shown in Table 1 below.

Figure 0004903101
Figure 0004903101

表1に示す条件で製造したMg含有酸化物被覆軟磁性粒子に対しシリコーンレジンを以下の表2に示す如く0.3〜1.5質量%、低融点ガラス及び金属酸化物をそれぞれ酸化物換算で0.3〜1.5質量%の範囲でそれぞれ添加し、表2に示す成形圧力と焼成条件に基づいて加圧し、焼成して高比抵抗低損失複合軟磁性材を得た。
このようにして製造された高比抵抗低損失複合軟磁性材について、試料の比抵抗、密度、磁束密度、及び1T(テスラ)400Hzでの鉄損失を表2に示す。
As shown in the following Table 2, 0.3 to 1.5% by mass of the silicone resin with respect to the Mg-containing oxide-coated soft magnetic particles produced under the conditions shown in Table 1 and the low-melting glass and the metal oxide in terms of oxides, respectively. Each was added in the range of 0.3 to 1.5% by mass, pressurized based on the molding pressure and firing conditions shown in Table 2, and fired to obtain a high resistivity and low loss composite soft magnetic material.
Table 2 shows the specific resistance, density, magnetic flux density, and iron loss at 1 T (Tesla) 400 Hz of the high specific resistance, low loss composite soft magnetic material thus manufactured.

Figure 0004903101
Figure 0004903101

表2に示す如く本発明で規定する条件を満足させて製造した発明例1〜11の試料はいずれにおいても優れた高比抵抗と優れた磁束密度を有し、鉄損が少ないことも明らかである。また、これらの試料は機械強度も高いことが判明した。
表2に示す結果から明らかなように、従来例1、2、3の如くMg含有酸化物被覆軟磁性粒子の状態で熱処理を行わずに圧密して成形した試料は比抵抗が大幅に低下し、鉄損も増加した。また、熱処理条件において温度が700℃で低すぎた比較例1の試料、温度が1200℃で高すぎた比較例2の試料、MgO膜厚の薄い比較例3の試料は比抵抗が大幅に低く、鉄損も増加した。比較例4の試料はMgO膜厚が大きすぎた試料であるが、比抵抗が発明例に比較して若干低いレベルとなったものの、鉄損が増加した。
As shown in Table 2, it is clear that the samples of Invention Examples 1 to 11 produced by satisfying the conditions specified in the present invention have excellent high specific resistance and excellent magnetic flux density, and have low iron loss. is there. These samples were also found to have high mechanical strength.
As is apparent from the results shown in Table 2, the specific resistance of the sample formed by compacting without heat treatment in the state of Mg-containing oxide-coated soft magnetic particles as in Conventional Examples 1, 2, and 3 is greatly reduced. Iron loss also increased. In addition, the specific resistance of the sample of Comparative Example 1 in which the temperature was too low at 700 ° C., the sample of Comparative Example 2 in which the temperature was too high at 1200 ° C., and the sample of Comparative Example 3 with a thin MgO film thickness was significantly low. Iron loss also increased. The sample of Comparative Example 4 was a sample in which the MgO film thickness was too large, but the iron loss increased although the specific resistance was slightly lower than that of the inventive example.

本発明試料においてシリコーンレジンをバインダーとして得られた高比抵抗低損失複合軟磁性材の粒界層部分について、発明例1の試料のオージェ分光分析した結果、粒界層を構成する元素として、主として、Mg、O、Siが観測された。Feは主相である軟磁性粒子部分に多く観察され、粒界層部分においてもFeが観察され、Mg、Oは粒界層に広く分散していることが判り、Siについては粒界層中心部側に多く存在していることが判った。
本発明試料においてBi−B系低融点ガラスをバインダーとして得られた高比抵抗低損失複合軟磁性材の粒界層部分について、発明例7の試料のオージェ分光分析した結果、粒界層を構成する元素として、主として、Mg、O、B、Biが観測された。Feは主相である軟磁性粒子部分に多く観察され、粒界層部分においても観察され、Mg、Oは粒界層に広く分散していることが判り、BiO、BOについては粒界層に広く分散していることが判った。
As a result of Auger spectroscopic analysis of the sample of Invention Example 1 for the grain boundary layer portion of the high resistivity and low loss composite soft magnetic material obtained using the silicone resin as a binder in the sample of the present invention, as an element constituting the grain boundary layer, mainly , Mg, O, Si were observed. Fe is often observed in the soft magnetic particle portion which is the main phase, Fe is also observed in the grain boundary layer portion, and it can be seen that Mg and O are widely dispersed in the grain boundary layer. It was found that there were many on the club side.
Results of Auger spectroscopic analysis of the sample of Invention Example 7 for the grain boundary layer portion of the high resistivity and low loss composite soft magnetic material obtained using Bi 2 O 3 —B 2 O 3 low melting point glass as a binder in the sample of the present invention As the elements constituting the grain boundary layer, Mg, O, B, and Bi were mainly observed. Fe is often observed in the soft magnetic particle portion which is the main phase, and is also observed in the grain boundary layer portion. It can be seen that Mg and O are widely dispersed in the grain boundary layer, and BiO and BO are in the grain boundary layer. It was found to be widely dispersed.

図1は表1と表2に示す発明例1の試料において、粒界層についてX線解析装置による分析を行った結果を示し、図1は試料の研磨前に測定した2θ法によるX線回折ピークの測定結果、図2は試料研磨後の2θ法によるX線回折ピークの測定結果を示す。
図1に示す如くFeの4本の鋭い大きなピークの他に、2θ=36〜38度の間と2θ=42〜44度の間の42度近傍に小さなウスタイト相のピークA、Bが認められるが、これらのピークはウスタイト相本来のピーク位置から外れている。
図2に示す如くFeの4本の鋭い大きなピークの他に、2θ=36度近傍の位置と、2θ=42の手前の位置にそれぞれウスタイト相本来のピークC、Dを検出することができ、この測定結果から試料内部側の粒界層はほぼウスタイト相であることが判明した。
FIG. 1 shows the results of analyzing the grain boundary layer by an X-ray analysis apparatus in the samples of Invention Example 1 shown in Tables 1 and 2, and FIG. 1 shows the X-ray diffraction by the 2θ method measured before polishing the sample. FIG. 2 shows the measurement result of the X-ray diffraction peak by the 2θ method after sample polishing.
As shown in FIG. 1, small wustite peaks A and B are observed in the vicinity of 42 degrees between 2θ = 36 to 38 degrees and 2θ = 42 to 44 degrees, in addition to the four sharp large peaks of Fe. However, these peaks deviate from the original peak position of the wustite phase.
As shown in FIG. 2, the original peaks C and D of the wustite phase can be detected at a position near 2θ = 36 degrees and a position before 2θ = 42, in addition to the four sharp large peaks of Fe. From this measurement result, it was found that the grain boundary layer on the inner side of the sample was almost in the wustite phase.

図3は同試料においてオージェ電子分光装置により粒界層に対してライン分析を行った結果を示し、図4は図3に示す結果を原子濃度(at%)に換算した結果を示す。
粒界層において、Mg含有酸化物被覆軟磁性粒子のFeが拡散したと見られるFeの拡散層が10〜20at%の低濃度で粒界層に広く分散していることが判明した。また、Mg含有酸化物被覆軟磁性粒子の表面側に所定厚さのMgの高濃度層が存在し、軟磁性粒子の周囲をMg含有酸化物被膜が覆っていることが伺われ、Siが粒界層の中心部分に多量に存在し、軟磁性粒子に近づくにつれてその含有量が急激に減少することが判明した。
これらのことから、粒界層はMgとSiとOとFeが存在する層であり、Mg含有酸化物被覆軟磁性粒子の周囲領域にはMgOを中心としてそこに少量のFeとSiが拡散してきた構造であり、粒界層の中央部側においてはFe濃度とMg濃度が低く、SiとO濃度の高い状態の層構造になっていると思われる。
FIG. 3 shows the result of line analysis performed on the grain boundary layer using an Auger electron spectrometer in the same sample, and FIG. 4 shows the result of converting the result shown in FIG. 3 into atomic concentration (at%).
It was found that in the grain boundary layer, the diffusion layer of Fe, which appears to have diffused Fe in the Mg-containing oxide-coated soft magnetic particles, was widely dispersed in the grain boundary layer at a low concentration of 10 to 20 at%. In addition, it can be said that there is a high-concentration layer of Mg having a predetermined thickness on the surface side of the Mg-containing oxide-coated soft magnetic particles, and that the Mg-containing oxide coating covers the periphery of the soft magnetic particles. It was found that a large amount is present in the central portion of the boundary layer, and that the content rapidly decreases as it approaches the soft magnetic particles.
From these facts, the grain boundary layer is a layer in which Mg, Si, O, and Fe exist, and a small amount of Fe and Si is diffused around the MgO-containing soft magnetic particles centering on MgO. It is considered that the Fe and Mg concentrations are low on the central side of the grain boundary layer, and the layer structure has a high Si and O concentration.

これらX線解析結果とライン分析結果の対比から、試料内部側に形成されているウスタイト相に比較し、試料表面のウスタイト相は800〜1100℃での熱処理の影響でバインダー成分を含むウスタイト相に組成変性しているものと推定することができ、例えば、Mg−Fe−(バインダー成分)−Oの組成系のウスタイト化合物層を生成し、これが原因となって粒界層における固着強度が向上し、結果として高比抵抗低損失複合軟磁性材の全体としての機械強度が向上したものと推定できる。
従って本願発明に係る試料は、優れた低鉄損を示し、比抵抗が極めて高く、軟磁気特性に優れた上に、機械強度も高い、優れた複合軟磁性材であることが判明した。
From the comparison of the X-ray analysis results and the line analysis results, the wustite phase on the sample surface becomes a wustite phase containing a binder component under the influence of heat treatment at 800 to 1100 ° C., compared to the wustite phase formed on the inner side of the sample. It can be presumed that the composition has been modified, for example, a wustite compound layer having a composition system of Mg-Fe- (binder component) -O is generated, and this improves the fixing strength in the grain boundary layer. As a result, it can be estimated that the overall mechanical strength of the high resistivity and low loss composite soft magnetic material has been improved.
Therefore, it was found that the sample according to the present invention is an excellent composite soft magnetic material that exhibits excellent low iron loss, extremely high specific resistance, excellent soft magnetic properties, and high mechanical strength.

本発明による軟磁性材は、電磁気回路部品として、例えば、磁心、電動機コア、発電機コア、ソレノイドコア、イグニッションコア、リアクトルコア、トランスコア、チョークコイルコアまたは磁気センサコアなどとしての利用が可能であり、いずれにおいても優れた特性を発揮し得る電磁気回路部品へ適用ができる。
そして、これら電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、これら電気機器の高効率高性能化や小型軽量化を推進できる。
The soft magnetic material according to the present invention can be used as an electromagnetic circuit component, for example, as a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core, or a magnetic sensor core. In any case, the present invention can be applied to an electromagnetic circuit component that can exhibit excellent characteristics.
Electric devices incorporating these electromagnetic circuit components include motors, generators, solenoids, injectors, electromagnetically driven valves, inverters, converters, transformers, relays, magnetic sensor systems, etc. Increase performance and reduce size and weight.

図1は実施例において得られた本発明に係る高比抵抗低損失軟磁性複合圧密焼成材試料の表面部分のX線回折チャート図。FIG. 1 is an X-ray diffraction chart of a surface portion of a high specific resistance, low loss soft magnetic composite compacted fired material sample according to the present invention obtained in Examples. 図2は実施例において得られた本発明に係る高比抵抗低損失軟磁性複合圧密焼成材試料の内部構造を示すX線回折チャート図。FIG. 2 is an X-ray diffraction chart showing the internal structure of the high resistivity, low loss soft magnetic composite compacted fired material sample according to the present invention obtained in the examples. 図3は同高比抵抗低損失複合軟磁性材の境界層における元素のX線ライン分析結果を示すグラフである。FIG. 3 is a graph showing the results of X-ray line analysis of elements in the boundary layer of the high resistivity low loss composite soft magnetic material. 図4は同高比抵抗低損失複合軟磁性材の境界層における元素のX線ライン分析結果による元素濃度分布を示すグラフである。FIG. 4 is a graph showing an element concentration distribution according to an X-ray line analysis result of elements in the boundary layer of the high resistivity low loss composite soft magnetic material.

Claims (15)

Fe系の軟磁性金属粒子と該軟磁性金属粒子の表面に被覆された膜厚20〜200nmのMg含有酸化物皮膜を具備してなり、800〜1000℃の非酸化性雰囲気における熱処理がなされたMg含有酸化物被覆軟磁性粒子が、シリコン化合物とMg含有酸化物皮膜、低融点ガラスとMg含有酸化物皮膜、または、金属酸化物とMg含有酸化物皮膜のいずれかバインダーとの複合化合物からなる粒界層であって、前記バインダーと前記Mg含有酸化物被覆軟磁性粒子との圧密焼成により前記軟磁性金属粒子から拡散されたFeを有するウスタイト相を含む粒界層を介し複数結合されていることを特徴とする高比抵抗低損失複合軟磁性材。 Fe-based soft magnetic metal particles and an Mg-containing oxide film with a thickness of 20 to 200 nm coated on the surface of the soft magnetic metal particles were provided, and heat treatment was performed in a non-oxidizing atmosphere at 800 to 1000 ° C. Mg-containing oxide-coated soft-magnetic particles, silicon compound and Mg-containing oxide film, a low-melting glass and Mg-containing oxide film, or a composite compound of any binder for the metal oxide and the Mg-containing oxide film A plurality of grain boundary layers bonded through a grain boundary layer including a wustite phase having Fe diffused from the soft magnetic metal particles by consolidation firing of the binder and the Mg-containing oxide-coated soft magnetic particles . A high resistivity, low loss composite soft magnetic material characterized by the above. 前記粒界層が、2θ法によるX線回折ピークにおいて、36度近傍位置と42度近傍位置にピークを有するウスタイト相を有し、Feを10〜20at%分散させた粒界層であることを特徴とする請求項1に記載の高比抵抗低損失複合軟磁性材。 The grain boundary layer is a grain boundary layer having a wustite phase having peaks at a position near 36 degrees and a position near 42 degrees in an X-ray diffraction peak by the 2θ method, and in which Fe is dispersed by 10 to 20 at%. The high specific resistance and low loss composite soft magnetic material according to claim 1. 前記バインダーが、シリコーンレジン、低融点ガラス、金属酸化物のいずれかであり、前記焼成により前記粒界層を少なくともシリコン化合物とMg含有酸化物とFeからなる化合物、低融点ガラスとMg含有酸化物とFeからなる化合物、金属酸化物とMg含有酸化物とFeからなる化合物のいずれかにウスタイト相が含まれた粒界層とされたことを特徴とする請求項1または2に記載の高比抵抗低損失複合軟磁性材。 The binder is any one of a silicone resin, a low-melting glass, and a metal oxide, and the grain boundary layer is formed of at least a silicon compound, an Mg-containing oxide, and Fe by firing, and a low-melting glass and an Mg-containing oxide. 3. The high ratio according to claim 1, wherein a grain boundary layer containing a wustite phase is included in any one of a compound made of Fe and Fe, a metal oxide, an Mg-containing oxide, and a compound made of Fe. Low loss composite soft magnetic material. 前記Fe系の軟磁性金属粒子が、Feに、Si、Al、Ni、Cr、Vのうち少なくとも1種以上を添加してなることを特徴とする請求項1〜3のいずれか一項に記載の高比抵抗低損失複合軟磁性材。 The Fe-based soft magnetic metal particles are obtained by adding at least one of Si, Al, Ni, Cr, and V to Fe. High resistivity low loss composite soft magnetic material. 前記シリコン化合物がSi−O−C化合物であることを特徴とする請求項1〜4のいずれか一項に記載の高比抵抗低損失複合軟磁性材。 The high resistivity and low loss composite soft magnetic material according to claim 1, wherein the silicon compound is a Si—O—C compound . 前記低融点ガラスがBi −B 、SnO−P 、SiO −B −ZnO、SiO −B −R O(Rはアルカリ土類金属)、Li O−ZnOのいずれかであることを特徴とする請求項1〜4のいずれか一項に記載の高比抵抗低損失複合軟磁性材。 The low melting point glass is Bi 2 O 3 —B 2 O 3 , SnO—P 2 O 5 , SiO 2 —B 2 O 3 —ZnO, SiO 2 —B 2 O 3 —R 2 O (R is an alkaline earth metal) ) Or Li 2 O—ZnO . 5. The high specific resistance and low loss composite soft magnetic material according to claim 1. 前記金属酸化物がV 、Al 、B 、Sb 、MoO のいずれかであることを特徴とする請求項1〜4のいずれか一項に記載の高比抵抗低損失複合軟磁性材。 According to claim 1, wherein the metal oxide is either V 2 O 5, Al 2 O 3, B 2 O 3, Sb 2 O 3, MoO 2 High resistivity low loss composite soft magnetic material. 前記非酸化性雰囲気が、真空雰囲気、アルゴンガス雰囲気、水素雰囲気のいずれかであることを特徴とする請求項1〜7のいずれか一項に記載の高比抵抗低損失複合軟磁性材。   The high specific resistance and low loss composite soft magnetic material according to any one of claims 1 to 7, wherein the non-oxidizing atmosphere is any one of a vacuum atmosphere, an argon gas atmosphere, and a hydrogen atmosphere. Fe系の軟磁性金属粒子と該軟磁性金属粒子の表面に被覆された膜厚20〜200nmのMg含有酸化物皮膜を具備してなるMg含有酸化物被覆軟磁性粒子を水素雰囲気、真空雰囲気、アルゴン雰囲気のうち、いずれかの非酸化性雰囲気において800〜1100℃で加熱処理した後、加熱処理済みのMg含有酸化物被覆軟磁性粒子に、シリコーンレジン、低融点ガラス、金属酸化物のうち、少なくとも1種をバインダーとして混合して圧密し、真空雰囲気、アルゴン雰囲気、大気中、窒素雰囲気、水素雰囲気のいずれかの雰囲気において焼成することにより、
前記バインダーの成分と前記Mg含有酸化物皮膜の成分と前記軟磁性金属粒子から拡散させたFeとの複合化合物からなり、ウスタイト相を有する粒界層を介して前記Mg含有酸化物被覆軟磁性粒子を複数結合してなる焼成体とすることを特徴とする高比抵抗低損失複合軟磁性材の製造方法。
An Mg-containing oxide-coated soft magnetic particle comprising an Fe-based soft magnetic metal particle and an Mg-containing oxide film having a thickness of 20 to 200 nm coated on the surface of the soft magnetic metal particle is a hydrogen atmosphere, a vacuum atmosphere, After heat treatment at 800 to 1100 ° C. in any non-oxidizing atmosphere of the argon atmosphere , the heat-treated Mg-containing oxide-coated soft magnetic particles are converted into silicone resin, low-melting glass, and metal oxide, By mixing and compacting at least one kind as a binder, firing in any one of a vacuum atmosphere, an argon atmosphere, the air, a nitrogen atmosphere, and a hydrogen atmosphere,
The Mg-containing oxide-coated soft magnetic particles comprising a composite compound of the binder component, the Mg-containing oxide film component, and Fe diffused from the soft magnetic metal particles through a grain boundary layer having a wustite phase A method for producing a high specific resistance, low loss composite soft magnetic material, characterized in that a sintered body is formed by combining a plurality of.
前記粒界層として、2θ法によるX線回折ピークにおいて、36度近傍位置と42度近傍位置にピークを有するウスタイト相を有し、Feを10〜20at%分散させた粒界層とすることを特徴とする請求項9に記載の高比抵抗低損失複合軟磁性材の製造方法。 In the X-ray diffraction peak by the 2θ method, the grain boundary layer has a wustite phase having peaks at a position near 36 degrees and a position near 42 degrees, and is a grain boundary layer in which Fe is dispersed at 10 to 20 at%. The method for producing a high specific resistance, low loss composite soft magnetic material according to claim 9. 前記バインダーを、シリコーンレジン、低融点ガラス、金属酸化物のいずれかを主体としたものとし、前記焼成により前記粒界層を少なくともシリコン化合物とMg含有酸化物とFeからなる化合物、低融点ガラスとMg含有酸化物とFeからなる化合物、金属酸化物とMg含有酸化物とFeからなる化合物のいずれかにウスタイト相が含まれたことを特徴とする請求項9または10に記載の高比抵抗低損失複合軟磁性材の製造方法。 The binder is mainly composed of any one of a silicone resin, a low-melting glass, and a metal oxide, and the grain boundary layer is formed of at least a silicon compound, a Mg-containing oxide, and Fe by the firing, and a low-melting glass. Mg-containing oxide and consisting of Fe compound, a high ratio of claim 9 or 10 characterized in that it contains wustite phase to one of the metal oxide and Mg-containing oxide and the compound of Fe resistance low A method for producing a lossy composite soft magnetic material. 前記バインダーをSi−O−C化合物とすることを特徴とする請求項9または10に記載の高比抵抗低損失複合軟磁性材の製造方法。   The method for producing a high resistivity, low loss composite soft magnetic material according to claim 9 or 10, wherein the binder is an Si-O-C compound. 前記低融点ガラスをBi−B、SnO−P、SiO−B−ZnO、SiO−B−RO(Rはアルカリ土類金属)、LiO−ZnOのいずれかとすることを特徴とする請求項9または10に記載の高比抵抗低損失複合軟磁性材の製造方法。 The low melting point glass is made of Bi 2 O 3 —B 2 O 3 , SnO—P 2 O 5 , SiO 2 —B 2 O 3 —ZnO, SiO 2 —B 2 O 3 —R 2 O (R is an alkaline earth metal) Or Li 2 O—ZnO. 11. The method for producing a high resistivity, low loss composite soft magnetic material according to claim 9 or 10. 前記金属酸化物をV、Al、B、Sb、MoOのいずれかとすることを特徴とする請求項9または10に記載の高比抵抗低損失複合軟磁性材の製造方法。 11. The high specific resistance and low loss composite according to claim 9, wherein the metal oxide is any one of V 2 O 5 , Al 2 O 3 , B 2 O 3 , Sb 2 O 3 , and MoO 2. A method for producing a soft magnetic material. 前記Fe系の軟磁性金属粒子として、Feに、Si、Al、Ni、Cr、Vのうち少なくとも1種以上を添加してなるものを用いることを特徴とする請求項9〜14のいずれか一項に記載の高比抵抗低損失複合軟磁性材の製造方法。   15. The Fe-based soft magnetic metal particle used is one obtained by adding at least one of Si, Al, Ni, Cr, and V to Fe. A method for producing a high resistivity and low loss composite soft magnetic material according to item 2.
JP2007228219A 2007-09-03 2007-09-03 High specific resistance and low loss composite soft magnetic material and manufacturing method thereof Expired - Fee Related JP4903101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007228219A JP4903101B2 (en) 2007-09-03 2007-09-03 High specific resistance and low loss composite soft magnetic material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228219A JP4903101B2 (en) 2007-09-03 2007-09-03 High specific resistance and low loss composite soft magnetic material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009060050A JP2009060050A (en) 2009-03-19
JP4903101B2 true JP4903101B2 (en) 2012-03-28

Family

ID=40555485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228219A Expired - Fee Related JP4903101B2 (en) 2007-09-03 2007-09-03 High specific resistance and low loss composite soft magnetic material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4903101B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716454A (en) * 2016-09-15 2019-05-03 日立金属株式会社 Magnetic core and coil component

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216571A (en) * 2010-03-31 2011-10-27 Mitsubishi Materials Corp High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
JP6160181B2 (en) * 2013-04-01 2017-07-12 株式会社ダイヤメット Dust core with high surface resistance
JP2015043375A (en) * 2013-08-26 2015-03-05 Tdk株式会社 Soft magnetic material composition, manufacturing method thereof, magnetic core, and coil-type electronic component
JP6493778B2 (en) * 2014-07-17 2019-04-03 日立金属株式会社 Laminated component and manufacturing method thereof
CN104384497B (en) * 2014-10-28 2016-09-21 银川博聚工业产品设计有限公司 A kind of magnesio composite powder metallurgy material and preparation method thereof
KR101620032B1 (en) 2014-12-12 2016-05-11 한국과학기술연구원 FeSiAl soft magnetic composite powders on which an heat-resistant oxide insulation film is formed, and powder core thereof
JP7145610B2 (en) * 2017-12-27 2022-10-03 Tdk株式会社 Laminated coil type electronic component
CN115398570A (en) * 2020-03-31 2022-11-25 株式会社村田制作所 Soft magnetic metal powder, dust core, and inductor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080121A1 (en) * 2005-01-25 2006-08-03 Mitsubishi Materials Pmg Corporation Mg-CONTAINING OXIDE COATED IRON POWDER
JP4367709B2 (en) * 2005-03-02 2009-11-18 三菱マテリアルPmg株式会社 Laminated oxide film coated iron powder
JP2006332524A (en) * 2005-05-30 2006-12-07 Mitsubishi Materials Pmg Corp High-strength complex soft magnetic material having high strength, high magnetic flux density, high resistance and less iron loss, and manufacturing method thereof
JP2007013069A (en) * 2005-05-31 2007-01-18 Mitsubishi Materials Pmg Corp METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716454A (en) * 2016-09-15 2019-05-03 日立金属株式会社 Magnetic core and coil component

Also Published As

Publication number Publication date
JP2009060050A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4782058B2 (en) Manufacturing method of high strength soft magnetic composite compacted fired material and high strength soft magnetic composite compacted fired material
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JP2009117651A (en) High-strength soft-magnetic composite material obtained by compaction/burning, and method of manufacturing the same
EP1808242B1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
US9269481B2 (en) Iron powder coated with Mg-containing oxide film
KR101152042B1 (en) Powder magnetic core and production method thereof
JP5049845B2 (en) High-strength, high-resistivity, low-loss composite soft magnetic material, manufacturing method thereof, and electromagnetic circuit component
WO2005083725A1 (en) Soft magnetic material, powder magnetic core and process for producing the same
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP4863648B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4480015B2 (en) Laminated oxide film coated iron powder
JP2009141346A (en) High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP2011216571A (en) High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
JP2010016290A (en) Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
JP4761835B2 (en) Mg-containing iron oxide coated iron powder
JP4761836B2 (en) Mg-containing iron oxide coated iron powder
EP1662517A1 (en) Soft magnetic material and method for producing same
JP2008297622A (en) Soft magnetic material, dust core, method for manufacturing soft magnetic material and method for manufacturing dust core
WO2007052772A1 (en) Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME
CN112420309B (en) Dust core
JP6836106B2 (en) Method for manufacturing iron-based soft magnetic material
JP2004156102A (en) Production method for high-density high-resistance composite soft magnetic sintered material
JP5027390B2 (en) Deposited film-coated iron powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120104

R150 Certificate of patent or registration of utility model

Ref document number: 4903101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees