JPH11260618A - Composite magnetic material, its manufacture, and fe-al-si soft magnetic alloy powder used therefor - Google Patents
Composite magnetic material, its manufacture, and fe-al-si soft magnetic alloy powder used thereforInfo
- Publication number
- JPH11260618A JPH11260618A JP10368863A JP36886398A JPH11260618A JP H11260618 A JPH11260618 A JP H11260618A JP 10368863 A JP10368863 A JP 10368863A JP 36886398 A JP36886398 A JP 36886398A JP H11260618 A JPH11260618 A JP H11260618A
- Authority
- JP
- Japan
- Prior art keywords
- alloy powder
- temperature
- soft magnetic
- magnetic alloy
- core loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 64
- 229910001004 magnetic alloy Inorganic materials 0.000 title claims abstract description 51
- 239000002131 composite material Substances 0.000 title claims abstract description 34
- 239000000696 magnetic material Substances 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 229910018125 Al-Si Inorganic materials 0.000 claims abstract description 21
- 229910018520 Al—Si Inorganic materials 0.000 claims abstract description 21
- 238000009689 gas atomisation Methods 0.000 claims abstract description 7
- 238000009692 water atomization Methods 0.000 claims abstract description 7
- 238000010298 pulverizing process Methods 0.000 claims abstract description 5
- 238000005275 alloying Methods 0.000 claims abstract description 3
- 238000002156 mixing Methods 0.000 claims abstract 2
- 230000005291 magnetic effect Effects 0.000 claims description 64
- 239000000203 mixture Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000003822 epoxy resin Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229920000647 polyepoxide Polymers 0.000 claims description 8
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 7
- 229920002050 silicone resin Polymers 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 2
- 238000000748 compression moulding Methods 0.000 claims description 2
- 239000005011 phenolic resin Substances 0.000 claims description 2
- 239000003302 ferromagnetic material Substances 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 230000035699 permeability Effects 0.000 abstract description 36
- 230000020169 heat generation Effects 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 description 17
- 230000004907 flux Effects 0.000 description 15
- 238000005259 measurement Methods 0.000 description 15
- 238000000465 moulding Methods 0.000 description 13
- 239000006247 magnetic powder Substances 0.000 description 12
- 239000002184 metal Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000011812 mixed powder Substances 0.000 description 8
- 239000000428 dust Substances 0.000 description 7
- 238000005470 impregnation Methods 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910000702 sendust Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910018523 Al—S Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000003826 uniaxial pressing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14791—Fe-Si-Al based alloys, e.g. Sendust
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、トランスコア、チ
ョークコイル、あるいは磁気ヘッド等に用いられる複合
磁性体とその製造方法、および複合磁性体に用いられる
Fe−Al−Si系軟磁性合金粉末に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic material used for a transformer core, a choke coil or a magnetic head, a method for producing the same, and an Fe-Al-Si soft magnetic alloy powder used for the composite magnetic material. Things.
【0002】[0002]
【従来の技術】近年、電気・電子機器の小型化が進み、
小型で高効率の磁性材料が要求されており、高周波領域
で用いられるチョークコイルとして、フェライト磁芯や
圧粉磁芯が知られている。これらのうち、フェライト磁
芯は飽和磁束密度が小さいという欠点を有しており、一
方、金属磁性粉を成形して作製される圧粉磁芯は、フェ
ライト磁芯に比べて著しく大きい飽和磁束密度を有して
おり小型化の面で有利であった。2. Description of the Related Art In recent years, miniaturization of electric and electronic devices has been progressing.
A small and highly efficient magnetic material is required, and a ferrite core and a dust core are known as choke coils used in a high frequency range. Of these, ferrite cores have the disadvantage of low saturation magnetic flux density, while dust cores made by molding metal magnetic powder have significantly higher saturation magnetic flux densities than ferrite cores. Which is advantageous in terms of miniaturization.
【0003】しかし、圧粉磁芯は透磁率および電力損失
についてはフェライト磁芯より優れているとはいえず、
ぞのためチョークコイルやインダクターに使用すると、
コア損失が大きいためにコアの温度上昇が大きくなっ
て、小型化が難しくなるという一面があった。However, dust cores are not superior to ferrite cores in terms of magnetic permeability and power loss.
For use in choke coils and inductors,
One of the disadvantages is that the core loss is large and the temperature rise of the core is large, so that downsizing is difficult.
【0004】一般に、圧粉磁芯のコア損失は通常ヒステ
リシス損失と渦電流損失よりなり、渦電流損失は、周波
数の二乗と、渦電流が流れるサイズすなわち渦電流経路
長の二乗にそれぞれ比例して増大する。これを抑制する
ために磁性粉末表面を電気絶縁性樹脂等で覆い、これに
より渦電流の発生を抑制していた。In general, the core loss of a dust core generally consists of hysteresis loss and eddy current loss. The eddy current loss is proportional to the square of the frequency and the size of the eddy current flowing, that is, the square of the eddy current path length, respectively. Increase. In order to suppress this, the surface of the magnetic powder is covered with an electrically insulating resin or the like, thereby suppressing the generation of eddy current.
【0005】一方、ヒステリシス損失については、圧粉
磁芯の成形が通常5ton/cm2以上の成形圧力で行われる
ために磁性材料として歪みが増大するとともに透磁率も
劣化し、ヒステリシス損失が増大する傾向がある。この
傾向を回避するために歪みを解放する手段として、例え
ば特開平6−342714号公報、特開平8−3710
7号公報、特開平9−125108号公報に記載されて
いるような成形後の熱処理が行われていた。On the other hand, as for the hysteresis loss, since the molding of the dust core is usually performed at a molding pressure of 5 ton / cm 2 or more, the distortion as the magnetic material increases, the magnetic permeability also deteriorates, and the hysteresis loss increases. Tend. As means for releasing the distortion in order to avoid this tendency, for example, JP-A-6-342714, JP-A-8-3710
No. 7, Japanese Patent Application Laid-Open No. 9-125108, followed by heat treatment after molding.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来の
Fe−Al−Si系合金粉末を用いた圧粉磁芯は、温度
とともにコア損失が増大するという欠点を有していた。
すなわち、コア損失の温度係数が室温付近で正である
と、実使用時にトランスあるいはチョークコイル等がコ
ア損失により発熱する。そのために温度が上昇し、この
温度上昇によるコア損失が増大して発熱が大きくなり、
これを繰り返すことによって熱暴走を引き起こすという
課題があった。このような現象を防止するため、実際に
使用する場合には、圧粉磁芯が、80℃〜100℃付近
の温度でコア損失が極小となるような温度特性を持つこ
とが極めて重要なポイントであった。However, the dust core using the conventional Fe-Al-Si alloy powder has a disadvantage that the core loss increases with the temperature.
That is, if the temperature coefficient of the core loss is positive near room temperature, the transformer or the choke coil generates heat due to the core loss during actual use. As a result, the temperature rises, the core loss due to this temperature rise increases, and the heat generation increases,
There was a problem that thermal runaway was caused by repeating this. In order to prevent such a phenomenon, it is extremely important that, when actually used, the dust core has a temperature characteristic such that the core loss is minimized at a temperature around 80 ° C to 100 ° C. Met.
【0007】一般にFe−Al−Si合金は、図2およ
び図3に示すように、結晶磁気異方性定数K≒0、磁歪
定数λ≒0の特性を有する組成、すなわち9.6%S
i、5.5%Al、残りがFeである組成の近傍で急峻
な透磁率のピークを示す。この範囲の組成を通常センダ
ストと呼んでいる。従来からFe−Al−Si系合金粉
末を用いた複合磁性材料が各種提案されており、例えば
前述の特開平6−342714号公報、特開平8−37
107号公報、特開平9−125108号公報にもこの
種技術が提案されている。しかしながら、いずれの提案
もコア損失と温度特性との記述については何等言及され
ていない。In general, as shown in FIGS. 2 and 3, a Fe—Al—Si alloy has a composition having a crystal magnetic anisotropy constant K ≒ 0 and a magnetostriction constant λ ≒ 0, that is, 9.6% S
i shows a sharp magnetic permeability peak near the composition of 5.5% Al and the balance being Fe. Compositions in this range are usually called sendust. Conventionally, various composite magnetic materials using Fe-Al-Si alloy powders have been proposed, for example, as described in JP-A-6-342714 and JP-A-8-37 mentioned above.
No. 107, Japanese Patent Application Laid-Open No. 9-125108 also proposes this kind of technology. However, none of the proposals mentions the description of core loss and temperature characteristics.
【0008】コア損失の温度特性は、ヒステリシス損失
の挙動、つまり透磁率の温度特性により決定される。従
来のフェライトは透磁率がある温度において極大を示
し、この温度において損失も極小になる。これは、結晶
磁気異方性定数Kがこの温度において零になり、この温
度において磁壁移動が最も容易になる。このため、ヒス
テリシス損失が減少すると考えられている。The temperature characteristic of the core loss is determined by the hysteresis loss behavior, that is, the temperature characteristic of the magnetic permeability. Conventional ferrite exhibits a maximum at a certain magnetic permeability, and the loss becomes minimum at this temperature. This means that the crystal magnetic anisotropy constant K becomes zero at this temperature, and at this temperature the domain wall movement becomes easiest. Therefore, it is considered that the hysteresis loss is reduced.
【0009】一方、Fe−Al−Si系軟磁性合金粉末
を用いた圧粉磁芯は、図1に示す従来例のように、室温
以上でコア損失が単調に増加するため、特に大出力のト
ランス等に用いることが困難とされてきた。On the other hand, a powder magnetic core using an Fe-Al-Si soft magnetic alloy powder has a particularly large output because the core loss monotonously increases at room temperature or higher, as in the conventional example shown in FIG. It has been difficult to use in transformers and the like.
【0010】本発明は、上記従来の課題を解決するもの
で、低コア損失で発熱が少なく、かつ高い透磁率を有す
る複合磁性体とその製造方法、およびこの複合磁性体に
用いることができる磁性合金粉末を提供することを目的
とする。SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and provides a composite magnetic body having low core loss, low heat generation, and high magnetic permeability, a method for producing the same, and a magnetic material usable for the composite magnetic body. It is intended to provide an alloy powder.
【0011】[0011]
【課題を解決するための手段】本発明の複合磁性体は、
磁歪定数λの符号が室温において正であるFe−Al−
Si系軟磁性合金粉末を用いることにより、室温におけ
るコア損失の温度係数を負にしたものである。この構成
により、高周波数領域において低コア損失である特性を
有し、かつ高い透磁率を有する複合磁性体を得ることが
できる。The composite magnetic material of the present invention comprises:
The sign of the magnetostriction constant λ is positive at room temperature.
By using the Si-based soft magnetic alloy powder, the temperature coefficient of the core loss at room temperature is made negative. With this configuration, it is possible to obtain a composite magnetic material having a characteristic of low core loss in a high frequency region and having high magnetic permeability.
【0012】本発明の複合磁性体においては、コア損失
が最小となる極小温度が80℃以上であることが好まし
い。また、Fe−Al−Si系軟磁性合金粉末は、重量
%で4.5%≦Al≦8.5%、7.5%≦Si≦9.
5%、残りがFeを主成分とする組成であることが好ま
しい。In the composite magnetic material of the present invention, the minimum temperature at which the core loss is minimized is preferably 80 ° C. or higher. Further, the Fe-Al-Si soft magnetic alloy powder is 4.5% ≦ Al ≦ 8.5%, 7.5% ≦ Si ≦ 9% by weight.
It is preferable that the composition be 5% and the balance be a composition containing Fe as a main component.
【0013】本発明者達は、研究の結果、Fe−Al−
Si系軟磁性合金粉末を用いた複合磁性材料の場合、従
来から言われているような結晶磁気異方性定数Kがコア
損失の温度特性を支配する主要因ではなく、今まで注目
されていなかった磁歪定数λが支配的であり、さらに磁
歪定数λの符号が室温(約20〜30℃付近)で正の時
にコア損失の温度係数が負の傾斜を持つことを見い出し
た。そして、特に重量%で4.5%≦Al≦8.5%、
7.5%≦Si≦9.5%、残りがFeを主成分とする
Fe−Al−Si系軟磁性合金粉末を用いた場合、透磁
率が高くて低コア損失で、かつ優れた温度特性が得ら
れ、より好ましくは重量%で5.0%≦Al≦6.5
%、8.2%≦Si≦9.2%、残りがFeを主成分と
するFe−Al−Si系軟磁性合金粉末を用いることに
より、さらに優れた効果が得られることを見い出した。As a result of the research, the present inventors have found that Fe-Al-
In the case of a composite magnetic material using a Si-based soft magnetic alloy powder, the crystal magnetic anisotropy constant K, as conventionally known, is not the main factor that governs the temperature characteristics of core loss, and has not received much attention. It is found that the magnetostriction constant λ is dominant and that the temperature coefficient of core loss has a negative slope when the sign of the magnetostriction constant λ is positive at room temperature (about 20 to 30 ° C.). And 4.5% ≦ Al ≦ 8.5% in weight%,
7.5% ≦ Si ≦ 9.5%, Fe-Al-Si based soft magnetic alloy powder whose main component is Fe when used, has high magnetic permeability, low core loss, and excellent temperature characteristics. And more preferably 5.0% ≦ Al ≦ 6.5 by weight.
%, 8.2% ≦ Si ≦ 9.2%, with the balance being Fe—Al—Si based soft magnetic alloy powder containing Fe as a main component.
【0014】[0014]
【発明の実施の形態】本発明の複合磁性体は、磁歪定数
λの符号が室温で正となるFe−Al−Si系軟磁性合
金粉末を用いることにより、室温におけるコア損失の温
度係数を負にした複合磁性体である。本発明の複合磁性
体は、コア損失の温度係数を負にすることができるた
め、高周波領域でも低コア損失で透磁率の高い優れた磁
気特性を得ることができる。なお、本発明の複合磁性体
は、コア損失が最小となる極小温度が、80℃以上であ
ることが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION The composite magnetic material of the present invention uses a Fe-Al-Si soft magnetic alloy powder having a positive magnetostriction constant λ at room temperature to reduce the temperature coefficient of core loss at room temperature. This is a composite magnetic material. Since the composite magnetic material of the present invention can have a negative temperature coefficient of core loss, excellent magnetic characteristics with low core loss and high magnetic permeability can be obtained even in a high frequency region. In the composite magnetic body of the present invention, the minimum temperature at which the core loss is minimized is preferably 80 ° C. or higher.
【0015】本発明の複合磁性体は、Fe−Al−Si
系軟磁性合金粉末である主成分と、絶縁性結着剤の熱処
理後の残存物あるいは含浸用樹脂あるいは空孔等からな
る絶縁物成分とから構成されるもので、磁気特性の観点
から、軟磁性合金粉末の含有量は体積%で70〜99%
の範囲にあることが好ましい。また、この軟磁性合金粉
末の組成は、重量%で4.5%≦Al≦8.5%、7.
5%≦Si≦9.5%、残りがFeであることが好まし
い。なお、この軟磁性合金粉末は、磁気特性に悪影響を
及ぼさない程度の少量の不純物や添加物を含んでいても
よい。また、この複合磁性体は、主成分であるFe−A
l−Si系軟磁性合金粉末の上に、他の磁性粉末が混合
されていてもよい。[0015] The composite magnetic material of the present invention comprises Fe-Al-Si.
It is composed of a main component that is a soft magnetic alloy powder and a residue after heat treatment of an insulating binder or an insulating component such as an impregnating resin or pores. Content of magnetic alloy powder is 70-99% by volume
Is preferably within the range. The composition of the soft magnetic alloy powder is 4.5% ≦ Al ≦ 8.5% by weight,
It is preferable that 5% ≦ Si ≦ 9.5% and the balance be Fe. The soft magnetic alloy powder may contain a small amount of impurities or additives that do not adversely affect the magnetic properties. In addition, this composite magnetic material has a main component of Fe-A
Other magnetic powders may be mixed on the l-Si soft magnetic alloy powder.
【0016】この軟磁性合金粉末は、ガスアトマイズ法
または水アトマイズ法または合金化後の粉砕により得ら
れる粉末であることが好ましい。また粉末形状は、球
状、偏平状、多角形状のいずれであってもよい。粉末の
平均粒径は1〜100μmの範囲にあることが好まし
く、特に1〜50μmの範囲にあることがより好まし
い。平均粒径が1μm未満になると、成形密度が小さく
なるため、透磁率が低下して望ましくない。この軟磁性
合金粉末は、厚み5nm以上の酸化膜で被覆されている
ことが好ましい。この被膜により、絶縁性が向上し、渦
電流損失がより低減される。The soft magnetic alloy powder is preferably a powder obtained by a gas atomizing method, a water atomizing method, or pulverization after alloying. The shape of the powder may be spherical, flat, or polygonal. The average particle size of the powder is preferably in the range of 1 to 100 μm, and more preferably in the range of 1 to 50 μm. If the average particle size is less than 1 μm, the molding density is reduced, and the magnetic permeability is undesirably reduced. This soft magnetic alloy powder is preferably covered with an oxide film having a thickness of 5 nm or more. This coating improves insulation and further reduces eddy current loss.
【0017】本発明の複合磁性体の製造方法は、磁歪定
数λの符号が室温で正となるFe−Al−Si系軟磁性
合金粉末を、電気絶縁性結着剤と混合し圧縮成形後、5
00℃以上900℃以下の温度で熱処理することを特徴
とする。この複合磁性体の製造方法によれば、圧縮成形
後の熱処理により渦電流損失の低減およびヒステリシス
損失の低減を図ることができ、より安定した優れた磁気
特性を有する複合磁性体を得ることができる。The method of manufacturing a composite magnetic material according to the present invention is characterized in that a Fe--Al--Si soft magnetic alloy powder having a positive magnetostriction constant λ at room temperature is mixed with an electrically insulating binder and compression-molded. 5
The heat treatment is performed at a temperature of from 00 ° C to 900 ° C. According to this method of manufacturing a composite magnetic body, heat treatment after compression molding can reduce eddy current loss and hysteresis loss, and can obtain a composite magnetic body having more stable and excellent magnetic properties. .
【0018】本発明の製造方法における絶縁性結着剤
は、エポキシ樹脂、フェノール樹脂、塩化ビニール樹
脂、ブチラール樹脂、有機シリコーン樹脂のうちの少な
くとも1つであることが好ましい。なお、500℃以上
900℃以下の温度で熱処理するため、結着剤成分の磁
性合金粉末への拡散が少ないものがより好ましい。熱処
理雰囲気は、空気中でも可能であるが、金属の酸化を防
ぐ意味から非酸化雰囲気で行うことが望ましい。The insulating binder in the production method of the present invention is preferably at least one of an epoxy resin, a phenol resin, a vinyl chloride resin, a butyral resin, and an organic silicone resin. Since the heat treatment is performed at a temperature of 500 ° C. or more and 900 ° C. or less, it is more preferable that the binder component diffuses little into the magnetic alloy powder. The heat treatment may be performed in the air, but is preferably performed in a non-oxidizing atmosphere from the viewpoint of preventing oxidation of the metal.
【0019】熱処理後、絶縁性含浸剤で含浸することが
好ましい。これは、500℃以上の温度で熱処理すると
樹脂等の結着剤は分解するために複合磁性体の機械的強
度は低下する。このため、熱処理後絶縁性含浸剤で含浸
することでコア強度の向上、金属磁性体の防錆、表面高
抵抗化等を図ることができる。また、真空含浸すること
により内部に含浸剤が入り込むので、より好ましい。After the heat treatment, it is preferable to impregnate with an insulating impregnating agent. This is because, when heat treatment is performed at a temperature of 500 ° C. or more, the binder such as resin is decomposed, so that the mechanical strength of the composite magnetic body is reduced. Therefore, by impregnating with an insulating impregnating agent after the heat treatment, it is possible to improve the core strength, prevent rust of the metal magnetic material, increase the surface resistance, and the like. Further, the impregnating agent enters into the inside by vacuum impregnation, which is more preferable.
【0020】本発明のFe−Al−Si系軟磁性合金粉
末は、組成が重量%で、4.5%≦Al≦8.5%、
7.5%≦Si≦9.5%、残りをFeとするものであ
り、酸素量が1000ppm以上8000ppm以下で
あり、かつ磁歪定数λの符号が室温で正であるものが好
ましい。この軟磁性合金粉末を用いることにより、コア
損失の温度係数を負にすることができるため、高周波領
域でも低コア損失でより透磁率の高い優れた磁気特性を
得ることができる。なお、酸素量が1000ppm以上
の場合、渦電流損失がより低減する。これは金属磁性粉
末の抵抗値が、酸素含有量と共に上昇するために渦電流
損失が低減したと考えられる。一方、酸素量が8000
ppmを超えると、ヒステリシス損失が増加するため、
全体のコア損失が大きくなる。The Fe—Al—Si soft magnetic alloy powder of the present invention has a composition of 4.5% ≦ Al ≦ 8.5% by weight,
It is preferable that 7.5% ≦ Si ≦ 9.5% and the balance be Fe, and that the oxygen amount be 1000 ppm or more and 8000 ppm or less, and the sign of the magnetostriction constant λ be positive at room temperature. By using this soft magnetic alloy powder, the temperature coefficient of core loss can be made negative, so that excellent magnetic characteristics with low core loss and higher magnetic permeability can be obtained even in a high frequency region. When the oxygen amount is 1000 ppm or more, the eddy current loss is further reduced. It is considered that the eddy current loss was reduced because the resistance value of the metal magnetic powder increased with the oxygen content. On the other hand, the oxygen amount is 8000
If the amount exceeds ppm, the hysteresis loss increases,
The overall core loss increases.
【0021】以下に、本発明の具体例を説明する。 (実施の形態1)以下、本発明の実施の形態1における
複合磁性体について説明する。Hereinafter, specific examples of the present invention will be described. (Embodiment 1) Hereinafter, a composite magnetic body according to Embodiment 1 of the present invention will be described.
【0022】本実施の形態におけるFe−Al−Si系
軟磁性合金粉末を、(表1)に示す最終組成になるよう
に、水アトマイズ法により作製した。粉体の酸素量はす
べて2000ppm〜3000ppmであった。このF
e−Al−Si系軟磁性合金粉末を平均粒径50μmに
なるように、ふるいにより分級し、その金属磁性粉10
0重量部に対し絶縁性結着剤としてブチラール樹脂2重
量部を加え、混合した。その混合粉を一軸プレス機によ
り、成形圧力10ton/cm2で、外径25mm、内径15
mm、厚み約10mmのトロイダル形状の成形体を形成
した。その後、N2中、690℃の温度で熱処理した
後、シリコーン樹脂で含浸して試料を作成した。The Fe—Al—Si soft magnetic alloy powder according to the present embodiment was produced by the water atomization method so as to have the final composition shown in Table 1. The oxygen content of all the powders was from 2000 ppm to 3000 ppm. This F
The e-Al-Si soft magnetic alloy powder is classified by a sieve so as to have an average particle size of 50 μm.
2 parts by weight of butyral resin as an insulating binder was added to 0 parts by weight and mixed. The mixed powder was formed by a uniaxial press machine at a molding pressure of 10 ton / cm 2 , an outer diameter of 25 mm and an inner diameter of 15 mm.
A toroidal shaped body having a thickness of about 10 mm and a thickness of about 10 mm was formed. Then, after heat-treating at a temperature of 690 ° C. in N 2 , a sample was prepared by impregnation with a silicone resin.
【0023】透磁率の測定はLCRメーターを用いて周
波数10kHzで、またコア損失の測定は交流B−Hカ
ーブ測定機を用いて、測定周波数50kHz、測定磁束
密度0.1Tでそれぞれ20℃〜120℃まで20℃毎
に温度特性も含めて行った。極小損失温度における特性
を(表1)に示す。ただし、極小損失温度が120℃以
上、あるいは20℃以下の場合、それぞれ120℃、2
0℃でのコア損失、透磁率を示している。本実施の形態
における高調波歪み対策アクティブフィルタ用チョーク
コイルの場合、(表1)に示すように測定周波数50k
Hz、測定磁束密度0.1Tにおいてコア損失1000
kW/m3以下、透磁率50以上および極小損失温度は
80℃以上という満足すべき特性を得ることができた。The permeability was measured at a frequency of 10 kHz using an LCR meter, and the core loss was measured at 20 ° C. to 120 ° C. at a measurement frequency of 50 kHz and a measured magnetic flux density of 0.1 T using an AC BH curve measuring machine. The measurement was carried out every 20 ° C. up to the temperature including the temperature characteristics. The characteristics at the minimum loss temperature are shown in (Table 1). However, when the minimum loss temperature is equal to or higher than 120 ° C or equal to or lower than 20 ° C, the minimum loss temperature is set to 120 ° C or 2 ° C, respectively.
It shows core loss and magnetic permeability at 0 ° C. In the case of the choke coil for the active filter against harmonic distortion in the present embodiment, as shown in (Table 1), the measurement frequency is 50 k
Hz, core loss 1000 at measured magnetic flux density 0.1T
Satisfactory characteristics of kW / m 3 or less, magnetic permeability of 50 or more, and minimum loss temperature of 80 ° C. or more could be obtained.
【0024】(表1)に示す結果より明らかなように、
重量で4.5%≦Al≦8.5%、7.5%≦Si≦
9.5%、残りがFeを主成分とするFe−Al−Si
系軟磁性合金粉末を用いることにより、高透磁率でコア
損失を低く、かつ優れた温度特性を備えることができ
る。より好ましくは、重量で5.0%≦Al≦6.5
%、8.2%≦Si≦9.2%、残りがFeを主成分と
するFe−Al−Si系軟磁性合金粉末を用いることに
より、さらに優れた効果を得ることができる。As is clear from the results shown in Table 1,
4.5% ≦ Al ≦ 8.5% by weight, 7.5% ≦ Si ≦
9.5%, the remainder being Fe-Al-Si containing Fe as a main component
By using a system soft magnetic alloy powder, a high magnetic permeability, a low core loss, and excellent temperature characteristics can be provided. More preferably, 5.0% ≦ Al ≦ 6.5 by weight.
%, 8.2% ≦ Si ≦ 9.2%, with the balance being Fe—Al—Si-based soft magnetic alloy powder containing Fe as a main component, a further excellent effect can be obtained.
【0025】[0025]
【表1】 [Table 1]
【0026】(実施の形態2)次に、本発明の実施の形
態2について説明する。(Embodiment 2) Next, Embodiment 2 of the present invention will be described.
【0027】最終組成においてAlが6.0wt%、S
iが9.0wt%、残りの主成分をFeとする軟磁性合
金粉末をインゴット粉砕法で作製した。粉体の酸素量は
すべて1000ppm〜2000ppmであり、(表
2)に示す平均粒径になるように、ふるいあるいは空気
分級法により分級し、その金属磁性粉100重量部に対
し絶縁性結着剤として有機シリコーン樹脂5重量部を加
え、混合した。その混合粉を一軸プレスにて、成形圧力
7ton/cm2で、外径25mm、内径15mm、厚み約1
0mmのトロイダル形状の成形体を形成した。その後、
N2中において720℃で熱処理した後、エポキシ樹脂
で含浸して試料を作成した。In the final composition, 6.0 wt% of Al, S
A soft magnetic alloy powder having i of 9.0 wt% and the remaining main component of Fe was produced by an ingot grinding method. All powders have an oxygen content of 1000 ppm to 2000 ppm, and are classified by a sieve or an air classification method so as to have an average particle size shown in Table 2, and an insulating binder is added to 100 parts by weight of the metal magnetic powder. Was added and mixed with 5 parts by weight of an organic silicone resin. The mixed powder was subjected to a uniaxial press at a molding pressure of 7 ton / cm 2 , an outer diameter of 25 mm, an inner diameter of 15 mm, and a thickness of about 1
A 0 mm toroidal shaped compact was formed. afterwards,
After heat treatment at 720 ° C. in N 2 , a sample was prepared by impregnation with an epoxy resin.
【0028】透磁率の測定はLCRメーターを用いて周
波数10kHzで、また、コア損失の測定は交流B−H
カーブ測定機を用いて測定周波数50kHz、測定磁束
密度0.1Tでそれぞれ20℃〜120℃まで20℃毎
に温度特性も含めて行い、極小損失温度における特性を
(表2)に示した。ただし、極小損失温度が≧120
℃、あるいは≦20℃の場合、それぞれ120℃、20
℃でのコア損失、透磁率を示している。本実施の形態に
おける高調波歪み対策アクティブフィルタ用チョークコ
イルの場合、(表2)に示すように測定周波数50kH
z、測定磁束密度0.1Tにおいてコア損失1000k
W/m3以下、透磁率50以上および極小損失温度は8
0℃以上という満足すべき特性を得ることができた。The permeability was measured at a frequency of 10 kHz using an LCR meter, and the core loss was measured using an AC BH
Using a curve measuring machine, the measurement was performed at a measurement frequency of 50 kHz and a measurement magnetic flux density of 0.1 T from 20 ° C. to 120 ° C. every 20 ° C., including the temperature characteristics, and the characteristics at the minimum loss temperature are shown in (Table 2). However, the minimum loss temperature is ≧ 120
° C or ≤20 ° C, 120 ° C and 20 ° C respectively
It shows the core loss and magnetic permeability at ° C. In the case of the choke coil for the active filter against harmonic distortion in the present embodiment, the measurement frequency is 50 kHz as shown in (Table 2).
z, core loss 1000k at measured magnetic flux density 0.1T
W / m 3 or less, permeability 50 or more, and minimal loss temperature 8
Satisfactory characteristics of 0 ° C. or higher could be obtained.
【0029】(表2)に示す結果より明らかなように、
磁性粉末の平均粒径を1μm以上100μm以下とする
ことによりコア損失を低くすることができ、好ましくは
平均粒径を1μm以上50μm以下とすることによりさ
らにコア損失を低減することができる。As is clear from the results shown in (Table 2),
The core loss can be reduced by setting the average particle size of the magnetic powder to 1 μm or more and 100 μm or less, and preferably, the core loss can be further reduced by setting the average particle size to 1 μm or more and 50 μm or less.
【0030】[0030]
【表2】 [Table 2]
【0031】(実施の形態3)次に、本発明の実施の形
態3について説明する。(Embodiment 3) Next, Embodiment 3 of the present invention will be described.
【0032】最終組成においてAlが5.8wt%、S
iが8.6wt%、残りの主成分をFeとする軟磁性合
金を用いて水アトマイズ法により平均粒径30μmの粉
体を作成した。その金属磁性粉100重量部に対し絶縁
性結着剤としてブチラール樹脂1重量部とスペーシング
制御材として平均粒径1μmのTiO2を0.5重量部
添加し、混合した。その混合粉を脱気混合し粉砕して得
られた粒径500μm以下の造粒粉を一軸プレス機によ
り、成形圧力12ton/cm2で外径25mm、内径15m
m、厚み約10mmのトロイダル形状の成形体を形成し
た。そして450℃の温度で空気中で脱バインダー後、
N2中において730℃で熱処理し、さらに、エポキシ
樹脂で含浸して試料を作成した。In the final composition, Al is 5.8 wt%, S
A powder having an average particle diameter of 30 μm was prepared by a water atomization method using a soft magnetic alloy having i of 8.6 wt% and the remaining main component of Fe. To 100 parts by weight of the metal magnetic powder, 1 part by weight of butyral resin as an insulating binder and 0.5 parts by weight of TiO 2 having an average particle size of 1 μm as a spacing control material were added and mixed. The mixed powder is degassed, mixed, and pulverized to obtain a granulated powder having a particle diameter of 500 μm or less by a uniaxial press at a molding pressure of 12 ton / cm 2 and an outer diameter of 25 mm and an inner diameter of 15 m.
m, a toroidal shaped body having a thickness of about 10 mm was formed. After debinding in air at 450 ° C,
The sample was heat-treated at 730 ° C. in N 2 and further impregnated with an epoxy resin to prepare a sample.
【0033】透磁率の測定はLCRメーターを用いて周
波数10kHzで、また、コア損失の測定は交流B−H
カーブ測定機を用いて測定周波数50kHz、測定磁束
密度0.1Tでそれぞれ20℃〜120℃まで20℃毎
に温度特性も含めて行い、極小損失温度における特性を
(表3)に示した。ただし、極小損失温度が≧120
℃、あるいは≦20℃の場合、それぞれ120℃、20
℃でのコア損失、透磁率を示している。本実施の形態に
おける高調波歪み対策アクティブフィルタ用チョークコ
イルの場合、(表3)に示すように測定周波数50kH
z、測定磁束密度0.1Tにおいてコア損失1000k
W/m3以下、透磁率50以上および極小損失温度は8
0℃以上という満足すべき特性を得ることができた。The permeability was measured at a frequency of 10 kHz using an LCR meter, and the core loss was measured using an AC BH
Using a curve measuring machine, measurement was performed at a measurement frequency of 50 kHz and a measurement magnetic flux density of 0.1 T from 20 ° C. to 120 ° C. every 20 ° C., including the temperature characteristics. The characteristics at the minimum loss temperature are shown in Table 3. However, the minimum loss temperature is ≧ 120
° C or ≤20 ° C, 120 ° C and 20 ° C respectively
It shows the core loss and magnetic permeability at ° C. In the case of the choke coil for the active filter for harmonic distortion countermeasures in the present embodiment, the measurement frequency is 50 kHz as shown in (Table 3).
z, core loss 1000k at measured magnetic flux density 0.1T
W / m 3 or less, permeability 50 or more, and minimal loss temperature 8
Satisfactory characteristics of 0 ° C. or higher could be obtained.
【0034】[0034]
【表3】 [Table 3]
【0035】(表3)に示す結果より明らかなように、
酸素量を1000ppm以上、8000ppm以下とす
ることにより、高い透磁率と低いコア損失を得ることが
できる。As is clear from the results shown in (Table 3),
By setting the amount of oxygen to 1000 ppm or more and 8000 ppm or less, high magnetic permeability and low core loss can be obtained.
【0036】(実施の形態4)次に、本発明の実施の形
態4について説明する。(Embodiment 4) Next, Embodiment 4 of the present invention will be described.
【0037】本実施の形態におけるFe−Al−Si系
軟磁性合金粉末を(表4)に示す最終組成になるよう
に、ガスアトマイズ法により作製した。このFe−Al
−Si系軟磁性合金粉末を平均粒径60μmになるよう
に、ふるいにより分級し、その金属磁性粉100重量部
に対し絶縁性結着剤としてブチラール樹脂2重量部を加
えて混合した。その混合粉を一軸プレスにより、成形圧
力7ton/cm2で外径25mm、内径15mm、厚み約1
0mmのトロイダル形状の成形体を形成した。そして、
N2中において710℃の温度で熱処理した後、シリコ
ーン樹脂で含浸して試料を作成した。The Fe—Al—Si soft magnetic alloy powder according to the present embodiment was produced by a gas atomization method so as to have the final composition shown in (Table 4). This Fe-Al
The Si-based soft magnetic alloy powder was classified by a sieve so as to have an average particle diameter of 60 μm, and 2 parts by weight of butyral resin as an insulating binder was added to 100 parts by weight of the metal magnetic powder and mixed. The mixed powder was subjected to uniaxial pressing at a molding pressure of 7 ton / cm 2 at an outer diameter of 25 mm, an inner diameter of 15 mm, and a thickness of about 1 mm.
A 0 mm toroidal shaped compact was formed. And
After heat treatment at 710 ° C. in N 2 , a sample was prepared by impregnation with a silicone resin.
【0038】透磁率の測定はLCRメーターを用いて周
波数10kHzで、またコア損失の測定は交流B−Hカ
ーブ測定機を用いて測定周波数50kHz、測定磁束密
度0.1Tでそれぞれ20℃〜120℃まで20℃毎に
温度特性も含めて行い、極小損失温度における特性を
(表4)に示した。ただし、極小損失温度が120℃以
上、あるいは20℃以下の場合、それぞれ120℃、2
0℃でのコア損失、透磁率を示している。本実施の形態
における高調波歪み対策アクティブフィルタ用チョーク
コイルの場合、(表4)に示すように測定周波数50k
Hz、測定磁束密度0.1Tにおいてコア損失1000
kW/m3以下、透磁率50以上および極小損失温度は
80℃以上という満足すべき特性を得ることができた。The magnetic permeability was measured at a frequency of 10 kHz using an LCR meter, and the core loss was measured at a measuring frequency of 50 kHz and a measuring magnetic flux density of 0.1 T at 20 ° C. to 120 ° C. using an AC BH curve measuring machine. Up to 20 ° C., including temperature characteristics, the characteristics at the minimum loss temperature are shown in (Table 4). However, when the minimum loss temperature is equal to or higher than 120 ° C or equal to or lower than 20 ° C, the minimum loss temperature is set to 120 ° C or 2 ° C, respectively.
It shows core loss and magnetic permeability at 0 ° C. In the case of the choke coil for the active filter for harmonic distortion countermeasures in the present embodiment, the measurement frequency is 50 k as shown in (Table 4).
Hz, core loss 1000 at measured magnetic flux density 0.1T
Satisfactory characteristics of kW / m 3 or less, magnetic permeability of 50 or more, and minimum loss temperature of 80 ° C. or more could be obtained.
【0039】(表4)に示す結果より明らかなように、
重量%で、4.5%≦Al≦8.5%、7.5%≦Si
≦9.5%、残りをFeを主成分とするFe−Al−S
i系軟磁性合金粉末を用いた場合、高透磁率で低コア損
失で、かつ優れた温度特性を有し、より好ましくは、重
量で5.0%≦Al≦6.5%、8.2%≦Si≦9.
2%、残りがFeを主成分とするFe−Al−Si系軟
磁性合金粉末を用いることによりさらに優れた効果を得
ることができる。As is clear from the results shown in (Table 4),
4.5% ≦ Al ≦ 8.5%, 7.5% ≦ Si by weight%
≤9.5%, the remainder being Fe-Al-S whose main component is Fe
When the i-based soft magnetic alloy powder is used, it has high magnetic permeability, low core loss, and excellent temperature characteristics, and more preferably, 5.0% ≦ Al ≦ 6.5%, 8.2 by weight. % ≦ Si ≦ 9.
Even better effects can be obtained by using an Fe-Al-Si soft magnetic alloy powder containing 2% Fe as the main component.
【0040】[0040]
【表4】 [Table 4]
【0041】(実施の形態5)次に、本発明の実施の形
態5について説明する。(Fifth Embodiment) Next, a fifth embodiment of the present invention will be described.
【0042】最終組成においてAlが6.0wt%、S
iが9.0wt%、残りの主成分をFeとする軟磁性合
金粉末をガスアトマイズ法により作製し、(表5)に示
す平均粒径になるように、ふるいにより分級し、その金
属磁性粉100重量部に対し絶縁性結着剤として有機シ
リコーン樹脂3重量部を加えて混合した。その混合粉を
一軸プレスにより、成形圧力9ton/cm2で外径25m
m、内径15mm、厚み約10mmのトロイダル形状の
成形体を形成した。そしてN2中において730℃の温
度で熱処理した後、エポキシ樹脂で含浸して試料を作成
した。In the final composition, Al was 6.0 wt%, S
A soft magnetic alloy powder in which i is 9.0 wt% and the remaining main component is Fe is produced by a gas atomizing method, and classified by a sieve so as to have an average particle diameter shown in (Table 5). 3 parts by weight of an organic silicone resin as an insulating binder was added to and mixed with the parts by weight. The mixed powder was pressed by a uniaxial press at a molding pressure of 9 ton / cm 2 and an outer diameter of 25 m.
m, an inner diameter of 15 mm and a thickness of about 10 mm were formed in a toroidal shaped body. After heat treatment at 730 ° C. in N 2 , the sample was impregnated with an epoxy resin to prepare a sample.
【0043】透磁率の測定はLCRメーターを用いて周
波数10kHzで、またコア損失の測定は交流B−Hカ
ーブ測定機を用いて測定周波数50kHz、測定磁束密
度0.1Tでそれぞれ20℃〜120℃まで20℃毎に
温度特性も含めて行い、極小損失温度における特性を
(表5)に示した。ただし、極小損失温度が≧120
℃、あるいは≦20℃の場合、それぞれ120℃、20
℃でのコア損失、透磁率を示している。本実施の形態に
おける高調波歪み対策アクティブフィルタ用チョークコ
イルの場合、(表5)に示すように測定周波数50kH
z、測定磁束密度0.1Tにおいてコア損失1000k
W/m3以下、透磁率50以上および極小損失温度は8
0℃以上という満足すべき特性を得ることができた。The magnetic permeability was measured at a frequency of 10 kHz using an LCR meter, and the core loss was measured at a measuring frequency of 50 kHz and a measured magnetic flux density of 0.1 T at 20 ° C. to 120 ° C. using an AC BH curve measuring machine. Up to 20 ° C., including temperature characteristics, the characteristics at the minimum loss temperature are shown in (Table 5). However, the minimum loss temperature is ≧ 120
° C or ≤20 ° C, 120 ° C and 20 ° C respectively
It shows the core loss and magnetic permeability at ° C. In the case of the choke coil for the active filter for harmonic distortion countermeasures in the present embodiment, the measurement frequency is 50 kHz as shown in (Table 5).
z, core loss 1000k at measured magnetic flux density 0.1T
W / m 3 or less, permeability 50 or more, and minimal loss temperature 8
Satisfactory characteristics of 0 ° C. or higher could be obtained.
【0044】(表5)に示す結果より明らかなように、
磁性粉末の平均粒径を100μm以下とすることにより
コア損失を低くすることができ、好ましくは平均粒径を
50μm以下とすることによりさらにコア損失を低減す
ることができる。As is clear from the results shown in (Table 5),
The core loss can be reduced by setting the average particle size of the magnetic powder to 100 μm or less, and the core loss can be further reduced by setting the average particle size to 50 μm or less.
【0045】[0045]
【表5】 [Table 5]
【0046】(実施の形態6)次に、本発明の実施の形
態6について説明する。Embodiment 6 Next, Embodiment 6 of the present invention will be described.
【0047】最終組成においてAlが5.8wt%、S
iが8.6wt%、残りの主成分をFeとする軟磁性合
金を用いて、ガスアトマイズ法により平均粒径40μm
の粉体を作成した。その金属磁性粉100重量部に対し
て絶縁性結着剤としてブチラール樹脂1重量部とスペー
シング制御材として平均粒径1μmのMgOを1重量部
添加し、混合した。その混合粉を脱気混合し、粉砕して
得られた粒径500μm以下の造粒粉を一軸プレスによ
り、成形圧力10ton/cm2で、外径25mm、内径15
mm、厚み約10mmのトロイダル形状の成形体を形成
した。そして450℃の温度で空気中で脱バインダー
後、N2中において(表6)に示す熱処理条件で熱処理
した。その後エポキシ樹脂で含浸して試料を作成した。In the final composition, Al was 5.8 wt%, S
Using a soft magnetic alloy in which i is 8.6 wt% and the remaining main component is Fe, the average particle diameter is 40 μm by gas atomization.
Powder was prepared. To 100 parts by weight of the metal magnetic powder, 1 part by weight of butyral resin as an insulating binder and 1 part by weight of MgO having an average particle size of 1 μm as a spacing control material were added and mixed. The mixed powder is degassed and mixed, and the granulated powder having a particle size of 500 μm or less obtained by pulverization is subjected to a uniaxial press at a molding pressure of 10 ton / cm 2 , an outer diameter of 25 mm and an inner diameter of
A toroidal shaped body having a thickness of about 10 mm and a thickness of about 10 mm was formed. After debinding in air at a temperature of 450 ° C., heat treatment was performed in N 2 under the heat treatment conditions shown in (Table 6). Thereafter, the sample was impregnated with an epoxy resin to prepare a sample.
【0048】透磁率の測定はLCRメーターを用いて周
波数10kHzで、またコア損失の測定は交流B−Hカ
ーブ測定機を用いて測定周波数50kHz、測定磁束密
度0.1Tでそれぞれ20℃〜120℃まで20℃毎に
温度特性も含めて行い、極小損失温度における特性を
(表6)に示した。ただし、極小損失温度が≧120
℃、あるいは≦20℃の場合、それぞれ120℃、20
℃でのコア損失、透磁率を示している。本実施の形態に
おける高調波歪み対策アクティブフィルタ用チョークコ
イルの場合、(表6)に示すように測定周波数50kH
z、測定磁束密度0.1Tにおいてコア損失1000k
W/m3以下、透磁率50以上および極小損失温度は8
0℃以上という満足すべき特性を得ることができた。The magnetic permeability is measured at a frequency of 10 kHz using an LCR meter, and the core loss is measured at a measuring frequency of 50 kHz and a measured magnetic flux density of 0.1 T at 20 ° C. to 120 ° C. using an AC BH curve measuring machine. Up to 20 ° C., including the temperature characteristics, the characteristics at the minimum loss temperature are shown in (Table 6). However, the minimum loss temperature is ≧ 120
° C or ≤20 ° C, 120 ° C and 20 ° C respectively
It shows the core loss and magnetic permeability at ° C. In the case of the choke coil for the active filter against harmonic distortion in the present embodiment, the measurement frequency is 50 kHz as shown in (Table 6).
z, core loss 1000k at measured magnetic flux density 0.1T
W / m 3 or less, permeability 50 or more, and minimal loss temperature 8
Satisfactory characteristics of 0 ° C. or higher could be obtained.
【0049】[0049]
【表6】 [Table 6]
【0050】(表6)に示す結果より明らかなように、
熱処理温度を500℃以上900℃以下とすることによ
りコア損失を低くすることができ、好ましくは熱処理温
度を650℃〜800℃とすることによりさらにコア損
失を低減することができる。As is clear from the results shown in Table 6,
The core loss can be reduced by setting the heat treatment temperature to 500 ° C. or more and 900 ° C. or less, and the core loss can be further reduced by setting the heat treatment temperature to 650 ° C. to 800 ° C.
【0051】(実施の形態7)次に、本発明の実施の形
態7について説明する。Embodiment 7 Next, Embodiment 7 of the present invention will be described.
【0052】最終組成においてAlが7.5wt%、S
iが8.5wt%、残りの主成分をFeとする軟磁性合
金粉末と、比較例として従来のセンダスト組成であるA
lが5.4wt%、Siが9.6wt%、残りの主成分
をFeとする軟磁性合金粉末をそれぞれガスアトマイズ
法により作製し、それぞれの合金粉末の平均粒径が40
μmになるように、ふるいにより分級し、その金属磁性
粉100重量部に対し絶縁性結着剤として有機シリコー
ン樹脂4重量部を加えて混合した。その混合粉を一軸プ
レスにより、成形圧力10ton/cm2で外径25mm、内
径15mm、厚み約10mmのトロイダル形状の成形体
を形成した。そして、N2中において720℃の温度で
熱処理した後、エポキシ樹脂で含浸して試料を作成し
た。In the final composition, Al was 7.5 wt%, S
A soft magnetic alloy powder in which i is 8.5 wt% and the remaining main component is Fe, and A as a comparative example having a conventional sendust composition
1 is 5.4 wt%, Si is 9.6 wt%, and the remaining main component is Fe. A soft magnetic alloy powder is produced by a gas atomization method, and the average particle diameter of each alloy powder is 40.
The particles were classified by a sieve so as to have a thickness of μm, and 4 parts by weight of an organic silicone resin as an insulating binder was added to 100 parts by weight of the metal magnetic powder and mixed. The mixed powder was formed into a toroidal shaped body having an outer diameter of 25 mm, an inner diameter of 15 mm, and a thickness of about 10 mm at a molding pressure of 10 ton / cm 2 by a uniaxial press. Then, after heat treatment at a temperature of 720 ° C. in N 2 , a sample was prepared by impregnation with an epoxy resin.
【0053】図1に測定周波数50kHz、測定磁束密
度0.1Tにおけるコア損失の温度特性を示す。この特
性図より明らかなように、本実施の形態における軟磁性
合金粉末は室温(20〜30℃付近)でコア損失が負の
傾斜を持ち、極小損失温度が少なくとも80℃以上であ
るのに対し、比較例はコア損失が室温で正の傾斜を持ち
極小損失温度も少なくとも25℃以下であるために高温
で熱暴走する恐れがあることが分かる。FIG. 1 shows temperature characteristics of core loss at a measurement frequency of 50 kHz and a measured magnetic flux density of 0.1 T. As is clear from the characteristic diagram, the soft magnetic alloy powder in the present embodiment has a negative core loss slope at room temperature (around 20 to 30 ° C.) and a minimum loss temperature of at least 80 ° C. or more. It can be seen that in the comparative example, since the core loss has a positive slope at room temperature and the minimum loss temperature is at least 25 ° C. or less, thermal runaway may occur at a high temperature.
【0054】(実施の形態8)次に、本発明の実施の形
態8について説明する。(Eighth Embodiment) Next, an eighth embodiment of the present invention will be described.
【0055】本実施の形態におけるFe−Al−Si系
軟磁性合金粉末を(表7)に示す最終組成になるよう
に、水アトマイズ法により作製した。このFe−Al−
Si系軟磁性合金粉末を平均粒径50μmになるよう
に、ふるいにより分級し、その金属磁性粉100重量部
に対して絶縁性結着剤としてブチラール樹脂1.5重量
部を加えて混合した。その混合粉を一軸プレスにより、
成形圧力10ton/cm2でE字型形状とI字型形状を有す
る成形体を形成した。その後、N2中において700℃
の温度で熱処理した後、エポキシ樹脂で含浸して試料を
作成した。 この試料をノート型パソコンに使用されて
いるDC/DCコンバータのチョークコイル・PCC
(Power-Choke-Coil)として用いて周波数200k
Hzで評価した。そのときの温度上昇の結果を(表7)
に示す。The Fe—Al—Si soft magnetic alloy powder in the present embodiment was produced by the water atomization method so as to have the final composition shown in (Table 7). This Fe-Al-
The Si-based soft magnetic alloy powder was classified by a sieve so as to have an average particle diameter of 50 μm, and 1.5 parts by weight of butyral resin as an insulating binder was added to 100 parts by weight of the metal magnetic powder and mixed. By the uniaxial press of the mixed powder,
A molded body having an E-shape and an I-shape was formed at a molding pressure of 10 ton / cm 2 . Thereafter, 700 ° C. in N 2
And then impregnated with an epoxy resin to prepare a sample. This sample was used for the DC / DC converter choke coil and PCC used in the notebook computer.
(Power-Coke-Coil) and frequency 200k
Hz. Table 7 shows the results of the temperature rise at that time.
Shown in
【0056】(表7)より明らかなように、重量で4.
5%≦Al≦8.5%、7.5%≦Si≦9.5%、残
りをFeを主成分とするFe−Al−Si系軟磁性合金
粉末を用いた場合、温度上昇を30℃以下に抑制するこ
とができる。As is clear from (Table 7), 4 is obtained by weight.
When using 5% ≦ Al ≦ 8.5%, 7.5% ≦ Si ≦ 9.5%, and Fe-Al-Si soft magnetic alloy powder containing Fe as a main component, the temperature rise is increased by 30 ° C. The following can be suppressed.
【0057】[0057]
【表7】 [Table 7]
【0058】[0058]
【発明の効果】以上の説明から明らかなように、本発明
によれば、高周波領域において低コア損失で透磁率の高
い優れた磁気特性を有する複合磁性材料を提供すること
ができる。As is apparent from the above description, according to the present invention, it is possible to provide a composite magnetic material having low core loss, high magnetic permeability and excellent magnetic properties in a high frequency region.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明のコア損失の温度特性を、従来例と比較
して示す図FIG. 1 is a diagram showing temperature characteristics of core loss of the present invention in comparison with a conventional example.
【図2】Fe−Al−Si系合金における最大透磁率μ
mのFe、SiおよびAl濃度依存性を示す特性図FIG. 2 shows the maximum magnetic permeability μ of an Fe—Al—Si alloy.
characteristic diagram showing the dependence of m on Fe, Si and Al concentrations
【図3】センダスト中心組成域での初透磁率μiのF
e、SiおよびAl濃度依存性を示す特性図FIG. 3 shows the F of the initial magnetic permeability μ i in the central region of Sendust
Characteristic diagram showing e, Si and Al concentration dependency
Claims (10)
−Al−Si系の軟磁性合金粉末を含み、室温でのコア
損失の温度係数が負であることを特徴とする複合磁性
体。1. A ferromagnetic material in which the sign of the magnetostriction constant λ is positive at room temperature.
-A composite magnetic material comprising an Al-Si-based soft magnetic alloy powder, wherein a temperature coefficient of core loss at room temperature is negative.
80℃以上であることを特徴とする請求項1記載の複合
磁性体。2. The minimum temperature at which the core loss is minimized,
2. The composite magnetic body according to claim 1, wherein the temperature is 80 [deg.] C. or higher.
4.5%≦Al≦8.5%、7.5%≦Si≦9.5
%、残りFeからなることを特徴とする請求項1記載の
複合磁性体。3. The composition of the soft magnetic alloy powder is 4.5% ≦ Al ≦ 8.5%, 7.5% ≦ Si ≦ 9.5% by weight.
2. The composite magnetic material according to claim 1, wherein the composite magnetic material comprises% and the balance of Fe.
法または水アトマイズ法または溶融による合金化後の粉
砕法により形成されたものであることを特徴とする請求
項1記載の複合磁性体。4. The composite magnetic body according to claim 1, wherein the soft magnetic alloy powder is formed by a gas atomization method, a water atomization method, or a pulverization method after alloying by melting.
以上100μm以下であることを特徴とする請求項1記
載の複合磁性体。5. An average particle size of the soft magnetic alloy powder is 1 μm.
2. The composite magnetic body according to claim 1, wherein the thickness is at least 100 μm.
−Al−Si系軟磁性合金粉末を、電気絶縁性結着剤と
混合して圧縮成形後、500℃以上900℃以下の温度
で熱処理することを特徴とする複合磁性体の製造方法。6. An alloy in which the sign of the magnetostriction constant λ is positive at room temperature.
-A method for producing a composite magnetic material, comprising mixing an Al-Si soft magnetic alloy powder with an electrically insulating binder, compression-molding the mixture, and then heat-treating the mixture at a temperature of 500 ° C to 900 ° C.
4.5%≦Al≦8.5%、7.5%≦Si≦9.5
%、残りFeからなることを特徴とする請求項6記載の
複合磁性体の製造方法。7. The composition of the soft magnetic alloy powder is 4.5% ≦ Al ≦ 8.5%, 7.5% ≦ Si ≦ 9.5% by weight.
7. The method for producing a composite magnetic material according to claim 6, wherein the composition is composed of% and the balance of Fe.
脂、フェノール樹脂、塩化ビニール樹脂、ブチラール樹
脂、有機シリコーン樹脂のうち少なくとも1つからなる
ことを特徴とする請求項6記載の複合磁性体の製造方
法。8. The composite magnetic body according to claim 6, wherein the electrically insulating binder is made of at least one of an epoxy resin, a phenol resin, a vinyl chloride resin, a butyral resin, and an organic silicone resin. Manufacturing method.
%、7.5%≦Si≦9.5%、残りFeからなり、酸
素含有量が1000ppm以上8000ppm以下であ
り、磁歪定数λの符号が室温で正であることを特徴とす
るFe−Al−Si系軟磁性合金粉末。9. The composition has a weight percentage of 4.5% ≦ Al ≦ 8.5.
%, 7.5% ≦ Si ≦ 9.5%, the balance being Fe, the oxygen content is not less than 1000 ppm and not more than 8000 ppm, and the sign of the magnetostriction constant λ is positive at room temperature. Si-based soft magnetic alloy powder.
法または溶融された合金の粉砕法により製造されている
ことを特徴とする請求項9記載のFe−Al−Si系軟
磁性合金粉末。10. The Fe—Al—Si soft magnetic alloy powder according to claim 9, wherein the soft magnetic alloy powder is produced by a water atomization method or a pulverization method of a molten alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36886398A JP4115612B2 (en) | 1997-12-25 | 1998-12-25 | Composite magnetic material and method for producing the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35707897 | 1997-12-25 | ||
JP10-3010 | 1998-01-09 | ||
JP301098 | 1998-01-09 | ||
JP9-357078 | 1998-01-09 | ||
JP36886398A JP4115612B2 (en) | 1997-12-25 | 1998-12-25 | Composite magnetic material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11260618A true JPH11260618A (en) | 1999-09-24 |
JP4115612B2 JP4115612B2 (en) | 2008-07-09 |
Family
ID=27275626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36886398A Expired - Lifetime JP4115612B2 (en) | 1997-12-25 | 1998-12-25 | Composite magnetic material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4115612B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001102207A (en) * | 1999-09-30 | 2001-04-13 | Tdk Corp | Method for production of dust core |
JP2001313208A (en) * | 2000-04-27 | 2001-11-09 | Tdk Corp | Composite magnetic material, magnetic molding material using the same, compact magnetic powder molding material, magnetic paint, prepreg, and magnetic board |
WO2010082486A1 (en) * | 2009-01-16 | 2010-07-22 | パナソニック株式会社 | Process for producing composite magnetic material, dust core formed from same, and process for producing dust core |
WO2010103709A1 (en) * | 2009-03-09 | 2010-09-16 | パナソニック株式会社 | Powder magnetic core and magnetic element using the same |
WO2011016207A1 (en) * | 2009-08-04 | 2011-02-10 | パナソニック株式会社 | Composite magnetic body and method for producing the same |
JP2014199874A (en) * | 2013-03-29 | 2014-10-23 | 株式会社タムラ製作所 | Couple inductor |
JP5903665B2 (en) * | 2010-06-30 | 2016-04-13 | パナソニックIpマネジメント株式会社 | Method for producing composite magnetic material |
KR20180011723A (en) | 2016-07-25 | 2018-02-02 | 티디케이가부시기가이샤 | High permeability magnetic sheet |
TWI614776B (en) * | 2014-08-07 | 2018-02-11 | 英諾晶片科技股份有限公司 | Power inductor |
US10308786B2 (en) | 2014-09-11 | 2019-06-04 | Moda-Innochips Co., Ltd. | Power inductor and method for manufacturing the same |
US10573451B2 (en) | 2014-08-07 | 2020-02-25 | Moda-Innochips Co., Ltd. | Power inductor |
US10593453B2 (en) | 2016-07-25 | 2020-03-17 | Tdk Corporation | High permeability magnetic sheet |
JP2020164981A (en) * | 2019-03-28 | 2020-10-08 | 新東工業株式会社 | Soft magnetic alloy powder, electronic component and method for producing the same |
CN111745152A (en) * | 2019-03-28 | 2020-10-09 | 新东工业株式会社 | Soft magnetic alloy powder, electronic component, and method for producing same |
-
1998
- 1998-12-25 JP JP36886398A patent/JP4115612B2/en not_active Expired - Lifetime
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001102207A (en) * | 1999-09-30 | 2001-04-13 | Tdk Corp | Method for production of dust core |
JP2001313208A (en) * | 2000-04-27 | 2001-11-09 | Tdk Corp | Composite magnetic material, magnetic molding material using the same, compact magnetic powder molding material, magnetic paint, prepreg, and magnetic board |
WO2010082486A1 (en) * | 2009-01-16 | 2010-07-22 | パナソニック株式会社 | Process for producing composite magnetic material, dust core formed from same, and process for producing dust core |
US8328955B2 (en) | 2009-01-16 | 2012-12-11 | Panasonic Corporation | Process for producing composite magnetic material, dust core formed from same, and process for producing dust core |
WO2010103709A1 (en) * | 2009-03-09 | 2010-09-16 | パナソニック株式会社 | Powder magnetic core and magnetic element using the same |
CN102341869A (en) * | 2009-03-09 | 2012-02-01 | 松下电器产业株式会社 | Powder magnetic core and magnetic element using same |
US8366837B2 (en) | 2009-03-09 | 2013-02-05 | Panasonic Corporation | Powder magnetic core and magnetic element using the same |
WO2011016207A1 (en) * | 2009-08-04 | 2011-02-10 | パナソニック株式会社 | Composite magnetic body and method for producing the same |
JP5903665B2 (en) * | 2010-06-30 | 2016-04-13 | パナソニックIpマネジメント株式会社 | Method for producing composite magnetic material |
JP2014199874A (en) * | 2013-03-29 | 2014-10-23 | 株式会社タムラ製作所 | Couple inductor |
US9799440B2 (en) | 2013-03-29 | 2017-10-24 | Tamura Corporation | Coupled inductor |
US10224141B2 (en) | 2013-03-29 | 2019-03-05 | Tamura Corporation | Coupled inductor |
TWI614776B (en) * | 2014-08-07 | 2018-02-11 | 英諾晶片科技股份有限公司 | Power inductor |
US10541075B2 (en) | 2014-08-07 | 2020-01-21 | Moda-Innochips Co., Ltd. | Power inductor |
US10541076B2 (en) | 2014-08-07 | 2020-01-21 | Moda-Innochips Co., Ltd. | Power inductor |
US10573451B2 (en) | 2014-08-07 | 2020-02-25 | Moda-Innochips Co., Ltd. | Power inductor |
US10308786B2 (en) | 2014-09-11 | 2019-06-04 | Moda-Innochips Co., Ltd. | Power inductor and method for manufacturing the same |
US10508189B2 (en) | 2014-09-11 | 2019-12-17 | Moda-Innochips Co., Ltd. | Power inductor |
EP3300816A1 (en) | 2016-07-25 | 2018-04-04 | TDK Corporation | High permeability magnetic sheet |
KR20180011723A (en) | 2016-07-25 | 2018-02-02 | 티디케이가부시기가이샤 | High permeability magnetic sheet |
US10593453B2 (en) | 2016-07-25 | 2020-03-17 | Tdk Corporation | High permeability magnetic sheet |
JP2020164981A (en) * | 2019-03-28 | 2020-10-08 | 新東工業株式会社 | Soft magnetic alloy powder, electronic component and method for producing the same |
CN111745152A (en) * | 2019-03-28 | 2020-10-09 | 新东工业株式会社 | Soft magnetic alloy powder, electronic component, and method for producing same |
CN111745152B (en) * | 2019-03-28 | 2024-03-12 | 新东工业株式会社 | Soft magnetic alloy powder, electronic component, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP4115612B2 (en) | 2008-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100307195B1 (en) | Composite magnetic material and process for producing the same | |
JP5501970B2 (en) | Powder magnetic core and manufacturing method thereof | |
EP0926688B1 (en) | Magnetic composite article and manufacturing method using Fe-Al-Si powder | |
JP2007299871A (en) | Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same | |
JP5522173B2 (en) | Composite magnetic body and method for producing the same | |
JP3964213B2 (en) | Manufacturing method of dust core and high frequency reactor | |
JP2001011563A (en) | Manufacture of composite magnetic material | |
JPH0611008B2 (en) | Dust core | |
JP4115612B2 (en) | Composite magnetic material and method for producing the same | |
JPH11238613A (en) | Compound magnetic material and its manufacture | |
JP2003133122A (en) | Dust core | |
JP4888784B2 (en) | Soft magnetic metal particles with insulating oxide coating | |
JP2010153638A (en) | Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component | |
JP2009158802A (en) | Manufacturing method of dust core | |
JP6460505B2 (en) | Manufacturing method of dust core | |
JP2012222062A (en) | Composite magnetic material | |
JP4166460B2 (en) | Composite magnetic material, magnetic element using the same, and method of manufacturing the same | |
JP2000232014A (en) | Manufacture of composite magnetic material | |
JPH061727B2 (en) | Iron core | |
WO2003060930A1 (en) | Powder magnetic core and high frequency reactor using the same | |
US6419760B1 (en) | Powder magnetic core | |
JP4701531B2 (en) | Dust core | |
JPH07211531A (en) | Manufacture of powder magnetic core | |
JPH06236808A (en) | Composite magnetic material and its manufacture | |
JP4723609B2 (en) | Dust core, dust core manufacturing method, choke coil and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040921 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041109 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080416 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140425 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |