JP3964213B2 - Manufacturing method of dust core and high frequency reactor - Google Patents

Manufacturing method of dust core and high frequency reactor Download PDF

Info

Publication number
JP3964213B2
JP3964213B2 JP2002009182A JP2002009182A JP3964213B2 JP 3964213 B2 JP3964213 B2 JP 3964213B2 JP 2002009182 A JP2002009182 A JP 2002009182A JP 2002009182 A JP2002009182 A JP 2002009182A JP 3964213 B2 JP3964213 B2 JP 3964213B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
core
dust core
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002009182A
Other languages
Japanese (ja)
Other versions
JP2003217919A (en
Inventor
照彦 藤原
政義 石井
義孝 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002009182A priority Critical patent/JP3964213B2/en
Publication of JP2003217919A publication Critical patent/JP2003217919A/en
Application granted granted Critical
Publication of JP3964213B2 publication Critical patent/JP3964213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チョークコイルに用いられる圧粉磁芯に関し、さらに詳しくは、直流重畳特性及び周波数特性に優れた圧粉磁芯に関するものである。
【0002】
【従来の技術】
高周波で用いられるチョークコイルとして、フェライト磁芯や圧粉磁芯が使用されている。これらの中で、フェライト磁芯は飽和磁束密度が小さいという欠点を有している。これに対して、金属粉末を成形して作製される圧粉磁芯は、軟磁性フェライトに比べて高い飽和磁束密度を持つため、直流重畳性に優れているという長所を有している。
【0003】
しかし、圧粉磁芯は、金属粉末を有機バインダーなどと混合して高圧で圧縮成型して作製するため、粉末粒子間の絶縁が保てず、透磁率の周波数特性の低下という欠点を有する。また、粉末粒子間の絶縁を確保するため、バインダーなどを大量に混合すると金属粉末の占積率が低下し、透磁率が低下するなどの問題がある。
【0004】
また、近年、省エネルギー、二酸化炭素による地球温暖化問題の高まりから、一般家電及び産業用機器において、省エネルギー対策が急速に進んでおり、その対策として、電気回路の高効率化等が求められている。その解決手段の一環として、圧粉磁芯の透磁率の向上及び周波数特性の改善、コアロスの改善が強く望まれている。
【0005】
【発明が解決しようとする課題】
従来の圧粉磁芯の透磁率を向上させる方法としては、磁性粉末の充填率の向上に主点が置かれており、その手段として、例えば成形圧を上げるなどの方法が考えられる。しかし、この方法で充填率を向上させた場合、粉末粒子間の絶縁が低下し、渦電流損失の増加、周波数特性の劣化を招いてしまう。
【0006】
従って、本発明の技術的課題は、上記問題点を解決し、直流重畳特性、周波数特性に優れた圧粉磁芯を提供することである。
【0007】
【課題を解決するための手段】
本発明は、前記の問題を解決するために、圧粉磁芯における磁性粒子間に、絶縁体を介在させることを検討した結果なされたものである。本発明者らは、前記の方法を具体化することの検討を進めた結果、SiOを生成する化合物を含む粉末もしくは溶液と、MgCO粉末もしくはMgOを、圧粉磁芯の原材料に混合し、プレス、熱処理することにより、磁性粉末粒子間に絶縁体を介在させ得ることを見出した。
【0012】
本発明の態様によれば、1〜10wt%のSi、0.1〜1.0wt%のO、残部Feの組成をもつ粒径が150μm以下の合金よりなる磁性粉末と、シリコーン樹脂またはシランカップリング剤の少なくとも一方と、MgCO粉末またはMgO粉末の少なくとも一方とを混合した混和物を圧縮成形し、得られた成形体に熱処理を施して磁性粉末の間にSiOとMgOとを主成分とするガラス層を生成することを特徴とする、圧粉磁芯の製造方法が得られる。
【0013】
前記混和物を5〜20ton/cmの成形圧力で成形して前記熱処理を500〜1000℃の温度領域で行い、これにより前記成形体の密度を6.0〜7.0g/cmにしてもよい。
【0014】
前記シランカップリング剤の混合は、シランカップリング剤による磁性粉末粒子の表面処理によってもよい。
上述した製造方法により製造される圧粉磁芯は、交流透磁率μ 20kHz が直流印加磁界12000A/m時に20以上であり、かつ鉄損が20kHz、0.1Tの条件下で1000kW/m 以下であってもよい。
上述した製造方法により製造される圧粉磁芯は、磁路長の10%以下が1箇所以上の空隙または非磁性物から構成されてもよい。
本発明の他の態様によれば、上述した製造方法により圧粉磁芯を製造し、前記圧粉磁芯に巻線を施すことを特徴とする、高周波リアクトルの製造方法が得られる。
【0015】
【作用】
本発明によれば、同様の磁性粉末を用いた従来の圧粉磁芯に比較して、直流重畳特性、周波数特性の優れた圧粉磁芯が得られるが、これはSiOを生成する化合物とMgCO粉末またはMgO粉末とを混合して熱処理することにより、磁性粒子間にSiOとMgOを主成分とするガラス層が形成され、充填率を低下させることなく、粒子間の絶縁を確保できたためと解される。
【0016】
【発明の実施の形態】
次に、本発明の実施の形態について説明する。
【0017】
本発明においては、磁性粉末として1重量%〜10重量%のSi、0.1〜1.0wt%のO、残部Feの組成の合金が用いられるが、溶解法によるインゴットからの粉砕粉末、アトマイズ粉末など、組成の分布が均一であれば、製法に制限はない。
【0018】
粉末の酸素量が0.1wt%以下の時は、適当な酸素雰囲気と温度で熱処理し、粉末表面に酸化処理を施す。この粉末を150μmのふるいを使用して分級する。
【0019】
一方、圧粉磁芯の成形においては、バインダーを用いることがあり、一般的な圧粉磁芯用のバインダーとして、エポキシ樹脂などの熱硬化性高分子が用いられる。本発明においては、SiOを生成する化合物を用いることから、シロキサン結合で主鎖が構成されるシリコーン樹脂を主成分とする接着剤を用いることができる。
【0020】
また、シランカップリング剤は、SiとOを構成元素としているので、これを混合しても、熱処理によりSiOを生成することができる。この場合は、予め磁性粉末をシランカップリング剤で表面処理するという方法をとれば、磁性粉末の充填率向上にも寄与できる。
【0021】
また、本発明では、絶縁体を形成するため、MgCO粉末またはMgO粉末を混合するが、MgOは空気中のCOや水を吸収してMgCO水和物に変化するので、取り扱いに注意が必要である。一方、MgCOは700℃付近以上の温度で、COを放出してMgOに変化するので、MgOを使用した場合と同様の結果が得られる。つまり、製造工程の環境や熱処理の条件などによって、適宜使い分ける必要がある。
【0022】
例えばトロイダル形状の金型を使用して適切な圧力、望ましくは5〜20ton/cmの圧力で圧縮成形する。さらに、その成形体に対し適切な温度望ましくは500〜1000℃の範囲で歪とり熱処理を行う。次いで定格電流に応じた線径のマグネットワイヤーを使用し、所望のインダクタンス値になるようにターン数を決める。ここで、合金の組成を規定した理由を述べると、Si量が1重量%未満では合金の磁気異方性が高く、しかも比抵抗が低いので磁心のコアロスがたかくなるためであり、10%を越えると合金の飽和磁化が低くまた硬度が高いので成形体密度が低くなり、直流重畳特性が劣化するためである。O量を0.1〜1.0wt%としたのは、0.1%未満では初透磁率が高すぎて直流重畳特性が向上せず、1.0wt%を越えると粉末中の磁性体の割合が減少するので飽和磁化が著しく低下し、直流重畳特性が劣化するためである。また粉末粒径は実質的に150μm以下でさらに細かい方が直流重畳特性も向上する傾向を示す。
【0023】
また、成形圧力については、5ton/cm以上の圧力で粉末を成形したとき、6.0g/cm以上の高い成形体密度と優れた直流重畳特性とコアロス特性が得られるが、20ton/cmを越える成形圧力では成形体の金型寿命が著しく短くなるため現実的ではない。
【0024】
また、成形体の熱処理温度については、500℃以上で成形歪が除去され直流重畳特性が向上するが、1000℃を越えると比抵抗が低下するため、高周波特性の劣化が著しくなる。これは焼結により粉末間の電気的絶縁が破壊されるためと思われ、焼結体密度比が95%を越えるような焼結磁心と本発明による圧粉磁心との決定的差異であり、成形体の密度が7.0g/cmを越える。
【0025】
以下に具体的な実施例によってさらに詳しく説明する。
【0026】
(実施例1)
水アトマイズ法で作製した、Siが5.0wt%、Oが0.5wt%、残部がFeという組成の合金粉末に、シリコーン樹脂、シラン系カップリング剤、MgCO粉末、MgO粉末の所要量を、秤量して混合し、金型を用いて室温で15ton/cmの圧力で成形し、外径20mm、内径10mm、厚さ5mmのトロイダル形状の圧粉磁芯を得た。表1は、本実施例における前記成分の秤量組成を示したものである。ここでは、実施例として4種類、比較例として1種類の圧粉磁芯を作製した。
【0027】
【表1】

Figure 0003964213
【0028】
次に、この圧粉磁芯に、800℃、2時間、窒素中という条件で熱処理を施し、シリコーン樹脂の熱処理及び粉末成形時の歪みの除去を行った。次に、この圧粉磁芯を絶縁体からなるケースに装入して巻線を施し、ヒューレッドパッカード社(以下、HPと記す)製4284Aプレシジョンメーターで直流重畳特性を測定した。この結果を図1に示した。
【0029】
また、HP製4194Aインピーダンスアナライザーで、μ20kHzの周波数特性を測定した。結果を図2に示した。また、各圧粉磁芯の比抵抗の測定結果を表2に示した。また、次にこれらの成形体に1次15ターン、2次15ターンの巻線をし、岩崎通信機のSY−8232交流BHトレーサーで20kHz、0.1Tのコアロス特性を測定した結果も表2に示した。
【0030】
比較例として、表1に示すように、シリコーン樹脂を1.0wt%のみ混合し、上記と同様の方法で圧粉磁芯の作製、特性測定を行い、結果を同じく図1、図2、表2に示した。
【0031】
【表2】
Figure 0003964213
【0032】
図1、図2より、本実施例の圧粉磁芯では、直流重畳特性、周波数特性とも比較例に比べ、良好であることがわかる。また、表2より、本実施例の圧粉磁芯では、比抵抗とコアロスも向上していることがわかる。
【0033】
(実施例2)
次に、実施例2について説明する。試料1として、表1の試料3に示した混合比率で原材料を秤量し、実施例1と同様にして金型を用い、室温で15ton/cmの圧力で成形し、外径20mm、内径10mm、厚さ5mmのトロイダル形状の圧粉磁芯を得た。次に、この圧粉磁芯に、400℃、500℃、600℃、700℃、800℃、900℃、1000℃、1100℃で、2時間、窒素中で熱処理を施し、シリコーン樹脂の熱処理及び粉末成形時の歪みの除去を行った。
【0034】
この圧粉磁芯を絶縁体からなるケースに装入して巻線を施し、HP製4284Aプレシジョンメーターで直流重畳特性を測定した。結果を図3に示した。また、HP製4194Aインピーダンスアナライザーでμの周波数特性を測定した。結果を図4に示した。図3、図4より、熱処理温度500℃以上の圧粉磁芯で、直流重畳特性、周波数特性とも良好な特性であった。これは、500℃以上でSiOとMgOのガラス層が形成されたためと考えられる。
【0035】
また、前記温度で熱処理を施した圧粉磁芯について比抵抗を測定した。また、比較例として、実施例1と同一の磁性粉末を用い、シリコーン樹脂1.0wt%のみを混合し、実施例1と同様の方法で作製した圧粉磁芯に、本実施例と同様に、400℃、500℃、600℃、700℃、800℃、900℃、1000℃、1100℃の温度で、2時間、窒素中で熱処理を施し、シリコーン樹脂の熱処理及び粉末成形時の歪みの除去を行い、圧粉磁芯を作製した。これらについても同様に、比抵抗を測定した。結果を図5に示した。
【0036】
図5より、比較例のシリコーン樹脂のみの圧粉磁芯では、熱処理温度の上昇に伴い比抵抗が低下し、900℃の高温では、絶縁が破壊されていることがわかる。一方、本実施例では、熱処理温度の増加と共に比抵抗が向上し、1000℃まで絶縁が保たれることがわかった。この結果から、本発明により、高温熱処理で十分な絶縁が確保でき、これによって磁気特性が向上できることがわかる。
【0037】
(実施例3)
次に、実施例3について説明する。実施例1の試料1に使用した5.0重量%のSi、0.5重量%のO、残部Feの合金粉末を使用して、外径50mm、内径25mm、高さ20mmのトロイダル圧粉磁芯を、金型を使用して作成した。次に,このトロイダル圧粉磁芯を歪とり熱処理し、磁路と直角にギャップを5mm挿入し、外径1.8mmのマグネットワイヤーを60ターン巻線して、リアクトルを作製した。
【0038】
このリアクトルの40A直流重畳時のインダクタンスを測定したところ、550μHであった。次に、出力2000W級のごく一般的なインバーター制御用のアクティブフィルターが搭載されたスイッチング電源に、このリアクトルを接続し、回路効率を測定した。ここで、出力側には負荷抵抗を接続した。また、回路効率は,出力電力を入力電力で割った値を使用した。その結果を表3に示す。
【0039】
比較例として、幅20mmのFe系アモルファス薄帯を使用し、実施例と全く同じ寸法のトロイダル磁芯を作成した。そして、実施例と全く同じインダクタンスになるようにギャップを形成した後、やはり60ターン巻線して、インダクタンスを測定したところ,530μHであった。次に,実施例と全く同じ方法でスイッチング電源に接続し、その回路効率を測定した。その結果も合わせて表3に示した。
【0040】
【表3】
Figure 0003964213
【0041】
表3より、本実施例のリアクトルは、比較例に比較し、回路効率が高いことが分かった。これは,アモルファス磁芯コアは大きなギャップを入れる必要があり、そのため唸りが発生し、更にギャップ付近に生じる漏洩磁束などが、効率に悪影響を及ぼしていると思われる。
【0042】
(実施例4)
水アトマイズ法で作製した3.0wt%のSi、0.5wt%のO、残部Feの合金粉末を150μm以下に分級した。次に、バインダーとしてSi系樹脂を重量比で1.0wt%、MgOを1.0wt%混合した。次いで、成形用金型を使用し、外形15mm、内径10mm、高さ5mmの形状に10ton/cmの圧力で金型成形した。成形体密度は6.8g/cmであった。その後、この成形体を不活性雰囲気で800℃×1時間保持後、室温まで徐冷した。次にこの成形体に1次15ターン、2次15ターンの巻線をし、岩崎通信機のSY−8232交流BHトレーサーで20kHz、0.1Tにおける透磁率、コアロス特性を測定した。
【0043】
比較例として、全く同様の形状の磁心を板厚0.1mmの3%珪素鋼板から金型で打ち抜き後、樹脂で積層し磁心を作製した。次に、歪とり熱処理を行った後、直流透磁率μが実施例をほぼ同じ値になるように磁心にギャップを入れ、実施例と全く同様に1次、2次の巻線を行い交流の磁気特性を測定した。これらの結果を表4に示す。
【0044】
【表4】
Figure 0003964213
【0045】
表4に示すとおり、本実施例で作製した磁心は、比較例に比べ高周波における磁気特性が良好であることがわかる。
【0046】
(実施例5)
純鉄及びSi量が1.0、3.0、5.0、7.0、9.0、11.0wt%でO量が0.5±0.1wt%、残部Feよりなる合計6ロットの組成について水アトマイズ法で合金粉末を作製し、実施例1と全く同様の方法で150μmに分級した。
【0047】
次に、バインダーとして1.0wt%のSi樹脂と1.0wt%のMgOとを添加し、外径60mm、内径35mm、高さ20mmのトロイダル形状に5〜15ton/cmの成形圧で相対密度が約85%以上になるように金型で磁心を成形した。その後、850℃窒素雰囲気で歪とり熱処理を行った後、マグネットワイヤーで90ターン巻線後、20A直流重畳時(12000A/m)のインダクタンスを周波数20kHzにおいて測定した。そのインダクタンス値より、交流透磁率を計算した。その結果を図6に示す。図6より、Si量が1.0〜10.0wt%のとき、μ20kHzが20以上を示すことがわかる。
【0048】
次に、20kHz、0.1Tの条件でコアロスを測定したところ、純鉄粉以外の磁心のコアロスは、1000kW/m以下であった。
【0049】
次に、これらリアクトルの実装特性を調べるため、市販のエアコンでアクティブフィルターを搭載している出力2kWのスイッチング電源に、これらリアクトルを接続し、回路効率を測定した。ここで、出力側には一般的な電子負荷装置を接続した。また、回路効率は出力電力を入力電力で割った値を使用した。その結果を表5に示す。
【0050】
【表5】
Figure 0003964213
【0051】
表5より、例えば、1000Wで93%以上の高い効率が得られるのはSi量が1.0〜10.0wt%の範囲であり、これはコアロスが1000kW/mで、かつ12000A/mにおける透磁率が20以上の組成範囲と一致していることがわかる。
【0052】
(実施例6)
Si量が4.5wt%、残部Fe合金組成のガスアトマイズ粉末を作製し、150に分級後、温度を一定にし雰囲気を適切に調節することによりO量が0.05、0.1、0.25、0.5、0.75、1.0、1.25wt%の各合金粉末を作製した。
【0053】
次に、この合金に実施例4及び5と全く同様の方法でバインダー混合後、実施例5と全く同様の方法で、同様の寸法のトロイダル磁心を成形圧20ton/cmで成形体密度92%に作製し、歪とり熱処理後、これら磁心に実施例1と全く同様の方法で巻線をし、20kHz、0.1Tの条件でコアロスを測定した。その結果を図7に示す。図7よりO量が0.1wt%より低くなると急激にコアロスが劣化することがわかる。
【0054】
次に、実施例5と全く同様の方法で巻線をし、20A直流重畳時(12000A/m)の20kHzのインダクタンスを測定し、交流透磁率を計算したところ、O量が1.25wt%の磁心のμ20kHzは13、0.05wt%の磁心のμ20kHzは19であり、それ以外の磁心のμ20kHzは20以上であった。
【0055】
次に実施例5と全く同様の方法でこれらリアクトルの実装特性を測定した。その結果を表6に示す。
【0056】
【表6】
Figure 0003964213
【0057】
表6より、例えば、1000Wで93%以上の高い効率が得られるのはO量が0.1〜1.0wt%の範囲であり、これらはコアロスが1000kW/m以下でかつμ20kHzが20以上の特性を示す組成範囲と一致していることがわかる。
【0058】
【発明の効果】
以上説明したように、本発明によれば、1〜10重量%Si、0.1〜1.0重量%O、残部Feなる組成の、粒径が150μm以下の合金粉末と、SiOを生成する化合物と、MgCOまたはMgOの粉末からなる混和物を圧縮成形して、熱処理することにより、磁性粒子間に絶縁を確保するためガラス層が形成され、良好な直流重畳特性、周波数特性を有する圧粉磁芯を提供することができる。
【図面の簡単な説明】
【図1】実施例1による圧粉磁芯と比較例の圧粉磁芯の周波数特性を示す図。
【図2】実施例1による圧粉磁芯と比較例の圧粉磁芯の直流重畳特性を示す図。
【図3】圧粉磁芯の周波数特性の熱処理温度依存性を示す図。
【図4】圧粉磁芯の直流重畳特性の熱処理温度依存性を示す図。
【図5】実施例1による圧粉磁芯と比較例の圧粉磁芯の周波数特性を示す図。
【図6】実施例5による圧粉磁芯における交流透磁率を示す図。
【図7】実施例6による圧粉磁芯におけるコアロスを示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dust core used for a choke coil, and more particularly to a dust core excellent in DC superposition characteristics and frequency characteristics.
[0002]
[Prior art]
As choke coils used at high frequencies, ferrite cores and dust cores are used. Among these, the ferrite core has a defect that the saturation magnetic flux density is small. On the other hand, a dust core produced by molding metal powder has a high saturation magnetic flux density as compared with soft magnetic ferrite, and thus has an advantage of excellent direct current superimposition.
[0003]
However, the dust core is produced by mixing metal powder with an organic binder and compression molding at high pressure. Therefore, the insulation between the powder particles cannot be maintained, and the frequency characteristics of the magnetic permeability are lowered. In addition, in order to ensure insulation between the powder particles, when a large amount of binder or the like is mixed, there is a problem that the space factor of the metal powder is lowered and the magnetic permeability is lowered.
[0004]
In recent years, energy saving measures are rapidly progressing in general household appliances and industrial equipment due to the growing global warming problem due to energy saving and carbon dioxide. . As part of the solution, there is a strong demand for an improvement in magnetic permeability, frequency characteristics, and core loss of the dust core.
[0005]
[Problems to be solved by the invention]
As a conventional method for improving the magnetic permeability of the powder magnetic core, the main point is placed on the improvement of the filling rate of the magnetic powder. However, when the filling rate is improved by this method, the insulation between the powder particles decreases, leading to an increase in eddy current loss and a deterioration in frequency characteristics.
[0006]
Therefore, the technical problem of the present invention is to solve the above-mentioned problems and to provide a dust core excellent in DC superposition characteristics and frequency characteristics.
[0007]
[Means for Solving the Problems]
The present invention has been made as a result of examining the interposition of an insulator between magnetic particles in a dust core in order to solve the above problem. As a result of studying the realization of the above method, the present inventors have mixed a powder or solution containing a compound that generates SiO 2 and MgCO 3 powder or MgO into the raw material of the dust core. It has been found that an insulator can be interposed between magnetic powder particles by pressing and heat treatment.
[0012]
According to one aspect of the present invention, a magnetic powder comprising an alloy having a composition of 1 to 10 wt% Si, 0.1 to 1.0 wt% O, the balance Fe, and a particle size of 150 μm or less, and a silicone resin or silane A mixture obtained by mixing at least one of the coupling agent and at least one of MgCO 3 powder or MgO powder is compression-molded, and the resulting molded body is subjected to heat treatment to mainly contain SiO 2 and MgO between the magnetic powders. A method for producing a dust core, characterized by producing a glass layer as a component, is obtained.
[0013]
The admixture is molded at a molding pressure of 5 to 20 ton / cm 2 and the heat treatment is performed in a temperature range of 500 to 1000 ° C., whereby the density of the molded body is set to 6.0 to 7.0 g / cm 3. Also good.
[0014]
The silane coupling agent may be mixed by surface treatment of the magnetic powder particles with the silane coupling agent.
The dust core manufactured by the above-described manufacturing method has an AC permeability μ 20 kHz of 20 or more when a DC applied magnetic field of 12000 A / m and an iron loss of 20 kHz and 1000 kW / m 3 or less under the condition of 0.1 T. It may be.
In the dust core manufactured by the above-described manufacturing method, 10% or less of the magnetic path length may be composed of one or more voids or nonmagnetic materials.
According to another aspect of the present invention, there is obtained a method for manufacturing a high frequency reactor, wherein a dust core is manufactured by the above-described manufacturing method, and winding is applied to the dust core.
[0015]
[Action]
According to the present invention, a dust core having excellent DC superposition characteristics and frequency characteristics can be obtained as compared with a conventional dust core using the same magnetic powder. This is a compound that generates SiO 2 . By mixing and heat-treating MgCO 3 powder or MgO powder, a glass layer composed mainly of SiO 2 and MgO is formed between the magnetic particles, ensuring insulation between the particles without lowering the filling rate It is understood that it was made.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
[0017]
In the present invention, an alloy having a composition of 1 wt% to 10 wt% Si, 0.1 to 1.0 wt% O and the balance Fe is used as the magnetic powder. If the distribution of the composition is uniform, such as powder, the production method is not limited.
[0018]
When the amount of oxygen in the powder is 0.1 wt% or less, heat treatment is performed in an appropriate oxygen atmosphere and temperature to oxidize the powder surface. This powder is classified using a 150 μm sieve.
[0019]
On the other hand, in the molding of the dust core, a binder may be used, and a thermosetting polymer such as an epoxy resin is used as a binder for a general dust core. In the present invention, since a compound that generates SiO 2 is used, an adhesive mainly composed of a silicone resin in which a main chain is composed of siloxane bonds can be used.
[0020]
Further, since the silane coupling agent contains Si and O as constituent elements, even if they are mixed, SiO 2 can be generated by heat treatment. In this case, if the method of surface-treating magnetic powder with a silane coupling agent in advance is taken, it can contribute to the improvement of the filling rate of magnetic powder.
[0021]
In the present invention, MgCO 3 powder or MgO powder is mixed in order to form an insulator. However, MgO absorbs CO 2 and water in the air and changes to MgCO 3 hydrate. is required. On the other hand, MgCO 3 releases CO 2 and changes to MgO at a temperature of about 700 ° C. or higher, so that the same result as when MgO is used can be obtained. In other words, it is necessary to use properly depending on the environment of the manufacturing process and the conditions of the heat treatment.
[0022]
For example, compression molding is performed using a toroidal mold at an appropriate pressure, preferably 5 to 20 ton / cm 2 . Further, the molded body is subjected to heat treatment for removing the strain at an appropriate temperature, preferably in the range of 500 to 1000 ° C. Next, a magnet wire having a diameter corresponding to the rated current is used, and the number of turns is determined so as to obtain a desired inductance value. Here, the reason why the composition of the alloy is specified will be described. If the Si amount is less than 1% by weight, the magnetic anisotropy of the alloy is high and the specific resistance is low, so that the core loss of the magnetic core becomes high. If it exceeds the upper limit, the saturation magnetization of the alloy is low and the hardness is high, so that the density of the compact becomes low and the direct current superimposition characteristics deteriorate. If the amount of O is 0.1 to 1.0 wt%, the initial magnetic permeability is too high if the amount is less than 0.1%, and the DC superposition characteristics are not improved. This is because the ratio is reduced, so that the saturation magnetization is remarkably lowered and the direct current superimposition characteristic is deteriorated. Further, the powder particle diameter is substantially 150 μm or less, and the finer one tends to improve the direct current superposition characteristics.
[0023]
As for the molding pressure, when a powder is molded at a pressure of 5 ton / cm 2 or more, a high molded body density of 6.0 g / cm 3 or more, excellent direct current superposition characteristics and core loss characteristics can be obtained. A molding pressure exceeding 2 is not realistic because the mold life of the molded body is remarkably shortened.
[0024]
Further, the heat treatment temperature of the molded body is 500 ° C. or higher, and the molding distortion is removed and the direct current superimposition characteristics are improved. However, when the temperature exceeds 1000 ° C., the specific resistance is lowered, so that the high frequency characteristics are remarkably deteriorated. This seems to be because the electrical insulation between the powders is destroyed by sintering, and is a critical difference between the sintered magnetic core with a sintered body density ratio exceeding 95% and the powder magnetic core according to the present invention, The density of the molded body exceeds 7.0 g / cm 3 .
[0025]
This will be described in more detail with reference to specific examples.
[0026]
Example 1
The required amount of silicone resin, silane coupling agent, MgCO 3 powder, and MgO powder is added to the alloy powder with a composition of 5.0 wt% Si, 0.5 wt% O, and the balance of Fe prepared by the water atomization method. , Weighed and mixed, and molded at room temperature with a pressure of 15 ton / cm 2 to obtain a toroidal dust core having an outer diameter of 20 mm, an inner diameter of 10 mm, and a thickness of 5 mm. Table 1 shows the weighed composition of the components in this example. Here, four types of dust cores were produced as examples and one type as a comparative example.
[0027]
[Table 1]
Figure 0003964213
[0028]
Next, this powder magnetic core was subjected to heat treatment at 800 ° C. for 2 hours in nitrogen to remove the distortion during the heat treatment of the silicone resin and powder molding. Next, this dust core was inserted into a case made of an insulator and wound, and the DC superposition characteristics were measured with a 4284A precision meter manufactured by Hured Packard (hereinafter referred to as HP). The results are shown in FIG.
[0029]
Further, the frequency characteristic of μ20 kHz was measured with an HP 4194A impedance analyzer. The results are shown in FIG. The measurement results of the specific resistance of each dust core are shown in Table 2. Table 2 also shows the results of measuring the core loss characteristics of 20 kHz and 0.1 T with the SY-8232 AC BH tracer of Iwasaki Tsushinki Co., Ltd. It was shown to.
[0030]
As a comparative example, as shown in Table 1, only 1.0 wt% of a silicone resin was mixed, and a dust core was prepared and characteristics were measured in the same manner as described above, and the results were also shown in FIGS. It was shown in 2.
[0031]
[Table 2]
Figure 0003964213
[0032]
1 and 2, it can be seen that the powder magnetic core of the present example has better DC superposition characteristics and frequency characteristics than the comparative example. Table 2 also shows that the specific resistance and core loss are improved in the dust core of this example.
[0033]
(Example 2)
Next, Example 2 will be described. As Sample 1, raw materials were weighed at the mixing ratio shown in Sample 3 of Table 1, and using a mold in the same manner as in Example 1, molded at room temperature with a pressure of 15 ton / cm 2 , an outer diameter of 20 mm, an inner diameter of 10 mm. A toroidal dust core having a thickness of 5 mm was obtained. Next, this powder magnetic core was heat treated in nitrogen at 400 ° C., 500 ° C., 600 ° C., 700 ° C., 800 ° C., 900 ° C., 1000 ° C., 1100 ° C. for 2 hours, The distortion at the time of powder molding was removed.
[0034]
The dust core was inserted into a case made of an insulator and wound, and the DC superposition characteristics were measured with a HP 4284A precision meter. The results are shown in FIG. Further, the frequency characteristic of μ was measured with an HP 4194A impedance analyzer. The results are shown in FIG. 3 and 4, the powder magnetic core having a heat treatment temperature of 500 ° C. or higher showed good DC superposition characteristics and frequency characteristics. This is probably because the SiO 2 glass layer of MgO was formed at 500 ° C. or higher.
[0035]
Moreover, the specific resistance was measured about the powder magnetic core which heat-processed at the said temperature. As a comparative example, the same magnetic powder as in Example 1 was used, and only 1.0 wt% of silicone resin was mixed. A dust core produced by the same method as in Example 1 was used in the same manner as in this example. , 400 ° C, 500 ° C, 600 ° C, 700 ° C, 800 ° C, 900 ° C, 1000 ° C, 1100 ° C, heat treatment in nitrogen for 2 hours, heat treatment of silicone resin and removal of distortion during powder molding To prepare a dust core. Similarly, the specific resistance was measured for these. The results are shown in FIG.
[0036]
From FIG. 5, it can be seen that the specific resistance of the dust core of only the silicone resin of the comparative example decreases as the heat treatment temperature increases, and the insulation is broken at a high temperature of 900 ° C. On the other hand, in this example, it was found that the specific resistance improved with an increase in the heat treatment temperature, and insulation was maintained up to 1000 ° C. From this result, it can be seen that according to the present invention, sufficient insulation can be secured by high-temperature heat treatment, thereby improving magnetic characteristics.
[0037]
(Example 3)
Next, Example 3 will be described. Using the alloy powder of 5.0 wt% Si, 0.5 wt% O, and the balance Fe used in Sample 1 of Example 1, a toroidal dust magnet having an outer diameter of 50 mm, an inner diameter of 25 mm, and a height of 20 mm A wick was created using a mold. Next, this toroidal dust core was distorted and heat-treated, a gap was inserted 5 mm perpendicular to the magnetic path, and a magnet wire with an outer diameter of 1.8 mm was wound for 60 turns to produce a reactor.
[0038]
It was 550 microH when the inductance at the time of 40 A direct current | flow superimposition of this reactor was measured. Next, this reactor was connected to a switching power supply on which an active filter for controlling an inverter having a general output of 2000 W was mounted, and the circuit efficiency was measured. Here, a load resistor was connected to the output side. For the circuit efficiency, the value obtained by dividing the output power by the input power was used. The results are shown in Table 3.
[0039]
As a comparative example, an Fe-based amorphous ribbon having a width of 20 mm was used, and a toroidal magnetic core having exactly the same dimensions as the example was prepared. And after forming a gap so that it might become the completely same inductance as an Example, after winding 60 turns and measuring an inductance, it was 530 microH. Next, it connected to the switching power supply by the same method as the Example, and measured the circuit efficiency. The results are also shown in Table 3.
[0040]
[Table 3]
Figure 0003964213
[0041]
From Table 3, it was found that the reactor of this example had higher circuit efficiency than the comparative example. This is because the amorphous magnetic core needs to have a large gap, and therefore, the winding occurs, and the leakage magnetic flux generated in the vicinity of the gap seems to have an adverse effect on the efficiency.
[0042]
Example 4
The alloy powder of 3.0 wt% Si, 0.5 wt% O, and the remaining Fe produced by the water atomization method was classified to 150 μm or less. Next, 1.0 wt% of Si-based resin and 1.0 wt% of MgO were mixed as a binder. Next, using a mold for molding, the mold was molded into a shape having an outer diameter of 15 mm, an inner diameter of 10 mm, and a height of 5 mm at a pressure of 10 ton / cm 2 . The compact density was 6.8 g / cm 3 . Thereafter, this molded body was held at 800 ° C. for 1 hour in an inert atmosphere and then gradually cooled to room temperature. Next, the molded body was wound with primary 15 turns and secondary 15 turns, and the permeability and core loss characteristics at 20 kHz and 0.1 T were measured with a SY-8232 AC BH tracer of Iwasaki Tsushinki.
[0043]
As a comparative example, a magnetic core having exactly the same shape was punched out from a 3% silicon steel plate having a thickness of 0.1 mm with a die and then laminated with a resin to produce a magnetic core. Next, after performing heat treatment for removing strain, a gap is made in the magnetic core so that the DC permeability μ becomes substantially the same value as in the embodiment, and primary and secondary windings are performed in exactly the same manner as in the embodiment. Magnetic properties were measured. These results are shown in Table 4.
[0044]
[Table 4]
Figure 0003964213
[0045]
As shown in Table 4, it can be seen that the magnetic core produced in this example has better magnetic properties at high frequencies than the comparative example.
[0046]
(Example 5)
A total of 6 lots consisting of pure iron and Si of 1.0, 3.0, 5.0, 7.0, 9.0, 11.0 wt%, O amount of 0.5 ± 0.1 wt% and the balance Fe An alloy powder was prepared by the water atomization method and was classified to 150 μm by the same method as in Example 1.
[0047]
Next, 1.0 wt% Si resin and 1.0 wt% MgO are added as binders, and the relative density is obtained at a molding pressure of 5 to 15 ton / cm 2 in a toroidal shape having an outer diameter of 60 mm, an inner diameter of 35 mm, and a height of 20 mm. The magnetic core was molded with a mold so that the ratio was about 85% or more. Then, after straining and heat-treating in a nitrogen atmosphere at 850 ° C., after winding 90 turns with a magnet wire, the inductance when 20 A DC was superimposed (12000 A / m) was measured at a frequency of 20 kHz. The AC permeability was calculated from the inductance value. The result is shown in FIG. From FIG. 6, it can be seen that when the Si content is 1.0 to 10.0 wt%, μ 20 kHz indicates 20 or more.
[0048]
Next, when the core loss was measured under the conditions of 20 kHz and 0.1 T, the core loss of the magnetic core other than the pure iron powder was 1000 kW / m 3 or less.
[0049]
Next, in order to investigate the mounting characteristics of these reactors, these reactors were connected to a switching power supply with an output of 2 kW equipped with an active filter in a commercially available air conditioner, and the circuit efficiency was measured. Here, a general electronic load device was connected to the output side. As the circuit efficiency, a value obtained by dividing the output power by the input power was used. The results are shown in Table 5.
[0050]
[Table 5]
Figure 0003964213
[0051]
From Table 5, for example, high efficiency of 93% or more at 1000 W is obtained when the Si amount is in the range of 1.0 to 10.0 wt%, and the core loss is 1000 kW / m 3 and at 12000 A / m. It can be seen that the permeability is consistent with a composition range of 20 or more.
[0052]
(Example 6)
A gas atomized powder having an Si content of 4.5 wt% and the balance Fe alloy composition was prepared, and after classifying to 150, the temperature was kept constant and the atmosphere was adjusted appropriately so that the O content was 0.05, 0.1, 0.25. , 0.5, 0.75, 1.0, and 1.25 wt% of each alloy powder was produced.
[0053]
Next, the alloy was mixed with the binder in the same manner as in Examples 4 and 5, and then a toroidal core having the same dimensions as that in Example 5 was formed at a compacting pressure of 20 ton / cm 2 and a compact density of 92%. After the heat treatment for removing strain, these magnetic cores were wound in the same manner as in Example 1, and the core loss was measured under the conditions of 20 kHz and 0.1 T. The result is shown in FIG. FIG. 7 shows that the core loss rapidly deteriorates when the O content is lower than 0.1 wt%.
[0054]
Next, winding was performed in exactly the same manner as in Example 5, the 20 kHz inductance at the time of 20 A DC superposition (12000 A / m) was measured, and the AC permeability was calculated. The amount of O was 1.25 wt%. mu 20 kHz of the magnetic core is mu 20 kHz 19 of the magnetic core of 13,0.05wt%, μ 20kHz of the other core was 20 or more.
[0055]
Next, the mounting characteristics of these reactors were measured in the same manner as in Example 5. The results are shown in Table 6.
[0056]
[Table 6]
Figure 0003964213
[0057]
From Table 6, for example, a high efficiency of 93% or more at 1000 W is obtained when the amount of O is in the range of 0.1 to 1.0 wt%, and these have a core loss of 1000 kW / m 3 or less and a μ 20 kHz of 20 It can be seen that the composition range is consistent with the above characteristics.
[0058]
【The invention's effect】
As described above, according to the present invention, an alloy powder having a composition of 1 to 10% by weight Si, 0.1 to 1.0% by weight O and the balance Fe and having a particle size of 150 μm or less and SiO 2 are generated. A glass layer is formed to ensure insulation between the magnetic particles by compression molding and heat-treating an admixture of the compound to be mixed with MgCO 3 or MgO powder, and has good DC superposition characteristics and frequency characteristics A dust core can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing frequency characteristics of a dust core according to Example 1 and a dust core of a comparative example.
FIG. 2 is a graph showing DC superposition characteristics of a dust core according to Example 1 and a dust core of a comparative example.
FIG. 3 is a graph showing the heat treatment temperature dependence of the frequency characteristics of a dust core.
FIG. 4 is a diagram showing the heat treatment temperature dependence of the DC superposition characteristics of a dust core.
FIG. 5 is a diagram showing frequency characteristics of the dust core according to Example 1 and the dust core of the comparative example.
6 is a graph showing AC permeability in a dust core according to Example 5. FIG.
7 is a diagram showing core loss in a dust core according to Example 6. FIG.

Claims (6)

1〜10wt%のSi、0.1〜1.0wt%のO、残部Feの組成をもつ粒径が150μm以下の合金よりなる磁性粉末と、シリコーン樹脂またはシランカップリング剤の少なくとも一方と、MgCO粉末またはMgO粉末の少なくとも一方とを混合した混和物を圧縮成形し、得られた成形体に熱処理を施して磁性粉末の間にSiOとMgOとを主成分とするガラス層を生成することを特徴とする、圧粉磁芯の製造方法。A magnetic powder made of an alloy having a composition of 1 to 10 wt% Si, 0.1 to 1.0 wt% O and the balance Fe, and a particle size of 150 μm or less, at least one of a silicone resin or a silane coupling agent, and MgCO 3. Compression molding of an admixture mixed with at least one of three powders or MgO powder, and heat-treating the resulting molded body to form a glass layer mainly composed of SiO 2 and MgO between the magnetic powders. wherein the method for producing a pressure powder core. 前記混和物を5〜20ton/cmの成形圧力で成形して前記熱処理を500〜1000℃の温度領域で行い、これにより前記成形体の密度を6.0〜7.0g/cmにする、請求項1に記載の製造方法。The admixture is molded at a molding pressure of 5 to 20 ton / cm 2 and the heat treatment is performed in a temperature range of 500 to 1000 ° C., whereby the density of the molded body is set to 6.0 to 7.0 g / cm 3 . The manufacturing method according to claim 1 . 前記シランカップリング剤の混合は、シランカップリング剤による磁性粉末粒子の表面処理による、請求項1または2に記載の製造方法。The method according to claim 1 or 2, wherein the mixing of the silane coupling agent is performed by surface treatment of magnetic powder particles with a silane coupling agent. 前記圧粉磁芯は、交流透磁率μThe dust core has an alternating magnetic permeability μ 20kHz20 kHz が直流印加磁界12000A/m時に20以上であり、かつ鉄損が20kHz、0.1Tの条件下で1000kW/mIs 20 or more when the DC applied magnetic field is 12000 A / m, and the iron loss is 1000 kW / m under the conditions of 20 kHz and 0.1 T. 3 以下である、請求項1から3のうちのいずれか一つに記載の製造方法。The manufacturing method as described in any one of Claim 1 to 3 which is the following. 前記圧粉磁芯は、磁路長の10%以下が1箇所以上の空隙または非磁性物から構成される、請求項1から4のうちのいずれか一つに記載の製造方法。The said powder magnetic core is a manufacturing method as described in any one of Claim 1 to 4 with which 10% or less of magnetic path length is comprised from the space | gap of one or more places, or a nonmagnetic substance. 請求項1から5のうちのいずれか一つに記載の製造方法により圧粉磁芯を製造し、前記圧粉磁芯に巻線を施すことを特徴とする、高周波リアクトルの製造方法。A method of manufacturing a high-frequency reactor, wherein a dust core is manufactured by the manufacturing method according to claim 1, and a winding is applied to the dust core.
JP2002009182A 2002-01-17 2002-01-17 Manufacturing method of dust core and high frequency reactor Expired - Lifetime JP3964213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002009182A JP3964213B2 (en) 2002-01-17 2002-01-17 Manufacturing method of dust core and high frequency reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002009182A JP3964213B2 (en) 2002-01-17 2002-01-17 Manufacturing method of dust core and high frequency reactor

Publications (2)

Publication Number Publication Date
JP2003217919A JP2003217919A (en) 2003-07-31
JP3964213B2 true JP3964213B2 (en) 2007-08-22

Family

ID=27647251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002009182A Expired - Lifetime JP3964213B2 (en) 2002-01-17 2002-01-17 Manufacturing method of dust core and high frequency reactor

Country Status (1)

Country Link
JP (1) JP3964213B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4400728B2 (en) * 2004-03-16 2010-01-20 戸田工業株式会社 SOFT MAGNETIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
CN101927344B (en) * 2004-09-06 2013-01-30 大冶美有限公司 Method for producing soft magnetic metal powder coated with mg-containing oxidized film and method for producing composite soft magnetic material using the powder
JP4863648B2 (en) * 2004-09-06 2012-01-25 株式会社ダイヤメット Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP4576206B2 (en) * 2004-11-02 2010-11-04 株式会社デンソー Method for producing soft magnetic material
WO2006080121A1 (en) 2005-01-25 2006-08-03 Mitsubishi Materials Pmg Corporation Mg-CONTAINING OXIDE COATED IRON POWDER
JP4561988B2 (en) * 2005-04-07 2010-10-13 戸田工業株式会社 Method for producing soft magnetic metal powder for soft magnetic metal dust core, and soft magnetic metal dust core
JP2007013069A (en) * 2005-05-31 2007-01-18 Mitsubishi Materials Pmg Corp METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP4609339B2 (en) * 2006-02-09 2011-01-12 トヨタ自動車株式会社 Powder for powder magnetic core and method for producing powder magnetic core
JP5248065B2 (en) * 2007-08-31 2013-07-31 株式会社タムラ製作所 Core material and core using the same, choke coil using the core
JP4802182B2 (en) 2007-12-14 2011-10-26 Jfeスチール株式会社 Iron powder for dust cores
JP2009266929A (en) * 2008-04-23 2009-11-12 Daido Steel Co Ltd Powder magnetic core and its manufacturing method
JP5682741B2 (en) * 2008-09-01 2015-03-11 戸田工業株式会社 SOFT MAGNETIC PARTICLE POWDER AND PROCESS FOR PRODUCING THE SAME,
JP4847553B2 (en) * 2009-04-09 2011-12-28 株式会社タムラ製作所 Powder magnetic core and manufacturing method thereof
TWI407462B (en) 2009-05-15 2013-09-01 Cyntec Co Ltd Inductor and manufacturing method thereof
EP2518740B1 (en) * 2009-12-25 2017-11-08 Tamura Corporation Method for producing a reactor
JP5556285B2 (en) * 2010-03-20 2014-07-23 大同特殊鋼株式会社 Reactor
EP2555210A4 (en) * 2010-03-26 2017-09-06 Hitachi Powdered Metals Co., Ltd. Dust core and method for producing same
JP2012253317A (en) 2011-05-09 2012-12-20 Kobe Steel Ltd Manufacturing method of dust core, and dust core manufactured by the method
CN103236332B (en) * 2013-05-20 2016-01-20 哈尔滨工业大学 The preparation method of compound soft magnetic material
JP6613998B2 (en) 2016-04-06 2019-12-04 株式会社村田製作所 Coil parts
JP2018186212A (en) * 2017-04-27 2018-11-22 Dowaエレクトロニクス株式会社 Soft magnetic powder, method for manufacturing the same, soft magnetic material, and method for manufacturing powder-compact magnetic core
JP7309641B2 (en) 2020-03-18 2023-07-18 株式会社東芝 Powder material and rotary electric machine

Also Published As

Publication number Publication date
JP2003217919A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
JP5358562B2 (en) Method for producing composite magnetic material and composite magnetic material
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
JP2007299871A (en) Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same
JP5522173B2 (en) Composite magnetic body and method for producing the same
WO2011077694A1 (en) Reactor and method for producing same
JPS60107807A (en) Core
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2001196216A (en) Dust core
JP2003133122A (en) Dust core
JP2019201155A (en) Powder magnetic core and inductor element
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
EP1475808B1 (en) Powder magnetic core and high frequency reactor using the same
JP2012222062A (en) Composite magnetic material
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
JP4171002B2 (en) Magnetite-iron composite powder for dust core and dust core using the same
JPH11260618A (en) Composite magnetic material, its manufacture, and fe-al-si soft magnetic alloy powder used therefor
JP2009147252A (en) Compound magnetic material and method of manufacturing thereof
JP2006294733A (en) Inductor and its manufacturing method
WO2011121947A1 (en) Complex magnetic material, coil-embedded type magnetic element using the same, and manufacturing method thereof
JP4701531B2 (en) Dust core
US6788185B2 (en) Powder core and high-frequency reactor using the same
JP4106966B2 (en) Composite magnetic material and manufacturing method thereof
JP2002033211A (en) Dust core and manufacturing method thereof
JP6458853B1 (en) Powder magnetic core and inductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Ref document number: 3964213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term