JP6493778B2 - Laminated component and manufacturing method thereof - Google Patents

Laminated component and manufacturing method thereof Download PDF

Info

Publication number
JP6493778B2
JP6493778B2 JP2014146965A JP2014146965A JP6493778B2 JP 6493778 B2 JP6493778 B2 JP 6493778B2 JP 2014146965 A JP2014146965 A JP 2014146965A JP 2014146965 A JP2014146965 A JP 2014146965A JP 6493778 B2 JP6493778 B2 JP 6493778B2
Authority
JP
Japan
Prior art keywords
laminated
component
mass
soft magnetic
oxide phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014146965A
Other languages
Japanese (ja)
Other versions
JP2016025152A (en
Inventor
浩平 阪口
浩平 阪口
杉山 雄太
雄太 杉山
敏男 三原
敏男 三原
西村 和則
和則 西村
野口 伸
伸 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014146965A priority Critical patent/JP6493778B2/en
Publication of JP2016025152A publication Critical patent/JP2016025152A/en
Application granted granted Critical
Publication of JP6493778B2 publication Critical patent/JP6493778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属軟磁性体を積層した積層体内にコイル形成した積層部品に関する。   The present invention relates to a laminated component in which a coil is formed in a laminated body in which metallic soft magnetic materials are laminated.

従来、家電機器、産業機器、車両など多種多様な用途において、インダクタ、トランス、チョーク等のコイル部品が用いられている。コイル部品は、磁心と、その磁心に設けられたコイルで構成される。かかる磁心には、磁気特性、形状自由度、価格に優れるフェライトが広く用いられている。   Conventionally, coil parts such as inductors, transformers, and chokes have been used in a wide variety of applications such as home appliances, industrial equipment, and vehicles. The coil component includes a magnetic core and a coil provided on the magnetic core. For such a magnetic core, ferrite having excellent magnetic properties, flexibility in shape, and cost is widely used.

近年、電子機器等の電源装置の小型化が進んだ結果、小型・低背で、かつ大電流に対しても使用可能なコイル部品の要求が強くなり、フェライトと比較して飽和磁束密度が高い金属軟磁性粉を使用した積層型のコイル部品(以下積層部品と呼ぶ)が提案されている。金属軟磁性粉としては、例えばFe、あるいはFe−Si−Al系、Fe−Si―Cr系、Fe−Ni系合金などの軟磁性粉末が用いられている。   In recent years, as power supply devices such as electronic devices have been downsized, the demand for coil parts that are small and low in profile and can be used for large currents has become stronger, and the saturation magnetic flux density is higher than that of ferrite. A laminated coil component (hereinafter referred to as a laminated component) using metal soft magnetic powder has been proposed. As the metal soft magnetic powder, for example, soft magnetic powder such as Fe, Fe—Si—Al, Fe—Si—Cr, or Fe—Ni alloy is used.

特許文献1の積層部品では、かかる金属軟磁性粉末を、ほう珪酸ガラスと樹脂バインダー、さらに溶剤と配合、混練して磁性体層用ペーストとする。更に、導電体粉末としてAg粉を用いて、樹脂バインダーと溶剤と配合、混練して導電体層用ペーストとし、前記磁性体層用ペーストと前記導電体層用ペーストとを交互に繰り返して印刷して積層する。得られた積層体を大気中で750℃にて熱処理して、金属軟磁性粉をガラス成分によって固着し、導電体層によるコイルを内包する積層部品としている。また特許文献2では、磁性体層用ペーストをシートとし、それに導電体層用ペーストでコイルパターンを形成したものを複数枚積層し、圧着して積層体とする。それを非酸化性雰囲気で400℃以上の温度で熱処理する。得られた積層部品は特許文献1のものと同様に、金属軟磁性粉末はガラス成分によって固着されている。更に熱処理を非酸化性雰囲気で行うことで、熱処理後の透磁率の低下を防いでいる。但し、特許文献2では、非酸化性雰囲気での熱処理による作用効果が、何故もたらされるのかについては記載はない。   In the laminated component of Patent Document 1, such a metal soft magnetic powder is blended and kneaded with borosilicate glass, a resin binder, and a solvent to obtain a magnetic layer layer paste. Furthermore, using Ag powder as the conductor powder, blended and kneaded with a resin binder and a solvent to obtain a conductor layer paste, the magnetic layer layer paste and the conductor layer paste were alternately and repeatedly printed. And laminate. The obtained laminated body is heat-treated at 750 ° C. in the atmosphere to fix the metal soft magnetic powder with a glass component, and to form a laminated part including a coil made of a conductor layer. In Patent Document 2, a magnetic material layer paste is used as a sheet, and a plurality of conductor layer pastes each having a coil pattern formed thereon are laminated, and are pressed to form a laminated body. It is heat-treated at a temperature of 400 ° C. or higher in a non-oxidizing atmosphere. In the obtained laminated component, the metal soft magnetic powder is fixed by a glass component in the same manner as in Patent Document 1. Further, by performing the heat treatment in a non-oxidizing atmosphere, a decrease in the magnetic permeability after the heat treatment is prevented. However, in Patent Document 2, there is no description as to why the effects of heat treatment in a non-oxidizing atmosphere are brought about.

特開平9−148118号公報JP-A-9-148118 特開2007−27354号公報JP 2007-27354 A

金属軟磁性粉は飽和磁束密度が高い反面、錆び易く、電気抵抗率が低いため、特許文献1、2の積層部品では、ガラス成分によって軟磁性粉末の粒を被覆し、防錆・絶縁する。しかしながら、金属軟磁性粉末間のガラス成分は非磁性であるので磁気ギャップとしても作用し、透磁率を小さくするので、積層部品のインダクタンスを高めることは容易では無い。更に積層部品の強度は金属軟磁性粉末間のガラス成分の強度に影響されて、フェライトを用いた積層部品と比べて強度に劣る場合がある。また、金属軟磁性粉末を確実に被覆するには多くのガラスが必要であるし、ほう珪酸ガラスと金属軟磁性粉末と混合する工程が必要であるなど高コストとなるため、積層部品の製造工数の改善の余地もある。   The metal soft magnetic powder has a high saturation magnetic flux density, but is easily rusted and has a low electrical resistivity. Therefore, in the laminated parts of Patent Documents 1 and 2, the soft magnetic powder particles are covered with a glass component to prevent rust and insulation. However, since the glass component between the metal soft magnetic powders is non-magnetic, it also acts as a magnetic gap and reduces the magnetic permeability, so it is not easy to increase the inductance of the laminated component. Furthermore, the strength of the laminated part is affected by the strength of the glass component between the metal soft magnetic powders, and may be inferior in strength compared to the laminated part using ferrite. In addition, a lot of glass is required to reliably coat the metal soft magnetic powder, and a process of mixing borosilicate glass and the metal soft magnetic powder is required. There is also room for improvement.

本発明は、簡易な製造方法で得られ、かつ高強度で大きなインダクタンスを得られ易い積層部品を提供することを目的とする。   An object of the present invention is to provide a multilayer component that can be obtained by a simple manufacturing method and that can easily obtain a high inductance and a large inductance.

第1の発明は、Alが偏析した酸化物相を介してFe系軟磁性粉が結合した磁性体に、Ag粉を含むペーストで形成されたコイルパターンで構成されたコイルを内包し、前記Fe系軟磁性粉が、目開き32μmの篩を通過し、かつ累積粒度分布におけるメジアン径d50が20μm以下のFe−Al−Cr合金粒であって、前記Fe−Al−Cr系合金粒は、Alを2.0質量%以上10.0質量%以下、Crを含有量が1.0質量%以上9.0質量%以下、不可避不純物と他の元素を1.0質量%以下で含有し、残部がFeで、CrよりもAlの含有量が多く、前記酸化物相は前記Fe−Al−Cr合金粒の酸化によって形成され、
前記磁性体は複数の磁性体層を積層して構成され、前記コイルパターンは前記磁性体層を介して積層し、積層方向に接続されたことを特徴とする積層部品である。
According to a first aspect of the present invention, a coil composed of a coil pattern formed of a paste containing Ag powder is encapsulated in a magnetic material in which Fe-based soft magnetic powder is bonded through an oxide phase in which Al is segregated, and the Fe Soft magnetic powder is a Fe—Al—Cr alloy grain having a median diameter d50 in a cumulative particle size distribution of 20 μm or less that passes through a sieve having a mesh size of 32 μm, and the Fe—Al—Cr alloy grain is Al 2.0 mass% or more and 10.0 mass% or less, Cr is contained 1.0 mass% or more and 9.0 mass% or less, inevitable impurities and other elements are contained in 1.0 mass% or less, and the balance Is Fe and contains more Al than Cr, and the oxide phase is formed by oxidation of the Fe-Al-Cr alloy grains,
The magnetic body is configured by stacking a plurality of magnetic layers, and the coil pattern is stacked through the magnetic layers and connected in the stacking direction .

第1の発明においては、前記ペーストに、更にPd、Ir、Pt、Ru、Rh、Ti、及びCoからなる群から選ばれる一種以上の金属を収縮率制御材として含むのが好ましい。 In the first invention, it is preferable that the paste further contains one or more metals selected from the group consisting of Pd, Ir, Pt, Ru, Rh, Ti, and Co as a shrinkage rate control material .

第1の発明においては、前記ペーストにPt、RuまたはRhから選ばれる一種以上の金属を含むのが好ましい。 In the first invention, the paste preferably contains one or more metals selected from Pt, Ru or Rh .

第1の発明においては、前記酸化物相に覆われた前記積層部品の表面に前記コイルと接続する端子電極を有し、前記積層部品の表面と前記端子電極との間にガラスが存在するのが好ましい。 In 1st invention, it has a terminal electrode connected to the said coil on the surface of the said multilayer component covered with the said oxide phase, and glass exists between the surface of the said multilayer component and the said terminal electrode . Is preferred.

第1の発明においては、前記積層部品に電子部品を載置し、前記端子電極と接続するのが好ましい。 In 1st invention, it is preferable to mount an electronic component in the said laminated component and to connect with the said terminal electrode.

第2の発明は、磁性体層及びコイルパターンを積層し成形体とする工程と、前記成形体を、酸素が存在する雰囲気中または水蒸気が存在する雰囲気中で700〜800℃の温度で熱処理して、Fe系軟磁性粉を結合するAlが偏析した酸化物相を形成する工程を含むことを特徴とする積層部品の製造方法である。 According to a second aspect of the present invention, there is provided a step of forming a formed body in which a magnetic layer and a coil pattern are laminated, and the formed body is heat treated at a temperature of 700 to 800 ° C. in an atmosphere in which oxygen is present or in an atmosphere in which water vapor is present. And the manufacturing method of the laminated component characterized by including the process of forming the oxide phase which Al segregated which couple | bonds Fe-type soft-magnetic powder .

当該積層部品ではFe系軟磁性粉としてFe−Al−Cr合金粒を用い、そのFe−Al−Cr合金粒から形成された酸化物相がFe系軟磁性粉間に介在するので、良好な絶縁性を発揮することができる。また、上記酸化物相によりFe系軟磁性粉同士を強固に結合することができ、積層部品の強度を高めることができる。また、上記酸化物相は薄いので密度を高めることができる。これにより、得られる積層部品では非磁性である領域が低減されて透磁率を、ひいてはインダクタンスを向上させることができる。   In the laminated component, Fe—Al—Cr alloy particles are used as the Fe-based soft magnetic powder, and an oxide phase formed from the Fe—Al—Cr alloy particles is interposed between the Fe-based soft magnetic powders. Can demonstrate its sexuality. Moreover, the Fe-based soft magnetic powders can be firmly bonded to each other by the oxide phase, and the strength of the laminated component can be increased. Further, since the oxide phase is thin, the density can be increased. As a result, the non-magnetic region in the obtained multilayer component can be reduced to improve the magnetic permeability, and thus the inductance.

当該製造方法では、得られる成形体を熱処理するだけでFe系軟磁性粉間にAlを含む酸化物相を形成することができて、積層部品の生産性を向上させることができる。加えて、特定の酸化物相の形成により積層部品の絶縁性および強度を効率良く高めることができる。   In this manufacturing method, an oxide phase containing Al can be formed between Fe-based soft magnetic powders simply by heat-treating the resulting molded body, and the productivity of laminated parts can be improved. In addition, the formation of a specific oxide phase can efficiently increase the insulation and strength of the laminated component.

本発明の一実施形態に係る積層部品の斜視図である。It is a perspective view of the lamination component concerning one embodiment of the present invention. 本発明の一実施形態に係る積層部品の断面図である。It is sectional drawing of the laminated component which concerns on one Embodiment of this invention. 本発明の一実施形態に係る積層部品の分解斜視図である。It is a disassembled perspective view of the laminated component which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る積層部品の斜視図である。It is a perspective view of the laminated component which concerns on other embodiment of this invention. 本発明の他の実施形態に係る積層部品の断面図である。It is sectional drawing of the laminated component which concerns on other embodiment of this invention. 本発明の他の実施形態に係る積層部品の等価回路図である。It is an equivalent circuit schematic of the laminated component which concerns on other embodiment of this invention. 実施例における積層部品のSEM観察図である。It is a SEM observation figure of the lamination components in an example.

以下、本発明の一実施形態に係る積層部品およびその製造方法について具体的に説明する。ただし、本発明はこれに限定されるものではない。なお、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。   Hereinafter, a laminated part and a manufacturing method thereof according to an embodiment of the present invention will be specifically described. However, the present invention is not limited to this. Note that in some or all of the drawings, portions that are not necessary for the description are omitted, and there are portions that are illustrated in an enlarged or reduced manner for ease of description.

図1は本発明の一実施態様による積層部品の外観を示し、図2は図1の積層部品の断面を示し、図3は図1の積層部品を構成する各層を示す。   FIG. 1 shows the appearance of a multilayer component according to an embodiment of the present invention, FIG. 2 shows a cross section of the multilayer component in FIG. 1, and FIG. 3 shows each layer constituting the multilayer component in FIG.

積層部品は11層(S1〜S11)で構成され、コイルパターン3(3a〜3c)が形成された磁性体層2からなるコイル形成層1a〜1dを有するコイル形成域1と、コイル形成域1の上下にそれぞれ設けられたコイルパターンを有さない磁性体層2からなる磁性体域5とを有する。コイル形成域1では、0.5〜1ターンのコイルパターン3(3a〜3d)は、スルーホール6を介して接続され、6.5ターンのコイルを形成している。コイルの両端は積層部品の対向側面に引き出され、Ag等の導電体層用ペーストを焼き付けた端子電極200a、200bと接続している。   The laminated component is composed of 11 layers (S1 to S11), and includes a coil forming region 1 having coil forming layers 1a to 1d made of a magnetic layer 2 on which a coil pattern 3 (3a to 3c) is formed, and a coil forming region 1 And a magnetic body region 5 composed of a magnetic body layer 2 that does not have a coil pattern. In the coil forming area 1, the coil patterns 3 (3a to 3d) of 0.5 to 1 turn are connected through the through holes 6 to form a coil of 6.5 turns. Both ends of the coil are drawn out to the opposite side surfaces of the laminated component, and are connected to terminal electrodes 200a and 200b onto which a conductor layer paste such as Ag is baked.

磁性体層2は、Fe−Al−Cr合金粒を含むFe系軟磁性粉と、ポリビニルブチラールを主成分とする有機バインダ、及びエタノール、トルエン、キシレン等の溶媒をボールミル中で混練し、得られたスラリーを粘度調製した後、ポリエステルフィルム等のキャリアフィルム上にドクターブレード法等で塗布及び乾燥してシート状に形成される。Fe系軟磁性粉はFe−Al−Cr合金粒のみで構成するほかに、Fe−Si−Al合金粒や、Fe−Si−Cr合金粒等の他のFe系属軟磁性粒を含んでいても良い。   The magnetic layer 2 is obtained by kneading an Fe-based soft magnetic powder containing Fe—Al—Cr alloy particles, an organic binder mainly composed of polyvinyl butyral, and a solvent such as ethanol, toluene, xylene in a ball mill. After the viscosity of the prepared slurry is adjusted, it is applied and dried on a carrier film such as a polyester film by a doctor blade method or the like to form a sheet. Fe-based soft magnetic powder is composed only of Fe-Al-Cr alloy particles, and contains other Fe-based soft magnetic particles such as Fe-Si-Al alloy particles and Fe-Si-Cr alloy particles. Also good.

Fe系軟磁性粉の形態は、特に限定されるものではないが、流動性等の観点からアトマイズ粉に代表される粒状粉を用いることが好ましい。   The form of the Fe-based soft magnetic powder is not particularly limited, but it is preferable to use granular powder represented by atomized powder from the viewpoint of fluidity and the like.

含有比率の高い三つの主要元素としてFe、CrおよびAlを含むFe−Al−Cr合金粒の組成は、磁性体層を構成できるものであれば、特に限定されるものではない。AlおよびCrは耐食性等を高める元素である。また、Alは特に表面酸化物の形成に寄与する。かかる観点から、Fe−Al−Cr系合金粒中のAlの含有量は、好ましくは2.0質量%以上、より好ましくは3.0質量%以上である。一方、Alが多くなりすぎると飽和磁束密度が低下するため、Alの含有量は、好ましくは10.0質量%以下、より好ましくは8.0質量%以下、さらに好ましくは7.0質量%以下である。Crは上述のように耐食性を高める元素である。かかる観点から、Fe−Al−Cr合金粒中のCrの含有量は、好ましくは1.0質量%以上、より好ましくは2.5質量%以上である。一方、Crが多くなりすぎると飽和磁束密度が低下し、合金粒が硬くなるため、Crの含有量は、好ましくは9.0質量%以下、より好ましくは7.0質量%以下である。   The composition of the Fe—Al—Cr alloy grains containing Fe, Cr and Al as the three main elements having a high content ratio is not particularly limited as long as it can constitute the magnetic layer. Al and Cr are elements that improve corrosion resistance and the like. In addition, Al contributes particularly to the formation of surface oxides. From this viewpoint, the content of Al in the Fe—Al—Cr alloy grains is preferably 2.0% by mass or more, and more preferably 3.0% by mass or more. On the other hand, since the saturation magnetic flux density decreases when the Al content is excessive, the Al content is preferably 10.0% by mass or less, more preferably 8.0% by mass or less, and even more preferably 7.0% by mass or less. It is. Cr is an element that improves the corrosion resistance as described above. From this viewpoint, the content of Cr in the Fe—Al—Cr alloy grains is preferably 1.0% by mass or more, more preferably 2.5% by mass or more. On the other hand, if the amount of Cr is excessive, the saturation magnetic flux density is lowered and the alloy grains are hardened. Therefore, the Cr content is preferably 9.0% by mass or less, more preferably 7.0% by mass or less.

耐食性等の観点から、CrとAlを合計した含有量は、6.0質量%以上が好ましい。また、表面の酸化物層にはCrに比べてAlが顕著に濃化するため、CrよりもAlの含有量が多いFe−Al−Cr合金粒を用いることがより好ましい。   From the viewpoint of corrosion resistance and the like, the total content of Cr and Al is preferably 6.0% by mass or more. In addition, since Al is significantly concentrated in the surface oxide layer as compared with Cr, it is more preferable to use Fe—Al—Cr alloy grains having a higher Al content than Cr.

上記CrおよびAl以外の残部は主にFeで構成されるが、Fe−Al−Cr合金粒が持つ成形性等の利点を発揮する限りにおいて、他の元素を含むこともできる。ただし、非磁性元素は飽和磁束密度等を低下させるため、かかる他の元素の含有量は1.0質量%以下であることが好ましい。なお、Fe−Si系合金等で用いられるSiは、積層部品の強度向上に不利な元素であるため、本実施形態では、Fe−Al−Cr系合金粒の通常の製造プロセスを経て入り込む不可避的不純物レベル(好ましくは0.5質量%以下)で含まれていてもよい。Fe−Al−Cr合金粒は、不可避的不純物を除きFe、CrおよびAlで構成されることがさらに好ましい。   The balance other than Cr and Al is mainly composed of Fe, but may contain other elements as long as the Fe-Al-Cr alloy grains have advantages such as formability. However, since the nonmagnetic element lowers the saturation magnetic flux density and the like, the content of such other elements is preferably 1.0% by mass or less. In addition, since Si used in an Fe—Si alloy or the like is an element that is disadvantageous for improving the strength of the laminated part, in this embodiment, it is unavoidable to enter through a normal manufacturing process of Fe—Al—Cr alloy particles. It may be contained at an impurity level (preferably 0.5% by mass or less). The Fe—Al—Cr alloy grains are more preferably composed of Fe, Cr and Al except for inevitable impurities.

Fe系軟磁性粉の平均粒径(ここでは、累積粒度分布におけるメジアン径d50を用いる)は特に限定されるものではないが、平均粒径を小さくすることで積層部品の強度、コアロス、高周波特性が改善されるので、例えば、高周波特性が要求される用途では、20μm以下の平均粒径を有するFe系軟磁性粉を好適に用いることができる。メジアン径d50はより好ましくは18μm以下、さらに好ましくは16μm以下である。一方、平均粒径が小さい場合は透磁率が低くなるため、メジアン径d50はより好ましくは5μm以上である。また、篩等を用いてFe系軟磁性粉から粗い粒子を除くことがより好ましい。この場合、少なくとも32μmアンダーの(すなわち、目開き32μmの篩を通過した)Fe系軟磁性粉を用いることが好ましい。   The average particle diameter of the Fe-based soft magnetic powder (here, the median diameter d50 in the cumulative particle size distribution is used) is not particularly limited, but by reducing the average particle diameter, the strength, core loss, and high frequency characteristics of the laminated parts are reduced. Therefore, for example, in applications where high frequency characteristics are required, an Fe-based soft magnetic powder having an average particle size of 20 μm or less can be suitably used. The median diameter d50 is more preferably 18 μm or less, and still more preferably 16 μm or less. On the other hand, when the average particle size is small, the magnetic permeability is low, so the median diameter d50 is more preferably 5 μm or more. It is more preferable to remove coarse particles from the Fe-based soft magnetic powder using a sieve or the like. In this case, it is preferable to use Fe-based soft magnetic powder that is at least under 32 μm (that is, has passed through a sieve having an opening of 32 μm).

コイル形成層1は更に、得られたシートに接続用のスルーホールを開け、導電体層用ペーストによりコイルパターン3a〜3dを印刷するとともに、スルーホール6に導電体層用ペーストを充填して形成される。図示はしないが、通常シートにはその一面に複数のコイルパターンが形成される。   The coil forming layer 1 is further formed by opening connection through holes in the obtained sheet, printing the coil patterns 3a to 3d with the conductor layer paste, and filling the through holes 6 with the conductor layer paste. Is done. Although not shown, a plurality of coil patterns are usually formed on one surface of the sheet.

導電体層用ペーストは金属粒と有機ビヒクルと溶剤を含み、更にガラス粉末を含んでいても良い。金属粒はAg、Cu、Ag合金、Cu合金等を用いるのが好ましい。コイルパターンは印刷法のほか、転写法も採用できる。導電体層用ペーストに、収縮率制御材として、Pd、Ir、Pt、Ru、Rh、Ti、及びCoからなる群から選ばれる一種以上の金属を付加しても良い。それらの金属の内の幾つか、例えばPt、RuあるいはRhはFe―Al―Cr合金粒の酸化を促進する触媒として機能し、後述する熱処理によってコイルパターンと磁性体層との界面に、Fe−Al−Cr合金粒から形成される酸化物相を安定して形成することが出来て、コイルパターンと磁性体層との絶縁性を向上することが出来る。   The conductor layer paste includes metal particles, an organic vehicle, and a solvent, and may further include glass powder. It is preferable to use Ag, Cu, an Ag alloy, a Cu alloy or the like as the metal particles. In addition to printing, the coil pattern can be transferred. One or more metals selected from the group consisting of Pd, Ir, Pt, Ru, Rh, Ti, and Co may be added to the conductor layer paste as a shrinkage rate control material. Some of these metals, for example, Pt, Ru, or Rh, function as a catalyst for promoting the oxidation of Fe—Al—Cr alloy grains, and are formed at the interface between the coil pattern and the magnetic layer by a heat treatment described later. The oxide phase formed from the Al—Cr alloy grains can be formed stably, and the insulation between the coil pattern and the magnetic layer can be improved.

なお、コイルパターンの上面と実質的に同じ高さとなるように、コイルパターンを除く領域に磁性体ペーストを印刷又は塗布しても良い。磁性体ペーストは前記シートと同じFe系軟磁性粉を含有するのが好ましい。ただし粒径、副成分の種類、添加量等は異なってもよい。磁性体ペーストはFe系軟磁性粉、エチルセルロース等のバインダ及び溶剤を配合して作製する。このような構成によれば、コイルパターンが厚い場合でも、積層圧着時の積層ずれや、圧着後の層間剥離(デラミネーション)の発生を低減できる。   In addition, you may print or apply | coat a magnetic body paste to the area | region except a coil pattern so that it may become substantially the same height as the upper surface of a coil pattern. The magnetic paste preferably contains the same Fe-based soft magnetic powder as the sheet. However, the particle size, the types of subcomponents, the amount added, etc. may be different. The magnetic paste is prepared by blending a Fe soft magnetic powder, a binder such as ethyl cellulose, and a solvent. According to such a configuration, even when the coil pattern is thick, it is possible to reduce the occurrence of stacking misalignment during delamination and delamination after debonding.

コイルパターン3a〜3dがスルーホール6で接続してコイルとなるように、磁性体層2(磁性体域5と複数のコイル形成層1a〜1d)を積層し加熱圧着して成形体とする。   The magnetic body layer 2 (the magnetic body region 5 and the plurality of coil forming layers 1a to 1d) is laminated and thermocompression-bonded to form a molded body so that the coil patterns 3a to 3d are connected through the through holes 6 to form a coil.

次に、前記成形体の熱処理工程について説明する。成形等でFe系軟磁性粉に導入された応力歪を緩和して良好な磁気特性を得るために、成形体に対して熱処理が施される。かかる熱処理によって、さらに、Fe系軟磁性粉の表面にAlが偏析した酸化物相を形成する。この酸化物相は、熱処理によりFe系軟磁性粉と酸素とを反応させ成長させたものであり、Fe系軟磁性粉の自然酸化を超える酸化反応により形成される。かかる熱処理は、大気中、酸素と不活性ガスの混合気体中など、酸素が存在する雰囲気中で行うことができる。また、水蒸気と不活性ガスの混合気体中など、水蒸気が存在する雰囲気中で熱処理を行うこともできる。これらのうち大気中の熱処理が簡便であり好ましい。   Next, the heat treatment process of the molded body will be described. In order to relieve the stress strain introduced into the Fe-based soft magnetic powder by molding or the like and obtain good magnetic properties, the molded body is subjected to heat treatment. Such heat treatment further forms an oxide phase in which Al is segregated on the surface of the Fe-based soft magnetic powder. This oxide phase is grown by reacting Fe-based soft magnetic powder and oxygen by heat treatment, and is formed by an oxidation reaction exceeding the natural oxidation of Fe-based soft magnetic powder. Such heat treatment can be performed in an atmosphere in which oxygen exists, such as in the air or in a mixed gas of oxygen and an inert gas. Further, the heat treatment can be performed in an atmosphere in which water vapor exists, such as in a mixed gas of water vapor and inert gas. Of these, heat treatment in the air is simple and preferable.

本工程の熱処理は、上記酸化物相が形成される温度で行えばよい。かかる熱処理によって絶縁と強度に優れた積層部品が得られる。さらに、本工程の熱処理は、Fe系軟磁性粉が著しく焼結しない温度で行うことが好ましい。Fe系軟磁性粉が著しく焼結すると、Alが偏析した(Alの比率が高い)酸化物相の一部が合金相に取り囲まれてアイランド状に孤立化してネックを形成するようになる。そのため、Fe系軟磁性粉を隔てる絶縁機能が低下するようになる。具体的な熱処理温度は、600〜900℃の範囲が好ましく、700〜800℃の範囲がより好ましく、750〜800℃の範囲がいっそう好ましい。上記温度範囲での保持時間は、積層部品の大きさ、処理量、特性ばらつきの許容範囲などによって適宜設定され、例えば0.5〜3時間に設定される。   The heat treatment in this step may be performed at a temperature at which the oxide phase is formed. By such heat treatment, a laminated part having excellent insulation and strength can be obtained. Furthermore, the heat treatment in this step is preferably performed at a temperature at which the Fe-based soft magnetic powder is not significantly sintered. When the Fe-based soft magnetic powder is significantly sintered, a part of the oxide phase in which Al is segregated (the Al ratio is high) is surrounded by the alloy phase and is isolated in an island shape to form a neck. For this reason, the insulating function separating the Fe-based soft magnetic powder is lowered. The specific heat treatment temperature is preferably in the range of 600 to 900 ° C, more preferably in the range of 700 to 800 ° C, and still more preferably in the range of 750 to 800 ° C. The holding time in the above temperature range is appropriately set according to the size of the laminated component, the processing amount, the allowable range of characteristic variation, and the like, and is set to 0.5 to 3 hours, for example.

Fe−Al−Cr合金粒中のAlが表層に濃化し、前記酸化物相では合金粒内部の合金相よりもAlの比率が高くなって酸化物相でのAlの偏析が生じる。なお、元素分布はSEM画像にて観察することができる。   Al in the Fe—Al—Cr alloy grains is concentrated in the surface layer, and the ratio of Al in the oxide phase is higher than that in the alloy phase inside the alloy grains, and segregation of Al in the oxide phase occurs. The element distribution can be observed with an SEM image.

かかる酸化物相が形成されることによって、ほう珪酸ガラスを用いなくてもFe系軟磁性粉の絶縁性および耐食性が向上する。また、かかる酸化物相は、成形体を構成した後に形成されるため、該酸化物相を介したFe系軟磁性粉同士の結合にも寄与する。Fe系軟磁性粉同士が前記酸化物相を介して結合されることで、高強度の積層部品が得られる。したがって形成方法も簡易になるため生産性が向上する。   By forming such an oxide phase, the insulation and corrosion resistance of the Fe-based soft magnetic powder can be improved without using borosilicate glass. Moreover, since this oxide phase is formed after forming a molded object, it contributes also to the coupling | bonding of Fe type soft magnetic powder through this oxide phase. The Fe-based soft magnetic powders are bonded to each other through the oxide phase, whereby a high-strength laminated component is obtained. Therefore, the forming method is simplified, and the productivity is improved.

形成される酸化物相は2粒子間の粒界相において厚くても数十nm程度であるので、非磁性部分が減じられて透磁率を高めることが出来る。また、前記酸化物相はFe系軟磁性粉の粒界に留まらず、積層部品の表面全体を覆っているのが観察された。   Since the formed oxide phase is about several tens of nanometers in the grain boundary phase between two grains, the nonmagnetic portion can be reduced and the magnetic permeability can be increased. In addition, it was observed that the oxide phase covered not only the grain boundaries of the Fe-based soft magnetic powder but also the entire surface of the laminated component.

通常、前記成形体には複数のコイルを含む。そこで熱処理前に必要な単位毎に切断して少なくとも一つのコイルを内包する単位成形体とし、それを熱処理しても良いし、成形体を熱処理した後、切断して単位成形体としてもよい。   Usually, the molded body includes a plurality of coils. Therefore, the unit molded body may be cut into necessary units before heat treatment so as to include at least one coil and heat-treated. Alternatively, the molded body may be heat-treated and then cut into a unit molded body.

端子電極は、成形体に印刷法、転写法、ディップ法等の従来から知られた形成方法で導電体層用ペーストを用いて形成し焼き付ければ良い。導電体層用ペーストは前記コイルパターンに用いたものを用いることが出来る。端子電極の形成は熱処理前でも後でも構わない。熱処理前なら熱処理工程で焼き付けることが出来る。端子電極には、はんだ付け性を向上するようにめっき皮膜を形成するのが好ましい。このような積層部品は、例えばチョーク、インダクタ、リアクトル、トランス等として用いられる。   The terminal electrode may be formed and baked on the molded body using a conductor layer paste by a conventionally known formation method such as a printing method, a transfer method, or a dip method. As the conductor layer paste, the one used for the coil pattern can be used. The terminal electrode may be formed before or after the heat treatment. If it is before heat treatment, it can be baked in the heat treatment step. It is preferable to form a plating film on the terminal electrode so as to improve solderability. Such laminated parts are used as, for example, chokes, inductors, reactors, transformers, and the like.

導電体層用ペーストはガラス粉末を含むのが好ましい。焼き付け後のガラスは端子電極と積層部品の表面との界面に存在して、端子電極の積層部品への密着強度を向上することが出来る。また、Pt、RuあるいはRhを含む場合には、前記熱処理によって、積層部品の表面であって端子電極との界面に、端子電極に覆われない積層部品の表面に形成された酸化物相よりも厚く酸化物相が形成される。端子電極直下の厚い酸化物層は、端子電極間の絶縁を一層高めるともに、端子電極の密着強度を向上させる。   The conductor layer paste preferably contains glass powder. The glass after baking exists at the interface between the terminal electrode and the surface of the laminated component, and the adhesion strength of the terminal electrode to the laminated component can be improved. When Pt, Ru, or Rh is included, the heat treatment causes the surface of the multilayer component to be at the interface with the terminal electrode, rather than the oxide phase formed on the surface of the multilayer component that is not covered by the terminal electrode. A thick oxide phase is formed. The thick oxide layer directly under the terminal electrodes further increases the insulation between the terminal electrodes and improves the adhesion strength of the terminal electrodes.

本実施態様の積層部品ではシート積層法で作製した場合を説明したが、印刷積層法を採用しても構成可能であって、上記に限定されるものではない。   In the laminated component of the present embodiment, the case where it is manufactured by the sheet lamination method has been described, but it can be configured even if the printing lamination method is adopted, and is not limited to the above.

図4は他の実施態様の積層部品の外観を示し、図5はその断面を示し、図6はその等価回路を示す。この積層部品10はコイルを内包し、その表面にスイッチング素子及び制御回路を含む半導体集積回路部品ICとコンデンサCin,Coutを実装した降圧型DC−DCコンバータである。積層部品10の構成は前述のものとほぼ同じであるので重複する説明を省略する。
FIG. 4 shows the appearance of a laminated part of another embodiment, FIG. 5 shows a cross section thereof, and FIG. 6 shows an equivalent circuit thereof. The laminated component 10 encloses the coil, which is a semiconductor integrated circuit component IC and capacitors Cin, step-down DC-D C converter that implements Cout including a switching element and a control circuit on the surface thereof. Since the configuration of the laminated component 10 is substantially the same as that described above, a duplicate description is omitted.

積層部品10の裏面には複数の端子電極90が設けられており、側面に形成された接続電極により半導体集積回路部品ICや、インダクタと接続されている。接続電極は積層部品内のスルーホールで形成しても良い。端子電極90に付した符号は接続する半導体集積回路部品ICの端子に対応し、端子電極Vconは出力電圧可変制御用端子と、端子電極Venは出力のON/OFF制御用端子と、外部端子Vddはスイッチング素子をON/OFF制御するための端子と、端子電極Vinは入力端子と、端子電極Voutは出力端子と接続する。端子電極GNDはグランド端子GNDと接続する。積層部品10の表面にも絶縁に優れた酸化物相が形成されているので、端子電極や接続電極の形成が可能であって、強度にも優れるので他の電子部品を実装するのにも適している。   A plurality of terminal electrodes 90 are provided on the back surface of the multilayer component 10 and are connected to the semiconductor integrated circuit component IC and the inductor by connection electrodes formed on the side surfaces. The connection electrode may be formed by a through hole in the laminated component. Symbols attached to the terminal electrodes 90 correspond to the terminals of the semiconductor integrated circuit component IC to be connected, the terminal electrode Vcon is an output voltage variable control terminal, the terminal electrode Ven is an output ON / OFF control terminal, and an external terminal Vdd. Is a terminal for ON / OFF control of the switching element, the terminal electrode Vin is connected to the input terminal, and the terminal electrode Vout is connected to the output terminal. The terminal electrode GND is connected to the ground terminal GND. Since an oxide phase with excellent insulation is formed on the surface of the laminated component 10, it is possible to form terminal electrodes and connection electrodes, and it is excellent in strength, so it is suitable for mounting other electronic components. ing.

以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in this example are not intended to limit the scope of the present invention only to those unless otherwise specified.

以下のようにして、積層部品を作製した。Fe系軟磁性粉としてFe−Al−Cr合金粒を用いた。レーザー回折散乱式粒度分布測定装置(堀場製作所製LA−920)で測定した平均粒径(メジアン径d50)は10μmであった。Fe系軟磁性粉は粒状のアトマイズ粉であり、その組成は質量百分率でFe−5.0%Al−4.0%Crであった。アトマイズ粉は、440メッシュ(目開き32μm)の篩を通して粗い粒子を除いてから使用した。   A laminated part was produced as follows. Fe-Al-Cr alloy particles were used as the Fe-based soft magnetic powder. The average particle diameter (median diameter d50) measured with a laser diffraction / scattering particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.) was 10 μm. The Fe-based soft magnetic powder was a granular atomized powder, and its composition was Fe-5.0% Al-4.0% Cr in mass percentage. The atomized powder was used after removing coarse particles through a sieve of 440 mesh (aperture 32 μm).

Fe系軟磁性粉100重量部に対して、溶剤としてエタノールを26部、ブタノールを7.2部、バインダーとしてポリビニルブチラールを1.6部の割合で添加、混合し、脱泡して粘度調整し成形用のスラリーとしシート成形した。   To 100 parts by weight of Fe-based soft magnetic powder, 26 parts of ethanol as a solvent, 7.2 parts of butanol, and 1.6 parts of polyvinyl butyral as a binder are added and mixed, defoamed to adjust the viscosity. A sheet was formed as a slurry for molding.

得られたシートにAgの導電体層用ペーストでコイルパターンを形成し、それを積層して、冷間等方圧加工法(CIP)にて、圧力350kg/cm、温度85℃、時間600秒で圧着して成形体とした。得られた成形体を切断して個片成形体とした後、対向する2面に、ディップ法にて端子電極となる導電体層用ペーストを付着させた。適宜乾燥の後、この成形体に、大気中、750℃の熱処理温度で1時間の熱処理を施し、積層部品を得た。その外形寸法は、長さ2.0mm、幅1.2mm、厚み1.2mmであった。またそのインダクタンスは100kHzで1μHであった。 A coil pattern was formed on the obtained sheet using an Ag conductor layer paste, and the coil pattern was laminated. By a cold isostatic pressing method (CIP), the pressure was 350 kg / cm 2 , the temperature was 85 ° C., and the time was 600. The molded body was pressed in seconds. The obtained molded body was cut into a single-piece molded body, and then a conductor layer paste to be a terminal electrode was attached to two opposing surfaces by a dipping method. After drying appropriately, this molded body was heat-treated in the atmosphere at a heat treatment temperature of 750 ° C. for 1 hour to obtain a laminated part. The external dimensions were 2.0 mm in length, 1.2 mm in width, and 1.2 mm in thickness. The inductance was 1 μH at 100 kHz.

以上の工程により作製した積層部品を基板にはんだ付けで実装した状態で、曲げ、捻りを加えた。実体顕微鏡で観察したところ、磁性体層や端子電極にひびや割れは確認されなかった。   Bending and twisting were applied in a state where the laminated component produced by the above process was mounted on the substrate by soldering. When observed with a stereomicroscope, no cracks or cracks were observed in the magnetic layer or the terminal electrode.

積層部品とは別に、前記シートを用いて環状の試料を作成した。熱処理後の外形寸法は、外径φ13.4mm、内径φ7.7mm、高さ4.0mmである。得られた試料の外周側面から直径方向に荷重をかけ、破壊時の最大加重P(N)を測定し、次式から圧環強度σr(MPa)を求めた。
σr=P(D−d)/(Id
(ここで、D:コアの外径(mm)、d:コアの肉厚(mm)、I:コアの高さ(mm)である。)
その結果、一般的なフェライトの圧環強度を超える100MPaの強度が得られた。
Separately from the laminated parts, an annular sample was prepared using the sheet. The external dimensions after the heat treatment are an outer diameter of φ13.4 mm, an inner diameter of φ7.7 mm, and a height of 4.0 mm. A load was applied in the diameter direction from the outer peripheral side surface of the obtained sample, the maximum load P (N) at the time of fracture was measured, and the crushing strength σr (MPa) was obtained from the following equation.
σr = P (D−d) / (Id 2 )
(Here, D: outer diameter of the core (mm), d: thickness of the core (mm), I: height of the core (mm))
As a result, a strength of 100 MPa exceeding the crushing strength of general ferrite was obtained.

同様に前記シートを用いて、円板状(外径φ13.5mm、厚み4mm)の試料を作製し、その対向する二平面に導電性接着剤を塗り、乾燥・固化の後、被測定物を電極の間にセットした。電気抵抗測定装置(株式会社エーディーシー製8340A)を用いて、50Vの直流電圧を印加し、抵抗値R(Ω)を測定した。被測定物の平面の面積A(m)と厚みt(m)とを測定し、次式により比抵抗ρ(Ωm)を算出したところ、フェライトと同程度の1.3×10kΩmの比抵抗が得られた。
比抵抗ρ(Ωm)=R×(A/t)
Similarly, a disk-shaped sample (outer diameter φ13.5 mm, thickness 4 mm) is prepared using the sheet, and a conductive adhesive is applied to two opposing flat surfaces. After drying and solidification, the object to be measured is prepared. It was set between the electrodes. A resistance value R (Ω) was measured by applying a DC voltage of 50 V using an electrical resistance measuring device (8340A manufactured by ADC Corporation). The area A (m 2 ) and the thickness t (m) of the plane of the object to be measured were measured, and the specific resistance ρ (Ωm) was calculated by the following equation. As a result, 1.3 × 10 4 kΩm, which is about the same as that of ferrite. Specific resistance was obtained.
Specific resistance ρ (Ωm) = R × (A / t)

前記積層部品を切断し、切断面を走査型電子顕微鏡(SEM/EDX)により観察した(倍率:2000倍)。図7は、断面観察写真と、Fe(鉄)、Al(アルミニウム)、O(酸素)の分布を示すマッピングである。明るい色調ほど対象元素が多いことを示す。Fe−Al−Cr合金粒の表面には酸素が多く、酸化物が形成されていること、および各Fe−Al−Cr合金粒同士がこの酸化物を介して結合している様子がわかる。また、AlはFe−Al−Cr合金粒の表面でAlの濃度が顕著に高くなっている。これらのことから、Fe−Al−Cr合金粒の表面に、内部の合金相よりもAlの比率が高い酸化物相が形成されていることが確認された。   The laminated part was cut, and the cut surface was observed with a scanning electron microscope (SEM / EDX) (magnification: 2000 times). FIG. 7 is a mapping showing a cross-sectional observation photograph and the distribution of Fe (iron), Al (aluminum), and O (oxygen). The brighter the color, the greater the number of target elements. It can be seen that the surface of the Fe—Al—Cr alloy grains is rich in oxygen and oxides are formed, and that the Fe—Al—Cr alloy grains are bonded to each other through the oxides. Further, Al has a remarkably high concentration of Al on the surface of the Fe—Al—Cr alloy grains. From these, it was confirmed that an oxide phase having a higher Al ratio than the internal alloy phase was formed on the surface of the Fe—Al—Cr alloy grains.

2 磁性体層
3、3a〜3c コイルパターン
10 積層部品
200a、200b 端子電極

2 Magnetic layer 3, 3a-3c Coil pattern 10 Laminated component 200a, 200b Terminal electrode

Claims (6)

Alが偏析した酸化物相を介してFe系軟磁性粉が結合した磁性体に、Ag粉を含むペーストで形成されたコイルパターンで構成されたコイルを内包し、
前記Fe系軟磁性粉が、目開き32μmの篩を通過し、かつ累積粒度分布におけるメジアン径d50が20μm以下のFe−Al−Cr合金粒であって、
前記Fe−Al−Cr系合金粒は、Alを2.0質量%以上10.0質量%以下、Crを含有量が1.0質量%以上9.0質量%以下、不可避不純物と他の元素を1.0質量%以下で含有し、残部がFeで、CrよりもAlの含有量が多く、
前記酸化物相は前記Fe−Al−Cr合金粒の酸化によって形成され、
前記磁性体は複数の磁性体層を積層して構成され、前記コイルパターンは前記磁性体層を介して積層し、積層方向に接続されたことを特徴とする積層部品。
A coil composed of a coil pattern formed of a paste containing Ag powder is included in a magnetic body in which Fe-based soft magnetic powder is bonded through an oxide phase in which Al is segregated,
The Fe-based soft magnetic powder is an Fe—Al—Cr alloy grain that passes through a sieve having an opening of 32 μm and has a median diameter d50 in a cumulative particle size distribution of 20 μm or less,
The Fe—Al—Cr-based alloy grains include Al of 2.0% by mass to 10.0% by mass, Cr content of 1.0% by mass to 9.0% by mass, inevitable impurities and other elements. 1.0% by mass or less, the balance being Fe, the content of Al being greater than Cr,
The oxide phase is formed by oxidation of the Fe-Al-Cr alloy grains,
The magnetic component is formed by stacking a plurality of magnetic layers, and the coil pattern is stacked via the magnetic layers and connected in the stacking direction .
請求項1に記載の積層部品であって、
前記ペーストに、更にPd、Ir、Pt、Ru、Rh、Ti、及びCoからなる群から選ばれる一種以上の金属を収縮率制御材として含むことを特徴とする積層部品。
The laminated component according to claim 1,
A laminated part, wherein the paste further contains at least one metal selected from the group consisting of Pd, Ir, Pt, Ru, Rh, Ti, and Co as a shrinkage rate control material .
請求項1に記載の積層部品であって、
前記ペーストにPt、RuまたはRhから選ばれる一種以上の金属を含むことを特徴とする積層部品。
The laminated component according to claim 1,
A laminated part comprising one or more metals selected from Pt, Ru or Rh in the paste .
請求項1乃至3のいずれかに記載の積層部品であって、
前記酸化物相に覆われた前記積層部品の表面に前記コイルと接続する端子電極を有し、
前記積層部品の表面と前記端子電極との間にガラスが存在することを特徴とする積層部品。
A laminated part according to any one of claims 1 to 3,
Having a terminal electrode connected to the coil on the surface of the laminated component covered with the oxide phase;
A laminated part characterized in that glass exists between the surface of the laminated part and the terminal electrode .
請求項4に記載の積層部品であって、
前記積層部品に電子部品を載置し、前記端子電極と接続することを特徴とする積層部品。
The laminated component according to claim 4, wherein
An electronic component is placed on the laminated component and connected to the terminal electrode.
請求項1乃至5のいずれかに記載の積層部品の製造方法であって、
磁性体層及びコイルパターンを積層し成形体とする工程と、
前記成形体を、酸素が存在する雰囲気中または水蒸気が存在する雰囲気中で700〜800℃の温度で熱処理して、Fe系軟磁性粉を結合するAlが偏析した酸化物相を形成する工程を含むことを特徴とする積層部品の製造方法。
A method for manufacturing a laminated part according to any one of claims 1 to 5,
A step of forming a molded body in which a magnetic layer and a coil pattern are laminated;
A step of heat-treating the molded body in an atmosphere containing oxygen or an atmosphere containing water vapor at a temperature of 700 to 800 ° C. to form an oxide phase in which Al segregating Fe-based soft magnetic powder is segregated. A method for manufacturing a laminated part, comprising:
JP2014146965A 2014-07-17 2014-07-17 Laminated component and manufacturing method thereof Active JP6493778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014146965A JP6493778B2 (en) 2014-07-17 2014-07-17 Laminated component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146965A JP6493778B2 (en) 2014-07-17 2014-07-17 Laminated component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016025152A JP2016025152A (en) 2016-02-08
JP6493778B2 true JP6493778B2 (en) 2019-04-03

Family

ID=55271697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146965A Active JP6493778B2 (en) 2014-07-17 2014-07-17 Laminated component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6493778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101862466B1 (en) * 2016-08-24 2018-06-29 삼성전기주식회사 Inductor and package having the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220438A (en) * 2004-01-06 2005-08-18 Hitachi Metals Ltd Fe-Cr-Al BASED MAGNETIC POWDER, Fe-Cr-Al BASED MAGNETIC POWDER COMPACT, AND ITS PRODUCTION METHOD
JP4971886B2 (en) * 2007-06-28 2012-07-11 株式会社神戸製鋼所 Soft magnetic powder, soft magnetic molded body, and production method thereof
JP2009049325A (en) * 2007-08-22 2009-03-05 Tdk Corp Electronic component module, and manufacturing method thereof
JP4903101B2 (en) * 2007-09-03 2012-03-28 三菱マテリアル株式会社 High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
CN102598165A (en) * 2009-11-11 2012-07-18 株式会社村田制作所 Laminated ceramic electronic component
JP5980493B2 (en) * 2011-01-20 2016-08-31 太陽誘電株式会社 Coil parts
JP4906972B1 (en) * 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same
JP2012234869A (en) * 2011-04-28 2012-11-29 Taiyo Yuden Co Ltd Coil component

Also Published As

Publication number Publication date
JP2016025152A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
JP6447938B2 (en) Magnetic core and coil component using the same
JP5881992B2 (en) Multilayer inductor and manufacturing method thereof
JP6260508B2 (en) Dust core
JP6390929B2 (en) Magnetic core manufacturing method, magnetic core and coil component using the same
JP5082002B1 (en) Magnetic materials and coil parts
JP6270509B2 (en) Multilayer coil parts
JP6601389B2 (en) Magnetic core, coil component, and manufacturing method of magnetic core
CN102693801A (en) Magnetic material and coil component using the same
KR20130069385A (en) Coil type electronic component
WO2015137493A1 (en) Magnetic core, coil component and magnetic core manufacturing method
TWI679660B (en) Coil parts
JP6493801B2 (en) Coil parts
JP6369749B2 (en) Magnetic core and coil component using the same
CN109716455B (en) Magnetic core and coil component
JP6471882B2 (en) Magnetic core and coil parts
JP6493778B2 (en) Laminated component and manufacturing method thereof
CN110462764B (en) Powder magnetic core with terminal and method for manufacturing the same
JP6478141B2 (en) Magnetic core manufacturing method, magnetic core and coil component using the same
WO2015159981A1 (en) Metal magnetic material and electronic device
JP6428416B2 (en) Metal magnetic materials and electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190221

R150 Certificate of patent or registration of utility model

Ref document number: 6493778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350