JP2005220438A - Fe-Cr-Al BASED MAGNETIC POWDER, Fe-Cr-Al BASED MAGNETIC POWDER COMPACT, AND ITS PRODUCTION METHOD - Google Patents

Fe-Cr-Al BASED MAGNETIC POWDER, Fe-Cr-Al BASED MAGNETIC POWDER COMPACT, AND ITS PRODUCTION METHOD Download PDF

Info

Publication number
JP2005220438A
JP2005220438A JP2004365954A JP2004365954A JP2005220438A JP 2005220438 A JP2005220438 A JP 2005220438A JP 2004365954 A JP2004365954 A JP 2004365954A JP 2004365954 A JP2004365954 A JP 2004365954A JP 2005220438 A JP2005220438 A JP 2005220438A
Authority
JP
Japan
Prior art keywords
magnetic powder
based magnetic
oxide film
mass
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004365954A
Other languages
Japanese (ja)
Inventor
Shinichiro Yokoyama
紳一郎 横山
Kenichi Inoue
謙一 井上
Tatsuya Shoji
辰也 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004365954A priority Critical patent/JP2005220438A/en
Publication of JP2005220438A publication Critical patent/JP2005220438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide Fe-Cr-Al based magnetic powder whose surface can be coated with a substance having high electric resistance without depending on expensive chemical treatment, and which can attain high density when being made into a compact, to provide an Fe-Cr-Al based magnetic powder compact, and to provide its production method. <P>SOLUTION: The Fe-Cr-Al based magnetic powder is composed of, by mass, 1.0 to 30.0% Cr and 1.0 to 8.0% Al, and the balance substantially Fe. In the Fe-Cr-Al based magnetic powder compact, all the contact faces between respective particles composing the structure are substantially isolated by an oxide film containing alumina. The compact can be obtained, e.g., by subjecting the above magnetic powder to heating treatment in an oxidizing atmosphere at ≥800°C, and allowing an oxide film containing alumina of ≥20 mass% to self-form so as to be compacted by discharge plasma sintering. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば、自動車用モ−タの固定子や回転子等、交流磁場中で使用される磁性体の原材料となるFe−Cr−Al系磁性粉末と、Fe−Cr−Al系磁性粉末成形体およびその製造方法に関するものである。   The present invention includes, for example, a Fe-Cr-Al magnetic powder and a Fe-Cr-Al magnetic powder that are raw materials for magnetic materials used in an alternating magnetic field, such as a stator or a rotor of an automobile motor. The present invention relates to a molded body and a manufacturing method thereof.

従来、モ−タの固定子や回転子等、交流磁場中で使用される磁性体には、表面に電気絶縁物質が塗装された電磁鋼板を所定形状に打抜き後、積層した部品(以下、積層体と記す)が用いられている。電磁鋼板の表面に絶縁物質を塗装する目的は、積層体の板厚方向の電気抵抗を高めることによって、交流磁場中で発生する渦電流を抑え、高周波化に伴う損失の増加と比透磁率や磁束密度の低下、すなわち軟磁性の劣化を抑制することである。しかしながら、この絶縁層の存在により、積層された垂直方向の磁束密度が低く、磁気回路は2次元的設計に制約される。   Conventionally, magnetic materials used in alternating magnetic fields such as motor stators and rotors are made by punching electromagnetic steel sheets coated with an electrical insulating material on a surface into a predetermined shape and then stacking them (hereinafter referred to as stacking). Used as body). The purpose of coating an insulating material on the surface of an electrical steel sheet is to increase the electrical resistance in the thickness direction of the laminate, thereby suppressing eddy currents generated in an alternating magnetic field, increasing loss due to higher frequencies, and increasing relative permeability and It is to suppress a decrease in magnetic flux density, that is, deterioration of soft magnetism. However, due to the presence of this insulating layer, the stacked magnetic flux density in the vertical direction is low, and the magnetic circuit is restricted to a two-dimensional design.

この電磁鋼板の積層体に対し、近年、鉄粉に代表される磁性粉末の表面に燐酸塩化物等の絶縁物質を被覆し、この絶縁被覆された磁性粉末に結合剤の樹脂を添加して固化成形した磁性粉末成形体が開発されている(例えば、非特許文献1,2参照)。この磁性粉末成形体は、電磁鋼板の積層体と異なり等方的な磁気特性を示すので、磁気回路の自由度を高め、3次元的な回路設計も適用できるという点で優れた技術である。
伊東正男著「焼結軟磁性材料とその用途および圧粉コアのモ−タへの適用」素形材9月号(2003年)13〜20頁 島田良幸著「高性能P/M軟磁性材料の開発」まてりあ(第42巻第11号(2003)801〜805頁
In recent years, this magnetic steel sheet laminate is coated with an insulating material such as phosphate on the surface of magnetic powder typified by iron powder, and a binder resin is added to the insulating coated magnetic powder and solidified. Molded magnetic powder compacts have been developed (see, for example, non-patent documents 1 and 2). Since this magnetic powder molded body exhibits isotropic magnetic characteristics unlike a laminated body of electromagnetic steel sheets, it is an excellent technique in that the degree of freedom of the magnetic circuit is increased and three-dimensional circuit design can be applied.
Masao Ito, “Sintered Soft Magnetic Materials and Their Uses, and Application to Compaction Core Motors,” September, 2003 (2003), pp. 13-20 Yoshiyuki Shimada "Development of high-performance P / M soft magnetic materials" Materia (Vol. 42, No. 11 (2003), pages 801-805

上述した非特許文献1,2に開示される磁性粉末成形体は、その等方的な磁気特性ゆえに、3次元的な磁気回路設計も適用できる点では有利であるものの、製造工程において、磁性粉末の表面に絶縁物質を被覆するための高価な化学的処理が必要である。   The magnetic powder molded bodies disclosed in Non-Patent Documents 1 and 2 described above are advantageous in that a three-dimensional magnetic circuit design can be applied because of their isotropic magnetic characteristics. Expensive chemical treatment is required to coat the surface of the insulating material.

また、絶縁被覆後の磁性粉末を固化成形する際、結合剤として樹脂を添加する必要がある。このため、磁性粉末成形体の組織は、図8(非特許文献2の図9を引用)に模式的に示す形態となる。すなわち、絶縁膜2で覆われた磁性粉末1と隣り合う同磁性粉末1との間に、樹脂3の入る空間が必要となる。この樹脂3は、磁性粉末成形体の密度を低下させる。磁性粉末成形体における密度の低下は、磁束密度が低下する原因となる。   Moreover, when solidifying and molding the magnetic powder after the insulation coating, it is necessary to add a resin as a binder. For this reason, the structure | tissue of a magnetic powder molded object becomes a form typically shown in FIG. 8 (citing FIG. 9 of a nonpatent literature 2). That is, a space in which the resin 3 enters is required between the magnetic powder 1 covered with the insulating film 2 and the adjacent magnetic powder 1. This resin 3 reduces the density of the magnetic powder molded body. The decrease in density in the magnetic powder compact causes a decrease in magnetic flux density.

ここに挙げた2つの課題((1)絶縁被覆のための高価な化学的処理、(2)樹脂添加による磁性粉末成形体の密度低下)は、磁性粉末成形体をモ−タの固定子や回転子に実用化する上で問題となる。本発明の目的は、これら2つの問題を解決することである。すなわち、安価な方法により粉末表面を電気抵抗の高い物質で被覆することができる磁性粉末と、その高電気抵抗物質で被覆された磁性粉末、および結合剤の樹脂を添加することなく、各粒子間が電気的に絶縁された磁性粉末成形体とその製造方法を提供することである。   The two problems listed here ((1) expensive chemical treatment for insulation coating, (2) density reduction of magnetic powder molded body due to resin addition) This is a problem when put to practical use in a rotor. The object of the present invention is to solve these two problems. That is, without adding a magnetic powder that can coat the powder surface with a material having high electrical resistance by an inexpensive method, a magnetic powder coated with the high electrical resistance material, and a binder resin, Is an electrically insulated magnetic powder molded body and a method for producing the same.

本発明者の検討によると、磁性粉末の表面を被覆する物質は、非特許文献1、2に記される燐酸塩化物や樹脂のような完全な絶縁物質でなくても、磁性粉末の電気抵抗、ひいては該磁性粉末を用いて成る磁性粉末成形体の電気抵抗を高めることのできる物質であれば、高周波域での軟磁性劣化を抑制できる場合が多い。それ故、本発明者は、磁性粉末の表面に外的要素による別の絶縁物質を被覆するのではなく、磁性粉末自身の化学反応によって表面に高電気抵抗の物質を自己生成させることにより、絶縁被覆のための化学的処理を簡素化できることを見出した。   According to the study of the present inventor, even if the material covering the surface of the magnetic powder is not a complete insulating material such as a phosphate compound or a resin described in Non-Patent Documents 1 and 2, the electrical resistance of the magnetic powder As long as the substance can increase the electric resistance of the magnetic powder molded body using the magnetic powder, it is often possible to suppress soft magnetic deterioration in a high frequency range. Therefore, the present inventor does not coat the surface of the magnetic powder with another insulating material due to an external element, but allows the surface of the magnetic powder to self-generate a high electrical resistance material by a chemical reaction of the magnetic powder itself. It has been found that the chemical treatment for coating can be simplified.

そして、この高電気抵抗物質の自己生成が可能な磁性粉末として、最適な成分組成のFe−Cr−Al系磁性粉末を見出し、本発明に到達した。より具体的には、上記のFe−Cr−Al系磁性粉末を酸化処理することにより、表面にアルミナを含む高電気抵抗の酸化皮膜を生成できること、この高電気抵抗の酸化皮膜で被覆されたFe−Cr−Al系磁性粉末の表面状態、該磁性粉末を固化した磁性粉末成形体の組織と磁気特性、および該磁性粉末の固化成形方法を調査検討することにより、本発明に到達した。   As a magnetic powder capable of self-generation of this high electrical resistance substance, an Fe—Cr—Al based magnetic powder having an optimum component composition was found, and the present invention was achieved. More specifically, by oxidizing the above-described Fe—Cr—Al based magnetic powder, a high electrical resistance oxide film containing alumina on the surface can be generated, and Fe coated with the high electrical resistance oxide film. The present invention was reached by investigating and examining the surface state of the —Cr—Al-based magnetic powder, the structure and magnetic properties of the magnetic powder compact obtained by solidifying the magnetic powder, and the solidification molding method of the magnetic powder.

すなわち本発明は、質量%でCr:1.0〜30.0%、Al:1.0〜8.0%、残部が実質的にFeから成ることを特徴とするFe−Cr−Al系磁性粉末である。好ましくは、質量%でTi:1.0%以下、Zr:1.0%以下のうちの一種または二種を含有するFe−Cr−Al系磁性粉末である。そして、上記のFe−Cr−Al系磁性粉末の表面に、質量%で20%以上のアルミナを含む酸化皮膜が自己生成されたFe−Cr−Al系磁性粉末であり、より好ましくは質量%で50%以上のアルミナを含む酸化皮膜が自己生成されたFe―Cr―Al系磁性粉末である。   That is, according to the present invention, the Fe—Cr—Al-based magnetism is characterized in that Cr: 1.0-30.0%, Al: 1.0-8.0% by mass, and the balance being substantially composed of Fe. It is a powder. Preferably, it is Fe—Cr—Al based magnetic powder containing one or two of Ti: 1.0% or less and Zr: 1.0% or less by mass%. And it is Fe-Cr-Al type magnetic powder by which the oxide film containing 20% or more of alumina by mass% was self-generated on the surface of said Fe-Cr-Al type magnetic powder, More preferably, it is by mass%. This is an Fe—Cr—Al based magnetic powder in which an oxide film containing 50% or more of alumina is self-generated.

また、本発明は、組織を構成する各粒子間の接触面のすべてが、アルミナを含む酸化皮膜により実質的に隔離されて成るFe−Cr−Al系磁性粉末成形体であり、粉末間に結合剤の樹脂を導入しないものである。   Further, the present invention is a Fe—Cr—Al based magnetic powder molded body in which all contact surfaces between particles constituting a structure are substantially isolated by an oxide film containing alumina, and bonded between the powders. The agent resin is not introduced.

更に、本発明は、質量%でCr:1.0〜30.0%、Al:1.0〜8.0%、残部が実質的にFeから成るFe−Cr−Al系磁性粉末、または上記の組成に質量%でTi:1.0%以下、Zr:1.0%以下のうちの一種または二種を含有するFe−Cr−Al系磁性粉末を800℃以上の酸化性雰囲気で加熱処理して、表面に質量%で20%以上のアルミナを含む酸化皮膜を自己生成させ、次に該加熱処理後の粉末を固化成形させることを特徴とするFe−Cr−Al系磁性粉末成形体の製造方法であり、好ましくは放電プラズマ焼結によって固化成形することを特徴とするFe−Cr−Al系磁性粉末成形体の製造方法である。   Furthermore, the present invention provides a Fe—Cr—Al based magnetic powder consisting of Cr: 1.0 to 30.0%, Al: 1.0 to 8.0%, and the balance substantially consisting of Fe, or Fe-Cr-Al-based magnetic powder containing one or two of Ti: 1.0% or less and Zr: 1.0% or less in the composition by mass is heated in an oxidizing atmosphere of 800 ° C. or higher. An Fe-Cr-Al magnetic powder molded body characterized in that an oxide film containing 20% by mass or more of alumina on the surface is self-generated, and then the heat-treated powder is solidified and molded. It is a manufacturing method, preferably a Fe-Cr-Al based magnetic powder molded body characterized by solidification molding by discharge plasma sintering.

本発明のFe−Cr−Al系磁性粉末は、酸化処理によって、容易にアルミナを含む高電気抵抗の酸化皮膜を表面に生成させることができるので、安価な方法で粉末表面を絶縁被覆することができる。また、本発明のFe−Cr−Al系磁性粉末成形体は、結合剤を無添加のため高密度である。更に、磁性粉末成形体を構成する各粒子は、アルミナを含む酸化皮膜で覆われているので、電気抵抗が高い。それ故、交流磁場中での使用に適した高磁束密度の磁性粉末成形体となることが期待され、モ−タの固定子や回転子への適用が期待できる。   Since the Fe—Cr—Al based magnetic powder of the present invention can easily form a high electrical resistance oxide film containing alumina on the surface by oxidation treatment, it is possible to insulate the powder surface with an inexpensive method. it can. In addition, the Fe—Cr—Al based magnetic powder molded body of the present invention has a high density because no binder is added. Furthermore, since each particle constituting the magnetic powder molded body is covered with an oxide film containing alumina, the electric resistance is high. Therefore, it is expected to be a magnetic powder compact having a high magnetic flux density suitable for use in an alternating magnetic field, and can be expected to be applied to a stator or a rotor of a motor.

上述したように、本発明の第一の特徴は、酸化処理によって表面にアルミナを含む高電気抵抗の酸化皮膜を自己生成できる磁性粉末としてFe−Cr−Al系磁性粉末を採用し、そのための最適な成分組成をも明らかにしたことにある。以下、Fe−Cr−Al系磁性粉末の化学組成を規定した理由を述べる。なお、特に記載のない限り、質量%は、%として記す。   As described above, the first feature of the present invention is that the Fe—Cr—Al based magnetic powder is adopted as the magnetic powder capable of self-generating a high electrical resistance oxide film containing alumina on the surface by oxidation treatment, and optimal for that. This is because the composition of various components has been clarified. The reason why the chemical composition of the Fe—Cr—Al based magnetic powder is specified will be described below. Unless otherwise specified, mass% is expressed as%.

・Cr:1.0〜30.0%
Crは、磁性粉末を酸化性雰囲気で加熱処理する際、Feの酸化を抑制し、防止する役割を担う。すなわち、Crを含まないFe−Al系磁性粉末では、AlよりもFeが優先的に酸化するので、表面の酸化皮膜中にアルミナが生成し難く、導電性のあるFeの酸化物が生成する。適量のCrを含有することにより、表面へのFeの拡散が抑制され、Alの優先酸化が起こる。また、Cr添加は、酸化皮膜を構成する酸化物粒子を微細化し、ひいては酸化皮膜の構造を緻密、均一化するのにも有効である。Cr量の範囲を1.0〜30.0%としたのは、1.0%未満では酸化処理後の表面のアルミナ生成量が少なく、逆に30.0%を超える範囲では、アルミナ生成量は多いものの、磁性粉末成形体の磁束密度が低下するためである。Cr量のより望ましい範囲は、2.0〜10.0%である。
・ Cr: 1.0-30.0%
When Cr heat-processes magnetic powder in oxidizing atmosphere, it plays the role which suppresses and prevents the oxidation of Fe. That is, in Fe-Al based magnetic powder not containing Cr, Fe is preferentially oxidized over Al, so that it is difficult to produce alumina in the oxide film on the surface, and conductive Fe oxide is produced. By containing an appropriate amount of Cr, diffusion of Fe to the surface is suppressed and preferential oxidation of Al occurs. Further, the addition of Cr is also effective for making the oxide particles constituting the oxide film finer, and thus making the structure of the oxide film dense and uniform. The range of the amount of Cr is set to 1.0 to 30.0%. When the amount is less than 1.0%, the amount of alumina produced on the surface after the oxidation treatment is small. Conversely, when the amount exceeds 30.0%, the amount of alumina produced is This is because the magnetic flux density of the magnetic powder compact is reduced. A more desirable range of the Cr content is 2.0 to 10.0%.

・Al:1.0〜8.0%
Alは、磁性粉末を酸化処理した際、酸化皮膜中にアルミナを生成させるために必要な元素である。Al量の範囲を1.0〜8.0%としたのは、1.0%未満では粉末を酸化処理後の表面のアルミナ生成量が少なく、逆に8.0%を超える範囲では、磁性粉末成形体の磁束密度が低下するためである。Al量のより好ましい範囲は3.0〜6.0%である。
-Al: 1.0-8.0%
Al is an element necessary for generating alumina in the oxide film when the magnetic powder is oxidized. The range of Al content is set to 1.0 to 8.0%. When the amount is less than 1.0%, the amount of alumina produced on the surface of the powder after the oxidation treatment is small. This is because the magnetic flux density of the powder compact decreases. A more preferable range of the amount of Al is 3.0 to 6.0%.

なお、残部は実質的にFeとするが、C,Si,Mn,P,S,O,N等の不純物元素は、含有される。これらの元素は、磁性粉末成形体の磁気特性に悪影響の無い範囲として、下記の範囲で含有して良く、望ましい規制量である。
C≦0.10%、Si≦0.50%、Mn≦0.50%、
P≦0.05%、S≦0.05%、O≦0.05%、N≦0.05%
Although the balance is substantially Fe, impurity elements such as C, Si, Mn, P, S, O, and N are contained. These elements may be contained in the following ranges as a range that does not adversely affect the magnetic properties of the magnetic powder compact, and are desirable regulated amounts.
C ≦ 0.10%, Si ≦ 0.50%, Mn ≦ 0.50%,
P ≦ 0.05%, S ≦ 0.05%, O ≦ 0.05%, N ≦ 0.05%

好ましい元素として、Ti:1.0%以下、Zr:1.0%以下のうちの一種または二種を含有することとした理由を述べる。TiやZrは、磁性粉末を酸化処理した際、内部酸化物となって表面に生成したアルミナを含む酸化皮膜と粉末間の密着性を強固にする効果(以下、アンカ−リング効果と記す)がある。好ましくは、いずれの元素も0.05%以上とすることがアンカーリング効果を得る上で好ましい。但し、いずれの元素も1.0%を超える範囲では、アンカ−リング効果は大きいものの、磁性粉末成形体の磁束密度が低下するので、上述の上限範囲に規定した。より好ましくは、Ti:0.10〜0.50%、Zr:0.10〜0.50%のうちの一種または二種を含有すると良い。   The reason for including one or two of Ti: 1.0% or less and Zr: 1.0% or less as a preferable element will be described. Ti and Zr have an effect of strengthening the adhesion between the oxide film containing alumina formed on the surface as an internal oxide and the powder when the magnetic powder is oxidized (hereinafter referred to as an anchoring effect). is there. Preferably, any element is made 0.05% or more for obtaining the anchoring effect. However, in any element exceeding 1.0%, although the anchoring effect is large, the magnetic flux density of the magnetic powder molded body is lowered, so the above upper limit range is specified. More preferably, one or two of Ti: 0.10 to 0.50% and Zr: 0.10 to 0.50% may be contained.

高電気抵抗皮膜で被覆したFe−Cr−Al系磁性粉末の表面のアルミナ比率を規定した理由を述べる。表面に質量%で20%以上のアルミナを含む酸化皮膜が生成されていることとしたのは、該磁性粉末を固化成形して磁性粉末成形体とした際の電気抵抗を十分に高めるためである。アルミナ比率が20%以上の酸化皮膜であれば、高電気抵抗皮膜としての機能を果たすことができる。なお、この場合の20%以上とは、走査型電子顕微鏡に付設されたエネルギ−分散型X線分析装置(以下、SEM−EDXと記す)を用いて15kVの加速電圧下で粉末表面を定量分析し、検出されるすべての酸化物(FeO,Cr,Al)のうち、Al(アルミナ)の質量比率が20%以上である状態を指す。表面のアルミナ比率のより望ましい範囲は50%以上、更に好ましくは70%以上である。 The reason why the ratio of alumina on the surface of the Fe—Cr—Al magnetic powder coated with the high electrical resistance film is specified will be described. The reason why an oxide film containing 20% or more by mass of alumina is formed on the surface is to sufficiently increase the electric resistance when the magnetic powder is solidified and formed into a magnetic powder molded body. . If the oxide film has an alumina ratio of 20% or more, it can function as a high electrical resistance film. In this case, 20% or more means that the powder surface is quantitatively analyzed under an acceleration voltage of 15 kV using an energy-dispersive X-ray analyzer (hereinafter referred to as SEM-EDX) attached to the scanning electron microscope. In addition, among all the detected oxides (FeO, Cr 2 O 3 , Al 2 O 3 ), the mass ratio of Al 2 O 3 (alumina) is 20% or more. A more desirable range of the alumina ratio on the surface is 50% or more, more preferably 70% or more.

本発明の第二の特徴は、結合剤の樹脂を添加することなく、各粒子間が電気抵抗の高い皮膜により隔離されたFe−Cr−Al系磁性粉末成形体とその製造方法にある。つまり、磁性粉末成形体の組織を規定した理由を述べると、組織を構成する各粒子間の接触面のすべてが、アルミナを含む酸化皮膜により実質的に隔離されて成ることとしたのは、該磁性粉末成形体の電気抵抗を高め、交流磁場中で発生する渦電流損を低減するためである。そして、粉末間には結合剤の樹脂が導入されていないので、該成形体は高密度が達成される。   The second feature of the present invention resides in a Fe—Cr—Al based magnetic powder molded body in which each particle is isolated by a film having a high electric resistance without adding a binder resin, and a method for producing the same. That is, to explain the reason for defining the structure of the magnetic powder compact, all the contact surfaces between the particles constituting the structure are substantially isolated by the oxide film containing alumina. This is to increase the electric resistance of the magnetic powder compact and reduce eddy current loss generated in an alternating magnetic field. And since the binder resin is not introduced between the powders, the molded body achieves high density.

Fe−Cr−Al系磁性粉末成形体の製造方法としては、まず、上記の、質量%でCr:1.0〜30.0%、Al:1.0〜8.0%、残部が実質的にFeから成るFe−Cr−Al系磁性粉末、またはこの組成に質量%でTi:1.0%以下、Zr:1.0%以下のうちの一種または二種を含有するFe−Cr−Al系磁性粉末を800℃以上の酸化性雰囲気で加熱処理して、表面に質量%で20%以上、好ましくは50%以上のアルミナを含む酸化皮膜を生成させると良い。加熱温度を800℃以上としたのは、磁性粉末表面に20%以上のアルミナを生成させるために有効な温度であるからである。より好ましくは、900℃以上であると良い。   As a method for producing a Fe—Cr—Al based magnetic powder molded body, first, Cr: 1.0 to 30.0%, Al: 1.0 to 8.0% in the above-mentioned mass%, and the balance is substantial. Fe-Cr-Al-based magnetic powder composed of Fe, or Fe-Cr-Al containing one or two of Ti: 1.0% or less and Zr: 1.0% or less in this composition. The system magnetic powder may be heat-treated in an oxidizing atmosphere at 800 ° C. or higher to produce an oxide film containing alumina on the surface by 20% by mass or more, preferably 50% or more by mass. The reason why the heating temperature is set to 800 ° C. or more is that the heating temperature is effective for producing 20% or more of alumina on the surface of the magnetic powder. More preferably, it is 900 degreeC or more.

次に、この酸化皮膜を生成させた磁性粉末を固化成形するが、800℃以上の加熱によって磁性粉末同士が凝集している際には、この凝集体を粉砕する工程を入れても良い。磁性粉末の固化成形の方法としては、放電プラズマ焼結が望ましい。その理由は、結合剤としての樹脂を添加しなくても、粉末表面に生成したアルミナを含む酸化皮膜同士を十分に焼結することができるからである。放電プラズマ焼結により成形されたFe−Cr−Al系磁性粉末成形体は、樹脂を無添加であるが故に高密度である。それ故、交流磁場中での使用に適した高磁束密度の磁性粉末成形体となることが期待でき、モ−タの固定子や回転子への適用が期待できる。   Next, the magnetic powder on which the oxide film is formed is solidified and molded. When the magnetic powder is aggregated by heating at 800 ° C. or higher, a step of pulverizing the aggregate may be added. As a method of solidifying and molding the magnetic powder, discharge plasma sintering is desirable. The reason is that oxide films containing alumina produced on the powder surface can be sufficiently sintered without adding a resin as a binder. The Fe—Cr—Al based magnetic powder molded body formed by spark plasma sintering has a high density because no resin is added. Therefore, it can be expected to be a magnetic powder compact having a high magnetic flux density suitable for use in an alternating magnetic field, and application to a stator or rotor of a motor can be expected.

以下の実施例で本発明を更に詳しく説明する。
真空溶解により、母合金を溶製後、ガスアトマイズ装置を用いて3種類の組成の磁性粉末を作製した。それらの化学組成(質量%)を表1に示す。表1のNo.1とNo.2は、本発明のFe−Cr−Al系磁性粉末に相当する。また、表1のNo.3は、Cr無添加であり、本発明の比較例である。
The following examples further illustrate the present invention.
After melting the mother alloy by vacuum melting, magnetic powders of three types of compositions were prepared using a gas atomizer. Their chemical composition (mass%) is shown in Table 1. No. in Table 1 1 and No. 2 corresponds to the Fe—Cr—Al based magnetic powder of the present invention. In Table 1, No. 3 is a Cr-free additive and is a comparative example of the present invention.

これら3種類の磁性粉末を900〜1180℃間の各温度に保持した大気炉中で各1時間の加熱処理を行った後に空冷し、粉末表面に酸化皮膜を生成させた。なお、900〜1180℃間の各温度での加熱処理により、粉末同士が凝集したので、空冷後に凝集体を粉砕した。粉砕後の粉末表面をSEM−EDXにより15kVの加速電圧下で観察、分析した。表面の観察例として、No.1(本発明)を1180℃で加熱処理後、No.2(本発明)を1100℃で加熱処理後、No.2(本発明)を900℃で加熱処理後、及びNo.3(比較例)を1180℃で加熱処理後のものの観察結果をそれぞれ図3〜6に示す。また、各加熱処理後の粉末における酸化物比率の分析結果を表2に示す。   These three types of magnetic powders were heat-treated for 1 hour in an atmospheric furnace maintained at temperatures between 900 and 1180 ° C., and then air-cooled to generate an oxide film on the powder surface. In addition, since powders aggregated by heat processing at each temperature between 900-1180 degreeC, the aggregate was grind | pulverized after air cooling. The powder surface after pulverization was observed and analyzed by SEM-EDX under an acceleration voltage of 15 kV. As an example of surface observation, No. 1 (invention) after heat treatment at 1180 ° C. No. 2 (invention) after heat treatment at 1100 ° C. 2 (invention) after heat treatment at 900 ° C. 3 to 6 show the observation results of 3 (comparative example) after heat treatment at 1180 ° C., respectively. Table 2 shows the analysis results of the oxide ratio in the powder after each heat treatment.

本発明のNo.1を1180℃で加熱処理後のもの(図3)、及び本発明のNo.2を1100℃で加熱処理後のもの(図4)では、酸化皮膜の表面は、緻密、均一な構造となっており、それぞれ79.3%、73.0%と高い比率のアルミナを含む酸化皮膜が生成している(表2)。また、本発明のNo.2を900℃で加熱処理後のもの(図5)の酸化皮膜は、1100℃で加熱処理後のもの(図4)と比較すると、酸化皮膜が薄く、酸化皮膜の下地である粉末の結晶粒界が観察されているが、その皮膜形態は緻密、かつ均一である。また、酸化皮膜中のアルミナ比率は、25.9%と20%以上である(表2)。これに対し、比較例のNo.3では、酸化皮膜の表面形態は粗く(図6)、酸化皮膜中のアルミナ比率は13.1%しか検出されていない(表2)。   No. of the present invention. No. 1 after heat treatment at 1180 ° C. (FIG. 3) and No. 1 of the present invention. 2 after heat treatment at 1100 ° C. (FIG. 4), the surface of the oxide film has a dense and uniform structure, and contains an oxide containing a high proportion of 79.3% and 73.0%, respectively. A film is formed (Table 2). In addition, No. 1 of the present invention. The oxide film of No. 2 after heat treatment at 900 ° C. (FIG. 5) has a thinner oxide film than the one after heat treatment at 1100 ° C. (FIG. 4). Although the field is observed, the film form is dense and uniform. Moreover, the alumina ratio in an oxide film is 25.9% and 20% or more (Table 2). In contrast, No. of the comparative example. In No. 3, the surface form of the oxide film was rough (FIG. 6), and the alumina ratio in the oxide film was detected only at 13.1% (Table 2).

酸化皮膜の生成による電気抵抗の変化を調べるため、加熱処理を施す前の3種類のFe−Cr−Al系磁性粉末(No.1〜3)、及び加熱処理によって図3〜6に示した各酸化皮膜を生成した4種類のFe−Cr−Al系磁性粉末から、各2gずつ試料を取り出し、各磁性粉末別に純銅製の治具内に充填、圧粉して直径11mm、厚さ3mm程度の7種類の圧粉体を得た。磁性粉末そのものの電気抵抗を測定することは困難であるため、このように磁性粉末を純銅製の治具内に詰めた圧粉体の電気抵抗を測定することで、磁性粉末の電気抵抗として代用する。各治具の両端に500mAの直流電流を流し、両端の電位差測定から、各磁性粉末の電気抵抗を決定した結果を表3に示す。   In order to investigate the change in electrical resistance due to the formation of an oxide film, three types of Fe—Cr—Al magnetic powder (No. 1 to 3) before heat treatment, and each of the heat treatment shown in FIGS. Samples of 2 g each were taken out from the four types of Fe-Cr-Al magnetic powders on which the oxide film was formed, filled in a pure copper jig for each magnetic powder, and compacted to have a diameter of about 11 mm and a thickness of about 3 mm. Seven types of green compacts were obtained. Since it is difficult to measure the electrical resistance of the magnetic powder itself, measuring the electrical resistance of the green compact filled with the magnetic powder in a pure copper jig in this way can be used as the electrical resistance of the magnetic powder. To do. Table 3 shows the results of determining the electrical resistance of each magnetic powder from a potential difference measurement at both ends by passing a DC current of 500 mA through both ends of each jig.

表3より、加熱処理を施す前の状態では、No.1〜3の3種類の磁性粉末の電気抵抗に大差は無い。しかしながら、本発明のNo.1とNo.2の磁性粉末では加熱処理を施すことによって電気抵抗が上昇している。特に、No.1を1180℃、No.2を1100℃で加熱処理し、酸化皮膜内のアルミナ比率をそれぞれ79.3%、73.0%と高めた場合には、電気抵抗の上昇が大きい。また、No.2を900℃で加熱処理し、酸化皮膜内のアルミナ比率を25.9%とした場合にも、高電気抵抗化の効果が見られる。一方、比較例のNo.3を1180℃で加熱処理しても、酸化皮膜内のアルミナ比率が低いので、電気抵抗は殆ど上昇していない。   From Table 3, in the state before performing heat processing, it is No. There is no great difference in the electrical resistance of the three types of magnetic powders 1 to 3. However, no. 1 and No. In the magnetic powder No. 2, the electrical resistance is increased by heat treatment. In particular, no. 1 at 1180 ° C. 2 was heat-treated at 1100 ° C., and the alumina ratio in the oxide film was increased to 79.3% and 73.0%, respectively, the increase in electrical resistance was large. No. Even when 2 is heat-treated at 900 ° C. and the alumina ratio in the oxide film is 25.9%, the effect of increasing the electrical resistance is also observed. On the other hand, no. Even if 3 is heat-treated at 1180 ° C., the alumina ratio in the oxide film is low, so the electrical resistance hardly increases.

以上の実施例1より、粉末の化学組成を本発明の規定範囲とすることによって、加熱処理後には表面にアルミナ比率の高い酸化皮膜を自己生成できる。そして、このアルミナ比率を本発明の規定範囲(20%以上)とすることによって、磁性粉末の電気抵抗上昇の効果があり、望ましい範囲である50%以上とすることによって、更に高電気抵抗化できることが確認された。   From the above Example 1, by setting the chemical composition of the powder within the specified range of the present invention, an oxide film having a high alumina ratio can be self-generated on the surface after the heat treatment. And by making this alumina ratio into the specified range (20% or more) of the present invention, there is an effect of increasing the electric resistance of the magnetic powder, and by making it the desirable range of 50% or more, it is possible to further increase the electric resistance. Was confirmed.

表3において、酸化皮膜中のアルミナ比率が20%以上の3種類のFe−Cr−Al系磁性粉末(No.1を1180℃加熱、No.2を1100℃加熱、No.2を900℃加熱)、及び加熱処理を施していないNo.2の磁性粉末を、成形用の黒鉛型に充填した。型内には、結合剤の樹脂は、全く添加しなかった。この充填した粉末を放電プラズマ焼結機の真空チャンバー内に入れ、50(MPa)の圧力を掛けた状態で900〜1100℃の各温度に昇温後、5分間加熱保持して加圧焼結を行い、径22mm、高さ5mmのFe−Cr−Al系磁性粉末成形体を得た。磁性粉末の種類とその酸化処理時の加熱温度、および放電プラズマ焼結時の加熱温度と得られたFe−Cr−Al系磁性粉末成形体の密度、真密度、相対密度を一覧にして、表4に示す。なお、表中の真密度は、各磁性粉末の母合金の密度を示している。   In Table 3, three types of Fe—Cr—Al-based magnetic powders having an alumina ratio of 20% or more in the oxide film (No. 1 heated at 1180 ° C., No. 2 heated at 1100 ° C., No. 2 heated at 900 ° C. ), And No. not subjected to heat treatment. The magnetic powder 2 was filled into a graphite mold for molding. No binder resin was added to the mold. This filled powder is put in a vacuum chamber of a discharge plasma sintering machine, heated to 900-1100 ° C. under a pressure of 50 (MPa), heated and held for 5 minutes, and then pressure sintered. And a Fe—Cr—Al based magnetic powder compact having a diameter of 22 mm and a height of 5 mm was obtained. List the types of magnetic powder, the heating temperature during oxidation treatment, the heating temperature during discharge plasma sintering, and the density, true density, and relative density of the obtained Fe-Cr-Al-based magnetic powder compact. 4 shows. In addition, the true density in a table | surface has shown the density of the mother alloy of each magnetic powder.

放電プラズマ焼結により製造した磁性粉末成形体A〜Dにおいては、いずれも90%以上の高い相対密度が得られており、結合剤の樹脂を全く添加していないことの効果が現れている。これらの磁性粉末成形体の一部を切り出し、樹脂に埋め込んで鏡面研磨後、組織調査に供した。この内、磁性粉末成形体Aの光学顕微鏡観察組織とSEM−EDXによる各元素(O,Al,Cr,Fe)の分布をそれぞれ図1と図2に示す(図2においては、各元素の欠乏部が黒色を呈する)。図1より、組織を構成する各粒子間の実質すべてが、酸化皮膜によって隔離されており、また図2より、図1に観察される酸化皮膜は、アルミナに富む酸化皮膜であることが分かる。そして、磁性粉末成形体B,Cにおいても、同様に各粒子間の接触面のすべてが、アルミナを含む酸化皮膜により実質的に隔離された組織形態となっていた。但し、粉末時に加熱処理を施していない磁性粉末成形体Dでは、各粒子間の接触面に酸化皮膜が生成しておらず、本発明の比較例である。   In the magnetic powder compacts A to D produced by the discharge plasma sintering, a high relative density of 90% or more is obtained in all cases, and the effect that no binder resin is added appears. A part of these magnetic powder compacts was cut out, embedded in a resin, mirror-polished, and subjected to a structure investigation. Among these, the optical microscope observation structure of the magnetic powder compact A and the distribution of each element (O, Al, Cr, Fe) by SEM-EDX are shown in FIGS. 1 and 2, respectively (in FIG. 2, the lack of each element). Part is black). From FIG. 1, it can be seen that substantially all of the particles constituting the structure are isolated by an oxide film, and from FIG. 2, the oxide film observed in FIG. 1 is an oxide film rich in alumina. Similarly, in the magnetic powder compacts B and C, all of the contact surfaces between the particles were substantially in the form of a structure isolated by an oxide film containing alumina. However, in the magnetic powder molded body D that is not subjected to heat treatment when powdered, no oxide film is formed on the contact surfaces between the particles, which is a comparative example of the present invention.

次に、本発明の磁性粉末成形体Bと、比較例の磁性粉末成形体Dより、厚さ4mm、外径20mm、内径14mmの環状試料を切り出し、10回の巻線を施した後、最大印加磁場H=0.14(A/m)の条件で、周波数f=1〜100(kHz)での比透磁率μを測定した。各磁性粉末成形体の比透磁率μの周波数依存性を図7に示す。本発明の磁性粉末成形体Bでは、周波数が100kHzまで上昇しても、高周波化による比透磁率の低下、すなわち軟磁性の劣化が起きていない。一方、比較例の磁性粉末成形体Dでは、低周波数側の1kHzでは、磁性粉末成形体Bより高い比透磁率を示しているものの、高周波化に伴って比透磁率が低下している。 Next, an annular sample having a thickness of 4 mm, an outer diameter of 20 mm, and an inner diameter of 14 mm is cut out from the magnetic powder molded body B of the present invention and the magnetic powder molded body D of the comparative example. under the conditions of the applied magnetic field H m = 0.14 (a / m ), it was measured relative permeability mu r at frequency f = 1~100 (kHz). The frequency dependence of the permeability mu r of the magnetic powder compact illustrated in FIG. In the magnetic powder molded body B of the present invention, even when the frequency is increased to 100 kHz, the relative permeability is not lowered due to the high frequency, that is, the soft magnetism is not deteriorated. On the other hand, in the magnetic powder molded body D of the comparative example, although the relative permeability is higher than that of the magnetic powder molded body B at 1 kHz on the low frequency side, the relative permeability is reduced as the frequency is increased.

以上の実施例2より、表面に酸化膜が自己生成した本発明の磁性粉末は、放電プラズマ焼結を用いた加圧焼結により、結合剤の樹脂を全く添加しなくても、各粒子間の接触面の実質すべてが酸化皮膜で隔離された高密度の粉末成形体とできること、及び各粒子間の接触面に存在する酸化皮膜により、高周波域での軟磁性の劣化を抑制させることが確認された。すなわち、磁性粉末の表面に高価な化学的処理を施さなくても、酸化処理という安価な手法によって、高周波域での軟磁性の劣化を抑制するという目的を達成できている。本実施例により、先に挙げた2つの課題((1)絶縁被覆のための高価な化学的処理、(2)樹脂添加による磁性粉末成形体の密度低下)が克服されており、実用的な磁性粉末成形体として適用することができる。   From the above Example 2, the magnetic powder of the present invention having an oxide film self-generated on the surface is formed by press-sintering using discharge plasma sintering without adding a binder resin at all. Confirm that it is possible to form a high-density powder molded body in which all the contact surfaces are isolated by an oxide film and that the oxide film present on the contact surface between each particle suppresses the deterioration of soft magnetism in the high frequency range. It was done. That is, even if the surface of the magnetic powder is not subjected to an expensive chemical treatment, the purpose of suppressing the deterioration of soft magnetism in a high frequency range can be achieved by an inexpensive method such as an oxidation treatment. This example overcomes the above-mentioned two problems ((1) expensive chemical treatment for insulation coating, (2) density reduction of magnetic powder molded body by addition of resin) and is practical. It can be applied as a magnetic powder compact.

本発明は、安価な方法で磁性粉末の絶縁被覆を行える点、及び結合剤を無添加のままで高密度な磁性粉末成形体が得られる点で優れているため、交流磁場中での使用に適した磁性材料であり、自動車用モ−タの固定子や回転子への適用が期待できる。   The present invention is excellent in that it can perform insulation coating of magnetic powder by an inexpensive method, and can obtain a high-density magnetic powder molded body without adding a binder, so that it can be used in an alternating magnetic field. It is a suitable magnetic material and can be expected to be applied to the stator and rotor of motors for automobiles.

本発明の磁性粉末成形体の組織を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the structure | tissue of the magnetic powder molded object of this invention. 本発明の磁性粉末成形体の組織における各元素の分布を示すマッピング像である。It is a mapping image which shows distribution of each element in the structure | tissue of the magnetic powder molded object of this invention. 本発明の磁性粉末の表面形態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface form of the magnetic powder of this invention. 本発明の磁性粉末の表面形態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface form of the magnetic powder of this invention. 本発明の磁性粉末の表面形態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface form of the magnetic powder of this invention. 比較例の磁性粉末の表面形態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface form of the magnetic powder of a comparative example. 本発明および比較例の磁性粉末成形体の、比透磁率の周波数依存性を示す図である。It is a figure which shows the frequency dependence of the relative permeability of the magnetic powder compact of this invention and a comparative example. 従来の磁性粉末成形体の組織構成を示す模式図である。It is a schematic diagram which shows the structure | tissue structure of the conventional magnetic powder molded object.

符号の説明Explanation of symbols

1 磁性粉末、2 絶縁膜、3 樹脂 1 Magnetic powder, 2 Insulating film, 3 Resin

Claims (7)

質量%でCr:1.0〜30.0%、Al:1.0〜8.0%、残部が実質的にFeから成ることを特徴とするFe−Cr−Al系磁性粉末。 A Fe—Cr—Al based magnetic powder characterized by comprising Cr: 1.0 to 30.0% by mass%, Al: 1.0 to 8.0%, and the balance being substantially composed of Fe. 質量%でTi:1.0%以下、Zr:1.0%以下のうちの一種または二種を含有することを特徴とする請求項1に記載のFe−Cr−Al系磁性粉末。 2. The Fe—Cr—Al based magnetic powder according to claim 1, wherein one or two of Ti: 1.0% or less and Zr: 1.0% or less are contained by mass%. 請求項1または2のいずれかに記載のFe−Cr−Al系磁性粉末の表面に、質量%で20%以上のアルミナを含む酸化皮膜が自己生成されていることを特徴とするFe−Cr−Al系磁性粉末。 The Fe-Cr-Al-based magnetic powder according to claim 1 or 2, wherein an oxide film containing 20% or more by mass of alumina is self-generated on the surface of the Fe-Cr-Al-based magnetic powder. Al magnetic powder. 質量%で50%以上のアルミナを含む酸化皮膜が自己生成されていることを特徴とする請求項3に記載のFe−Cr−Al系磁性粉末。 The Fe-Cr-Al magnetic powder according to claim 3, wherein an oxide film containing 50% or more by mass of alumina is self-generated. 組織を構成する各粒子間の接触面のすべてが、アルミナを含む酸化皮膜により実質的に隔離されて成ることを特徴とするFe−Cr−Al系磁性粉末成形体。 An Fe—Cr—Al based magnetic powder molded body characterized in that all of the contact surfaces between particles constituting the structure are substantially isolated by an oxide film containing alumina. 質量%でCr:1.0〜30.0%、Al:1.0〜8.0%、残部が実質的にFeからなるFe−Cr−Al系磁性粉末、または上記の組成に質量%でTi:1.0%以下、Zr:1.0%以下のうちの一種または二種を含有するFe−Cr−Al系磁性粉末を800℃以上の酸化性雰囲気で加熱処理して、表面に質量%で20%以上のアルミナを含む酸化皮膜を自己生成させ、次に該加熱処理後の粉末を固化成形させることを特徴とするFe−Cr−Al系磁性粉末成形体の製造方法。 Cr: 1.0-30.0% in mass%, Al: 1.0-8.0%, Fe—Cr—Al based magnetic powder consisting essentially of Fe, or the above composition in mass% A Fe—Cr—Al based magnetic powder containing one or two of Ti: 1.0% or less and Zr: 1.0% or less is heat-treated in an oxidizing atmosphere of 800 ° C. or more, and the surface has a mass. A method for producing a Fe—Cr—Al based magnetic powder molded body, wherein an oxide film containing 20% or more of alumina is self-generated, and then the heat-treated powder is solidified and molded. 放電プラズマ焼結によって固化成形することを特徴とする請求項6に記載のFe−Cr−Al系磁性粉末成形体の製造方法。 The method for producing a Fe-Cr-Al-based magnetic powder molded body according to claim 6, wherein solidification molding is performed by spark plasma sintering.
JP2004365954A 2004-01-06 2004-12-17 Fe-Cr-Al BASED MAGNETIC POWDER, Fe-Cr-Al BASED MAGNETIC POWDER COMPACT, AND ITS PRODUCTION METHOD Pending JP2005220438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365954A JP2005220438A (en) 2004-01-06 2004-12-17 Fe-Cr-Al BASED MAGNETIC POWDER, Fe-Cr-Al BASED MAGNETIC POWDER COMPACT, AND ITS PRODUCTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004000838 2004-01-06
JP2004365954A JP2005220438A (en) 2004-01-06 2004-12-17 Fe-Cr-Al BASED MAGNETIC POWDER, Fe-Cr-Al BASED MAGNETIC POWDER COMPACT, AND ITS PRODUCTION METHOD

Publications (1)

Publication Number Publication Date
JP2005220438A true JP2005220438A (en) 2005-08-18

Family

ID=34996305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365954A Pending JP2005220438A (en) 2004-01-06 2004-12-17 Fe-Cr-Al BASED MAGNETIC POWDER, Fe-Cr-Al BASED MAGNETIC POWDER COMPACT, AND ITS PRODUCTION METHOD

Country Status (1)

Country Link
JP (1) JP2005220438A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544841A (en) * 2006-07-21 2009-12-17 ホガナス アクチボラグ (パブル) Iron-based powder
JP2010062485A (en) * 2008-09-08 2010-03-18 Toshiba Corp Core shell type magnetic material, method of manufacturing core shell type magnetic material, device apparatus, and antenna assembly
JP2010062484A (en) * 2008-09-08 2010-03-18 Toshiba Corp Core shell type magnetic material, device apparatus, and antenna assembly
JP2010087462A (en) * 2008-09-08 2010-04-15 Toshiba Corp Core shell-type magnetic material, method of manufacturing the same, device apparatus, and antenna device
WO2014112483A1 (en) 2013-01-16 2014-07-24 日立金属株式会社 Method for manufacturing powder magnetic core, powder magnetic core, and coil component
WO2015108059A1 (en) 2014-01-14 2015-07-23 日立金属株式会社 Magnetic core and coil component using same
JP2015226000A (en) * 2014-05-29 2015-12-14 日立金属株式会社 Method of manufacturing magnetic core, magnetic core and coil component
JP2016009785A (en) * 2014-06-25 2016-01-18 日立金属株式会社 Magnetic core and coil part therewith
JP2016021510A (en) * 2014-07-15 2016-02-04 日立金属株式会社 Magnetic core and coil component using the same
JP2016025152A (en) * 2014-07-17 2016-02-08 日立金属株式会社 Laminated component and method for manufacturing the same
JP2016027643A (en) * 2014-06-27 2016-02-18 日立金属株式会社 Coil component
KR20160132838A (en) 2014-03-13 2016-11-21 히타치 긴조쿠 가부시키가이샤 Magnetic core, coil component and magnetic core manufacturing method
KR20160132937A (en) 2014-03-13 2016-11-21 히타치 긴조쿠 가부시키가이샤 Powder magnetic core manufacturing method, and powder magnetic core
KR20160132840A (en) 2014-03-10 2016-11-21 히타치 긴조쿠 가부시키가이샤 Magnetic core, coil component and magnetic core manufacturing method
JPWO2015019576A1 (en) * 2013-08-07 2017-03-02 パナソニックIpマネジメント株式会社 Composite magnetic material, coil component using the same, and power supply device
KR20170026528A (en) 2014-07-16 2017-03-08 히타치 긴조쿠 가부시키가이샤 Method for producing magnetic core, magnetic core, and coil component using same
JP2017092162A (en) * 2015-11-06 2017-05-25 トヨタ自動車株式会社 Method of manufacturing dust core
EP3355327A4 (en) * 2015-09-16 2019-03-27 Hitachi Metals, Ltd. Method for manufacturing dust core
WO2020195842A1 (en) * 2019-03-22 2020-10-01 日本特殊陶業株式会社 Compressed powder magnetic core
WO2024075443A1 (en) * 2022-10-04 2024-04-11 株式会社プロテリアル Fe-cr-al-based alloy powder for additive manufacturing, fe-cr-al-based alloy member, and method for producing fe-cr-al-based alloy member

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544841A (en) * 2006-07-21 2009-12-17 ホガナス アクチボラグ (パブル) Iron-based powder
JP2010062485A (en) * 2008-09-08 2010-03-18 Toshiba Corp Core shell type magnetic material, method of manufacturing core shell type magnetic material, device apparatus, and antenna assembly
JP2010062484A (en) * 2008-09-08 2010-03-18 Toshiba Corp Core shell type magnetic material, device apparatus, and antenna assembly
JP2010087462A (en) * 2008-09-08 2010-04-15 Toshiba Corp Core shell-type magnetic material, method of manufacturing the same, device apparatus, and antenna device
WO2014112483A1 (en) 2013-01-16 2014-07-24 日立金属株式会社 Method for manufacturing powder magnetic core, powder magnetic core, and coil component
US10008324B2 (en) 2013-01-16 2018-06-26 Hitachi Metals, Ltd. Method for manufacturing powder magnetic core, powder magnetic core, and coil component
JP2015053491A (en) * 2013-01-16 2015-03-19 日立金属株式会社 Powder magnetic core
EP2947670A4 (en) * 2013-01-16 2016-10-05 Hitachi Metals Ltd Method for manufacturing powder magnetic core, powder magnetic core, and coil component
CN104919551A (en) * 2013-01-16 2015-09-16 日立金属株式会社 Method for manufacturing powder magnetic core, powder magnetic core, and coil component
US11011305B2 (en) 2013-01-16 2021-05-18 Hitachi Metals, Ltd. Powder magnetic core, and coil component
KR101792088B1 (en) 2013-01-16 2017-11-01 히타치 긴조쿠 가부시키가이샤 Method for manufacturing powder magnetic core, powder magnetic core, and coil component
JP5626672B1 (en) * 2013-01-16 2014-11-19 日立金属株式会社 Dust core manufacturing method, dust core and coil component
JPWO2015019576A1 (en) * 2013-08-07 2017-03-02 パナソニックIpマネジメント株式会社 Composite magnetic material, coil component using the same, and power supply device
KR102091592B1 (en) * 2014-01-14 2020-03-20 히타치 긴조쿠 가부시키가이샤 Magnetic core and coil component using same
KR20160110372A (en) 2014-01-14 2016-09-21 히타치 긴조쿠 가부시키가이샤 Magnetic core and coil component using same
WO2015108059A1 (en) 2014-01-14 2015-07-23 日立金属株式会社 Magnetic core and coil component using same
US9805855B2 (en) 2014-01-14 2017-10-31 Hitachi Metals, Ltd. Magnetic core and coil component using same
JP2017168844A (en) * 2014-01-14 2017-09-21 日立金属株式会社 Magnetic core manufacturing method
JPWO2015108059A1 (en) * 2014-01-14 2017-03-23 日立金属株式会社 Magnetic core and coil component using the same
KR20160132840A (en) 2014-03-10 2016-11-21 히타치 긴조쿠 가부시키가이샤 Magnetic core, coil component and magnetic core manufacturing method
JPWO2015137303A1 (en) * 2014-03-10 2017-04-06 日立金属株式会社 Magnetic core, coil component, and manufacturing method of magnetic core
US10176912B2 (en) 2014-03-10 2019-01-08 Hitachi Metals, Ltd. Magnetic core, coil component and magnetic core manufacturing method
US11508512B2 (en) 2014-03-13 2022-11-22 Hitachi Metals, Ltd. Method for manufacturing powder magnetic core
US10236110B2 (en) 2014-03-13 2019-03-19 Hitachi Metals, Ltd. Magnetic core, coil component and magnetic core manufacturing method
US11636970B2 (en) 2014-03-13 2023-04-25 Proterial, Ltd. Method for manufacturing powder magnetic core, and powder magnetic core
EP3118868B1 (en) * 2014-03-13 2020-10-07 Hitachi Metals, Ltd. Powder magnetic core manufacturing method
KR20160132937A (en) 2014-03-13 2016-11-21 히타치 긴조쿠 가부시키가이샤 Powder magnetic core manufacturing method, and powder magnetic core
KR20160132838A (en) 2014-03-13 2016-11-21 히타치 긴조쿠 가부시키가이샤 Magnetic core, coil component and magnetic core manufacturing method
EP3591677A1 (en) 2014-03-13 2020-01-08 Hitachi Metals, Ltd. Powder magnetic core
US10354790B2 (en) 2014-03-13 2019-07-16 Hitachi Metals, Ltd. Method for manufacturing powder magnetic core with a metallic soft magnetic material powder
EP3118866B1 (en) * 2014-03-13 2021-02-17 Hitachi Metals, Ltd. Magnetic core, coil component and magnetic core manufacturing method
JPWO2015137493A1 (en) * 2014-03-13 2017-04-06 日立金属株式会社 Magnetic core, coil component, and manufacturing method of magnetic core
JP2015226000A (en) * 2014-05-29 2015-12-14 日立金属株式会社 Method of manufacturing magnetic core, magnetic core and coil component
JP2016009785A (en) * 2014-06-25 2016-01-18 日立金属株式会社 Magnetic core and coil part therewith
JP2016027643A (en) * 2014-06-27 2016-02-18 日立金属株式会社 Coil component
JP2016021510A (en) * 2014-07-15 2016-02-04 日立金属株式会社 Magnetic core and coil component using the same
KR20170026528A (en) 2014-07-16 2017-03-08 히타치 긴조쿠 가부시키가이샤 Method for producing magnetic core, magnetic core, and coil component using same
US10573441B2 (en) 2014-07-16 2020-02-25 Hitachi Metals, Ltd. Method for manufacturing magnetic core
US20170178775A1 (en) * 2014-07-16 2017-06-22 Hitachi Metals, Ltd. Method for manufacturing magnetic core, magnetic core, and coil component using same
JP2016025152A (en) * 2014-07-17 2016-02-08 日立金属株式会社 Laminated component and method for manufacturing the same
EP3355327A4 (en) * 2015-09-16 2019-03-27 Hitachi Metals, Ltd. Method for manufacturing dust core
JP2017092162A (en) * 2015-11-06 2017-05-25 トヨタ自動車株式会社 Method of manufacturing dust core
JPWO2020195842A1 (en) * 2019-03-22 2021-04-30 日本特殊陶業株式会社 Powder magnetic core
WO2020195842A1 (en) * 2019-03-22 2020-10-01 日本特殊陶業株式会社 Compressed powder magnetic core
KR20210068552A (en) * 2019-03-22 2021-06-09 니뽄 도쿠슈 도교 가부시키가이샤 compacted magnetic core
CN113543908A (en) * 2019-03-22 2021-10-22 日本特殊陶业株式会社 Dust core
KR102375078B1 (en) 2019-03-22 2022-03-15 니뽄 도쿠슈 도교 가부시키가이샤 compacted magnetic core
WO2024075443A1 (en) * 2022-10-04 2024-04-11 株式会社プロテリアル Fe-cr-al-based alloy powder for additive manufacturing, fe-cr-al-based alloy member, and method for producing fe-cr-al-based alloy member

Similar Documents

Publication Publication Date Title
JP2005220438A (en) Fe-Cr-Al BASED MAGNETIC POWDER, Fe-Cr-Al BASED MAGNETIC POWDER COMPACT, AND ITS PRODUCTION METHOD
JP5462356B2 (en) Powder magnetic core and manufacturing method thereof
JP6071211B2 (en) Low magnetostrictive high magnetic flux density composite soft magnetic material and its manufacturing method
TWI294321B (en) Method for manufacturing of insulated soft magnetic metal powder formed body
JP4707054B2 (en) Soft magnetic material, method for producing soft magnetic material, dust core, and method for producing dust core
JP4683178B2 (en) Soft magnetic material and manufacturing method thereof
JPWO2010073590A1 (en) Composite soft magnetic material and manufacturing method thereof
JP2005175138A (en) Heat-resisting rare earth magnet and its manufacturing method
JP2001011563A (en) Manufacture of composite magnetic material
US10975457B2 (en) Iron cobalt ternary alloy and silica magnetic core
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
JP2010153638A (en) Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component
JP2007162103A (en) Magnetic powder mixture, its production method, sheet stock obtained by using the same and its production method
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2005336513A (en) Method for manufacturing soft-magnetic material and soft-magnetic material, and method for manufacturing dust core and dust core
JP2006233268A (en) High electric resistance-magnetic powder, its production method, high electric resistance-magnetic powder compact and its production method
EP1662518A1 (en) Soft magnetic material and method for producing same
JP6563348B2 (en) Soft magnetic powder, soft magnetic body molded with soft magnetic powder, and soft magnetic powder and method for producing soft magnetic body
JP2010016290A (en) Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
US20150015359A1 (en) Soft magnetic composite, method for preparing the same, and electronic components including the same as core material
JP2009290128A (en) Method for manufacturing powder magnetic core
JP2002275505A (en) Method for producing soft magnetic compact and soft magnetic compact
JP2005294683A (en) Seizing iron powder for resin-bonded soft-magnetic material, and production method thereof