JP2001196216A - Dust core - Google Patents

Dust core

Info

Publication number
JP2001196216A
JP2001196216A JP2000007285A JP2000007285A JP2001196216A JP 2001196216 A JP2001196216 A JP 2001196216A JP 2000007285 A JP2000007285 A JP 2000007285A JP 2000007285 A JP2000007285 A JP 2000007285A JP 2001196216 A JP2001196216 A JP 2001196216A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
core
dust core
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000007285A
Other languages
Japanese (ja)
Inventor
Yasuo Shimoda
康生 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ferrite Electronics Ltd
Original Assignee
Hitachi Ferrite Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ferrite Electronics Ltd filed Critical Hitachi Ferrite Electronics Ltd
Priority to JP2000007285A priority Critical patent/JP2001196216A/en
Publication of JP2001196216A publication Critical patent/JP2001196216A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dust core of low loss which has high saturation magnetic flux density. SOLUTION: Amorphous soft magnetic alloy powder A and fine powder B of soft magnetic metal which are different in grain diameter is stirred and mixed in a condition that the mode of grain size distribution of the powder A is at least five times that of the powder B and the volume percentage of the powder B to the total sum of volumes of the powder A and powder B is at least 3 vol.% and at most 50 vol.%. After that, binder and lubricant are added, and pressure molding is performed by using a metal mold having a specified shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気回路に搭載さ
れるチョークコイル、トランス等のインダクタンス素子
に関する。
The present invention relates to an inductance element such as a choke coil and a transformer mounted on an electric circuit.

【0002】[0002]

【従来の技術】トランス、チョークコイル等のインダク
タンス素子の磁芯材料としては、現在、主にフェライト
が使用されている。フェライトは、成型性、加工性が大
変優れ、かつ安価であり、また、磁気特性においても、
高周波まで使用でき低損失、高透磁率などの特長を有す
る汎用性の高い磁性材料である。
2. Description of the Related Art Currently, ferrite is mainly used as a magnetic core material for inductance elements such as transformers and choke coils. Ferrite has excellent moldability and workability, and is inexpensive.
This is a highly versatile magnetic material that can be used up to high frequencies and has features such as low loss and high magnetic permeability.

【0003】一方、フェライト以外の軟磁性材料として
は、Fe−Al−Si合金、パーマロイ、純鉄粉などの
金属系軟磁性材料粉末を用いた圧粉磁芯がある。平滑チ
ョークコイル、高調波対策用のPFC(力率改善)チョ
ークコイルなどの透磁率μiを数十から百数十に調整し
て使用するインダクタの場合には、フェライトに代って
圧粉磁芯が使用される例が増加している。この圧粉磁芯
は、前記フェライトに比べ、飽和磁束密度が高いことに
より磁芯を小型化でき、かつ透磁率の温度特性の安定性
等が優れるという特長がある。しかし、フェライトに比
べて磁芯損失が大きく、該磁芯損失による発熱が問題と
なる用途については広く採用されるには至っていない。
On the other hand, as a soft magnetic material other than ferrite, there is a dust core using a metal soft magnetic material powder such as an Fe-Al-Si alloy, permalloy, or pure iron powder. In the case of inductors that are used by adjusting the magnetic permeability μi from several tens to one hundred and several tens, such as a smoothing choke coil and a PFC (power factor improvement) choke coil for harmonic countermeasures, a dust core is used instead of ferrite. The cases where are used are increasing. This powder magnetic core has a feature that the saturation magnetic flux density is higher than that of the ferrite, so that the magnetic core can be miniaturized and the stability of temperature characteristics of magnetic permeability is excellent. However, the magnetic core loss is larger than that of ferrite, and it has not been widely adopted for applications in which heat generation due to the magnetic core loss is a problem.

【0004】最近、上記問題点を改善する手段として磁
芯損失の少ない非晶質合金、ナノスケール微結晶を析出
した超微結晶合金等からなる粉末による圧粉磁芯の開発
が盛んである。前記粉末の磁芯損失はフェライト並みま
たはそれ以下の低い値を示し、圧粉磁芯用粉末として好
適である。
[0004] Recently, as means for solving the above-mentioned problems, development of powder magnetic cores made of powders of amorphous alloys with small magnetic core loss, ultra-microcrystalline alloys on which nanoscale microcrystals are precipitated, and the like has been actively pursued. The magnetic core loss of the powder is as low as or less than ferrite, and is suitable as a powder for a dust core.

【0005】[0005]

【発明が解決しようとする課題】しかし、非晶質または
微結晶質の金属は、従来用いていた粗大結晶質の軟磁性
金属に比べてその強度が著しく高く、加圧成型時に粉末
が破壊しにくい傾向がある。従来材の純鉄、パーマロイ
は塑性変形しやすく、またFe−Al−Si合金は脆
く、いずれも加圧成型時に個々の粉末が変形または破壊
され、その結果として磁芯の成型密度を上げて緻密化す
ることが比較的容易である。これに対し、非晶質合金、
超微結晶合金等による粉末は、常温では変形、破壊しに
くいため、従来材と同等の加圧力では緻密化することが
難しく、コスト的に有利な常温乾式成型方法を採用する
ことが困難であった。このためこれらの粉末を用いた従
来の成型例はホットプレス等により粉末が変形しやすい
高温で成型する例が主であり、特性的に優れた磁芯を安
価に、かつ、大量に提供する方法は未確立であった。
However, the strength of amorphous or microcrystalline metal is remarkably higher than that of a conventionally used coarse crystalline soft magnetic metal, and the powder is broken during pressure molding. Tends to be difficult. Conventional materials, such as pure iron and permalloy, are easily plastically deformed, and Fe-Al-Si alloys are brittle.Each powder is deformed or broken at the time of pressure molding. As a result, the density of the magnetic core is increased and the density is increased. It is relatively easy to convert. In contrast, amorphous alloys,
Powders made of ultra-microcrystalline alloys and the like are difficult to deform and break at room temperature, so it is difficult to densify them under the same pressure as conventional materials, and it is difficult to adopt a room-temperature dry molding method that is cost-effective. Was. For this reason, conventional molding examples using these powders are mainly examples of molding at a high temperature at which the powder is easily deformed by hot pressing or the like, and a method of providing a magnetic core excellent in characteristics at low cost and in large quantities. Was not established.

【0006】また、従来材も含めて金属粉末を用いる圧
粉磁芯は一般に常温乾式成型によって量産されており、
フェライトと同様に粉末を金型に入れて加圧成型しその
後熱処理される。但し、焼結反応によって緻密化される
フェライトとは異なり、圧粉磁芯の熱処理は加圧成型に
よる歪みを除去することが主目的であり、熱処理ではほ
とんど緻密化されない。この理由は、熱処理温度を上げ
て金属粉末を焼結させると、金属粉末相互間の絶縁が破
壊されて高周波における渦電流損失が増大し、高周波用
磁性材料として適さない。従って圧粉磁芯においては加
圧成型のみによって緻密化し所定の密度を達成する必要
があり、このため成型圧はフェライト成型の数倍の数百
MPa〜2000MPaにも及び、金型の耐久性の問題
から複雑な形状の磁芯は成型できないという問題点があ
った。
[0006] Dust cores using metal powders, including conventional materials, are generally mass-produced by dry molding at room temperature.
Like the ferrite, the powder is put into a mold and molded under pressure, and then heat-treated. However, unlike ferrite which is densified by a sintering reaction, the main purpose of heat treatment of a dust core is to remove distortion due to pressure molding, and heat treatment hardly densifies. The reason is that, when the metal powder is sintered at an increased heat treatment temperature, the insulation between the metal powders is broken, and the eddy current loss at a high frequency increases, which is not suitable as a high-frequency magnetic material. Therefore, in the dust core, it is necessary to densify only by pressure molding and to achieve a predetermined density. For this reason, the molding pressure is several hundred MPa to 2000 MPa, which is several times higher than that of ferrite molding, and the durability of the mold is increased. Due to the problem, there was a problem that a magnetic core having a complicated shape could not be molded.

【0007】本発明は圧粉磁芯における磁芯損失を低減
し、上記の問題点である高い成型圧を低下せしめ、高飽
和磁束密度、かつ、低損失の圧粉磁芯の提供を目的とす
るものである。
An object of the present invention is to provide a dust core having a high saturation magnetic flux density and a low loss by reducing the magnetic core loss in the dust core, reducing the high molding pressure which is the above problem. Is what you do.

【0008】[0008]

【課題を解決するための手段】本発明は、非晶質軟磁性
合金からなる粉末Aと軟磁性合金微細粉末Bとを混合し
加圧成型して得られる圧粉磁芯において、粉末Aの粒度
分布の最頻値が粉末Bのそれの5倍以上であり、かつ粉
末Aと粉末Bの体積の和全体に対する粉末Bの体積百分
率が3%以上50%以下とする圧粉磁芯である。
SUMMARY OF THE INVENTION The present invention relates to a dust core obtained by mixing powder A composed of an amorphous soft magnetic alloy and fine powder B of a soft magnetic alloy, and pressing the mixture. A dust core in which the mode of the particle size distribution is at least 5 times that of powder B and the volume percentage of powder B with respect to the total volume of powder A and powder B is 3% or more and 50% or less. .

【0009】また本発明は、ナノスケール微結晶を析出
する超微結晶軟磁性合金からなる粉末Aと軟磁性合金微
細粉末Bを混合し加圧成型して得られる圧粉磁芯におい
て、粉末Aの粒度分布の最頻値が粉末Bのそれの5倍以
上であり、かつ粉末Aと粉末Bの体積の和全体に対する
粉末Bの体積百分率が3%以上50%以下とする圧粉磁
芯である。
The present invention also provides a powder magnetic core obtained by mixing powder A comprising a microcrystalline soft magnetic alloy for precipitating nanoscale microcrystals and fine powder B of a soft magnetic alloy and pressing the mixture. Powder magnetic core whose mode of particle size distribution is 5 times or more of that of powder B and whose volume percentage of powder B to the total volume of powder A and powder B is 3% or more and 50% or less. is there.

【0010】また本発明は、軟磁性合金微細粉末Bが非
晶質合金、ナノスケール微結晶を析出する超微結晶合金
とする圧粉磁芯である。
The present invention also provides a dust core in which the soft magnetic alloy fine powder B is an amorphous alloy or an ultra-microcrystalline alloy that precipitates nanoscale microcrystals.

【0011】[0011]

【発明の実施の形態】本発明は、粗大粉末Aに微細粉末
Bを混合することにより、従来に比べ大幅な成型密度の
改善を達成している。この理由は、(1)微細粒子(微
細粉末B)が粗大粒子(粗大粉末A)の粒子間空隙を埋
めることにより所要磁芯形状における粒子占積率が改善
されること、(2)加圧時(成型時)に微細粒子が比較
的自由に移動しうるために粗大粒子の再配列が容易とな
ること、等によるものと推察される。すなわち、非晶質
軟磁性合金粉末、超微結晶軟磁性合金粉末等、加圧によ
る変形及び破壊が生じにくい粉末材料であっても、量産
性に優れる常温乾式成型方法によって圧粉磁芯とするこ
とができる。しかも、発明者の鋭意検討により、粗大粉
末Aの粒度分布の最頻値が微細粉末Bのそれの5倍以
上、かつ粗大粉末Aと微細粉末Bの体積の和全体に対す
る粉末Bの体積百分率が3%以上50%以下とすること
により、非晶質軟磁性合金、超微結晶軟磁性合金の特長
である優れた磁気特性が得られた圧粉磁芯とすることが
できる。
DETAILED DESCRIPTION OF THE INVENTION The present invention achieves a significant improvement in molding density by mixing a fine powder B with a coarse powder A. This is because (1) fine particles (fine powder B) fill the voids between the coarse particles (coarse powder A) to improve the particle space factor in the required magnetic core shape, and (2) pressurization. This is presumed to be due to the fact that the fine particles can move relatively freely at the time of molding (at the time of molding), which facilitates rearrangement of the coarse particles. That is, even if the powder material is hard to be deformed and broken by pressure, such as amorphous soft magnetic alloy powder and ultra-microcrystalline soft magnetic alloy powder, the powder magnetic core is formed by a room temperature dry molding method which is excellent in mass productivity. be able to. Moreover, the inventor's diligent studies have revealed that the mode of the particle size distribution of the coarse powder A is at least five times that of the fine powder B, and that the volume percentage of the powder B with respect to the total volume of the coarse powder A and the fine powder B is By setting the content to 3% or more and 50% or less, it is possible to obtain a dust core having excellent magnetic properties, which are features of an amorphous soft magnetic alloy and a microcrystalline soft magnetic alloy.

【0012】[0012]

【実施例】本発明に係る第1の実施例を以下に述べる。
粉末AとしてはFeを主成分としB、Si等を複合添加
し溶融させた後、水アトマイズ法により急冷して作製し
た非晶質粉末を用いた。粉末BとしてFe−Al−Si
合金組成の水アトマイズ微細粉末を用いた。粉末Aはア
トマイズ後未熱処理、粉末Bは550℃の水素中で焼鈍
している。粉末A、Bの粒度分布をそれぞれ図1、図2
に示す。この粒度分布はレーザー散乱法により測定した
もので、この粉末Aの粒度の最頻値は44〜62μmの
ランクにあり、この中央値53μmが粉末Aの最頻値と
なる。(以下、この方法により各粉末の粒度最頻値を算
出した)。粉末Bの粒度最頻値は6.7μmである。粉
末Aと粉末Bの最頻値の比率は7.9である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment according to the present invention will be described below.
As the powder A, an amorphous powder prepared by adding Fe as a main component, adding B, Si, or the like in a complex manner, melting the mixture, and then rapidly cooling it by a water atomizing method was used. Fe-Al-Si as powder B
Water atomized fine powder of the alloy composition was used. The powder A was not heat-treated after atomization, and the powder B was annealed in hydrogen at 550 ° C. 1 and 2 show the particle size distributions of powders A and B, respectively.
Shown in The particle size distribution is measured by a laser scattering method. The mode of the particle size of the powder A is in the rank of 44 to 62 μm, and the central value 53 μm is the mode of the powder A. (Hereinafter, the mode of particle size of each powder was calculated by this method). The mode of the particle size of the powder B is 6.7 μm. The mode ratio between powder A and powder B is 7.9.

【0013】乳鉢中に粉末A、Bを所定量入れて攪拌混
合後、結合材としてポリイミドワニスを添加しさらに攪
拌した後60メッシュのフルイを通して造粒した。上記
結合材の添加量はワニスの溶媒乾燥後の固形分が重量比
で粉末100部に対し1.0部となるように定めた。さ
らに造粒粉末100部に対して潤滑材としてステアリン
酸亜鉛を0.3部添加し混合した。
After a predetermined amount of powders A and B were placed in a mortar and mixed with stirring, a polyimide varnish was added as a binder, and the mixture was further stirred and granulated through a 60 mesh sieve. The amount of the binder was determined so that the solid content of the varnish after the solvent was dried was 1.0 part by weight based on 100 parts of the powder. Further, 0.3 part of zinc stearate was added and mixed as a lubricant to 100 parts of the granulated powder.

【0014】上記の造粒粉末約3.0gを外径13.4
mm、内径7.7mmのトロイダル形状の金型に入れ、
成型圧力5×10〜15×10Paで加圧成型し
た。成型した圧粉磁芯の高さは約5mmである。前記圧
粉磁芯を窒素雰囲気中、470℃×60分で熱処理した
後、寸法と重量を測定して密度と占積率を算出した。次
に圧粉磁芯をプラスチックケースに入れて巻線し、LC
Rメーターにより100kHzにおける透磁率μiを測
定した。また、B−Hアナライザーにより100kH
z,100mTにおける磁芯損失Pcを測定した。さら
に各磁性材料個別の飽和磁束密度に体積百分率を掛けた
総和を合成飽和磁束密度とし、これに占積率を掛けたも
のを得られた磁芯の合成飽和磁束密度Bsとみなした。
Approximately 3.0 g of the above granulated powder is weighed with an outer diameter of 13.4
mm, 7.7 mm inside diameter in a toroidal mold,
Pressure molding was performed at a molding pressure of 5 × 10 8 to 15 × 10 8 Pa. The height of the molded dust core is about 5 mm. After heat treating the dust core in a nitrogen atmosphere at 470 ° C. for 60 minutes, the dimensions and weight were measured to calculate the density and the space factor. Next, place the dust core in a plastic case and wind it.
The magnetic permeability μi at 100 kHz was measured with an R meter. In addition, 100 KH by B-H analyzer
The core loss Pc at 100 mT was measured. Furthermore, the sum of the saturation magnetic flux densities of the respective magnetic materials and the volume percentage multiplied by the volume percentage was defined as the composite saturation magnetic flux density, and the product obtained by multiplying this by the space factor was regarded as the composite saturation magnetic flux density Bs of the obtained magnetic core.

【0015】表1に上記実施例1の成型圧15×10
Paにて試作した試料のデータを示す。比較のための従
来材として、ギャップを入れ透磁率μiが約70となる
ように調整したMn−Zn系フェライト磁芯、Fe−A
l−Si合金粉末による圧粉磁芯(20×10Paに
て成型)のデータも併記した。このフェライト磁芯の測
定時には、ギャップ部から発生する漏洩磁束が銅線に交
差することによる渦電流損失を減らすために銅線を束ね
たリッツ線を巻線した。
Table 1 shows that the molding pressure of Example 1 was 15 × 10 8.
The data of the sample prototyped in Pa is shown. As a conventional material for comparison, an Mn-Zn based ferrite core adjusted to have a magnetic permeability μi of about 70 by inserting a gap, Fe-A
The data of the dust core (formed at 20 × 10 8 Pa) using the l-Si alloy powder is also shown. When measuring the ferrite core, a litz wire bundled with a copper wire was wound in order to reduce eddy current loss due to the leakage magnetic flux generated from the gap crossing the copper wire.

【0016】本実施例では成型密度を高くできるため、
微細粉末無添加の比較例1−8に比べμi、Bsともに
高い値を得ている。非晶質合金自体の損失が低いことも
あって従来例の圧粉磁芯よりも低い損失であり、総合的
に見て優れた磁気特性値を示している。
In this embodiment, since the molding density can be increased,
Both μi and Bs have higher values than Comparative Example 1-8 in which fine powder is not added. Since the loss of the amorphous alloy itself is low, the loss is lower than that of the dust core of the related art, and shows excellent magnetic characteristic values as a whole.

【0017】[0017]

【表1】 [Table 1]

【0018】図3に第1の実施例における試料3点の密
度と成型圧力の関係を示す。比較例1−8(粉末A:1
00%)に比べ、実施例1−3(粉末A:90%,粉末
B:10%)、1−4(粉末A:80%,粉末B:20
%)は同一成型圧力下で大幅に密度が増加している。
FIG. 3 shows the relationship between the density at three points of the sample and the molding pressure in the first embodiment. Comparative Example 1-8 (Powder A: 1
Example 1-3 (powder A: 90%, powder B: 10%) and 1-4 (powder A: 80%, powder B: 20)
%), The density greatly increased under the same molding pressure.

【0019】本発明に係る第2の実施例を以下に述べ
る。粉末Aとしては第1の実施例と同一の非晶質粉末を
用いる。粉末BとしてはFeにCu,Nb,B,Siを
複合添加して水アトマイズ法により非晶質合金粉末を作
製し、これを550℃で熱処理して約10nmの微結晶
を析出させた粉末を分級して得られた微細粉末を用い
る。粉末Bの粒度最頻値は6.7μmである。粉末Aと
Bの最頻値の比率は7.9である。
A second embodiment according to the present invention will be described below. As the powder A, the same amorphous powder as in the first embodiment is used. As powder B, Fe, Cu, Nb, B, and Si were added in combination to produce an amorphous alloy powder by a water atomization method, and the powder was heat-treated at 550 ° C. to precipitate fine crystals of about 10 nm. Use the fine powder obtained by classification. The mode of the particle size of the powder B is 6.7 μm. The mode ratio of powders A and B is 7.9.

【0020】実験手順、結合材と潤滑材の添加量、成型
磁芯寸法、測定方法等は第1実施例と同様である。磁芯
の熱処理条件は第1実施例と同様に、窒素雰囲気中、4
70℃×60分である。
The experimental procedure, the amounts of binder and lubricant added, the dimensions of the molded magnetic core, the measuring method, and the like are the same as in the first embodiment. The heat treatment conditions for the magnetic core are the same as in the first embodiment.
70 ° C. × 60 minutes.

【0021】表2に上記実施例2の成型圧15×10
Paにて試作した試料のデータを示す。本実施例で粉末
Bとして用いた超微結晶軟磁性合金の磁芯損失は、粉末
Aに用いた非晶質軟磁性合金よりさらに低い値であり、
その結果として本実施例ではフェライトに匹敵する低い
磁芯損失値が得られている。
Table 2 shows that the molding pressure of Example 2 was 15 × 10 8
The data of the sample prototyped in Pa is shown. The core loss of the microcrystalline soft magnetic alloy used as powder B in this example is a lower value than the amorphous soft magnetic alloy used for powder A,
As a result, in this embodiment, a low core loss value comparable to ferrite is obtained.

【0022】[0022]

【表2】 [Table 2]

【0023】本発明に係る第3の実施例を以下に述べ
る。粉末AとしてはFeにCu,Nb,B,Siを複合
添加して水アトマイズ法により作製した非晶質合金粉末
を用いる。粉末Bには同一組成、同一工法で得た粉末を
分級して得た微細粉末を用いる。粉末Aの粒度最頻値は
37.5μm、粉末Bの粒度最頻値は6.7μmであ
る。粉末AとBの最頻値の比率は5.6である。
A third embodiment according to the present invention will be described below. As the powder A, use is made of an amorphous alloy powder prepared by a water atomization method in which Cu, Nb, B, and Si are added to Fe in a complex manner. As the powder B, a fine powder obtained by classifying powder obtained by the same composition and the same method is used. The mode of particle size of powder A is 37.5 μm, and the mode of particle size of powder B is 6.7 μm. The mode ratio of powders A and B is 5.6.

【0024】実験手順、結合材と潤滑材の添加量、成型
磁芯寸法、測定方法等は第1実施例と同様である。成型
した磁芯の熱処理条件は窒素雰囲気中、550℃×30
分であり、この熱処理により粉末A,Bに約10nm径
の微結晶が析出する。
The experimental procedure, the amounts of binder and lubricant added, the dimensions of the molded magnetic core, the measuring method, and the like are the same as in the first embodiment. The heat treatment condition of the molded magnetic core is 550 ° C. × 30 in a nitrogen atmosphere.
By this heat treatment, fine crystals having a diameter of about 10 nm are precipitated on the powders A and B.

【0025】表3に上記実施例3の成型圧15×10
Paにて試作した試料のデータを示す。本実施例では、
前述の実施例2よりもさらに低い磁芯損失値が得られて
いる。
Table 3 shows that the molding pressure of Example 3 was 15 × 10 8.
The data of the sample prototyped in Pa is shown. In this embodiment,
A core loss value even lower than that of the second embodiment is obtained.

【0026】[0026]

【表3】 [Table 3]

【0027】本発明に係わる上記第3実施例に対する更
なる比較例を以下に述べる。粉末Aとしては第3実施例
の粉末を分級し31μm以下の細粉のみを選別して用い
た。粒度最頻値は26.5μmである。粉末Bとしては
第3実施例と同一のものを用いた。粉末Aと粉末Bの粒
度最頻値比率は4.0である。実験の手順、条件等は第
3実施例と同様である。粒度最頻値比率が5未満では占
積率の改善効果は小さくなり、最適な磁気特性は得られ
ない。
A further comparative example of the third embodiment according to the present invention will be described below. As the powder A, the powder of the third example was classified and only fine powder having a size of 31 μm or less was selected and used. The mode of the particle size is 26.5 μm. The same powder as in the third example was used as the powder B. The particle size mode ratio between powder A and powder B is 4.0. Experimental procedures, conditions, and the like are the same as in the third embodiment. If the particle size mode ratio is less than 5, the effect of improving the space factor will be small, and optimum magnetic characteristics cannot be obtained.

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【発明の効果】本発明の圧粉磁芯は、従来成型性が困
難、割高であった非晶質軟磁性合金、微結晶軟磁性合金
からなる粉末を一般的な常温乾式成型により、成型密度
を向上させた圧粉磁芯を作製可能とし、前記軟磁性金属
粉末の材料特性である高飽和磁束密度、高透磁率、低損
失の圧粉磁芯を安価に提供できる。また、前記軟磁性金
属粉末を大きく異なる粒径して成型性を向上させたこと
でリング形状以外の形状が作製可能で用途範囲が拡大で
きる。
According to the dust core of the present invention, a powder made of an amorphous soft magnetic alloy or a microcrystalline soft magnetic alloy, which has been conventionally difficult to mold and is relatively expensive, is formed by a normal room temperature dry molding method. Thus, a dust core having high saturation magnetic flux density, high magnetic permeability, and low loss, which are the material characteristics of the soft magnetic metal powder, can be provided at low cost. In addition, since the soft magnetic metal powder has significantly different particle diameters to improve moldability, shapes other than a ring shape can be produced, and the range of application can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に用いた軟磁性粉末Aの粒
径分布図
FIG. 1 is a particle size distribution diagram of a soft magnetic powder A used in a first embodiment of the present invention.

【図2】本発明の第1実施例に用いた軟磁性粉末Bの粒
径分布図
FIG. 2 is a particle size distribution diagram of a soft magnetic powder B used in a first embodiment of the present invention.

【図3】本発明の第1実施例に係る密度と成型圧力の関
係グラフ
FIG. 3 is a graph showing a relationship between density and molding pressure according to the first embodiment of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非晶質軟磁性合金からなる粉末Aと軟磁
性合金微細粉末Bとを混合し加圧成型して得られる圧粉
磁芯において、粉末Aの粒度分布の最頻値が粉末Bのそ
れの5倍以上であり、かつ粉末Aと粉末Bの体積の和全
体に対する粉末Bの体積百分率が3%以上50%以下で
あることを特徴とする圧粉磁芯。
1. A powder magnetic core obtained by mixing powder A made of an amorphous soft magnetic alloy and fine powder B of a soft magnetic alloy and molding the mixture under pressure, the mode of the particle size distribution of the powder A is A powder magnetic core, wherein the volume percentage of the powder B is 3% or more and 50% or less with respect to the total volume of the powder A and the powder B, which is at least 5 times that of B.
【請求項2】 ナノスケール微結晶を析出する超微結晶
軟磁性合金からなる粉末Aと軟磁性合金微細粉末Bを混
合し加圧成型して得られる圧粉磁芯において、粉末Aの
粒度分布の最頻値が粉末Bのそれの5倍以上であり、か
つ粉末Aと粉末Bの体積の和全体に対する粉末Bの体積
百分率が3%以上50%以下であることを特徴とする圧
粉磁芯。
2. A particle size distribution of powder A in a dust core obtained by mixing powder A made of a microcrystalline soft magnetic alloy for precipitating nanoscale microcrystals and soft magnetic alloy fine powder B and pressing and molding. Wherein the mode value of the powder B is at least 5 times that of the powder B, and the volume percentage of the powder B with respect to the total volume of the powder A and the powder B is 3% or more and 50% or less. core.
【請求項3】 軟磁性合金微細粉末Bが非晶質合金であ
ることを特徴とする請求項1及び2記載の圧粉磁芯。
3. The dust core according to claim 1, wherein the soft magnetic alloy fine powder B is an amorphous alloy.
【請求項4】 軟磁性合金微細粉末Bがナノスケール微
結晶を析出する超微結晶合金であることを特徴とする請
求項1及び2記載の圧粉磁芯。
4. The dust core according to claim 1, wherein the soft magnetic alloy fine powder B is a microcrystalline alloy that precipitates nanoscale microcrystals.
JP2000007285A 2000-01-17 2000-01-17 Dust core Pending JP2001196216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000007285A JP2001196216A (en) 2000-01-17 2000-01-17 Dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000007285A JP2001196216A (en) 2000-01-17 2000-01-17 Dust core

Publications (1)

Publication Number Publication Date
JP2001196216A true JP2001196216A (en) 2001-07-19

Family

ID=18535681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000007285A Pending JP2001196216A (en) 2000-01-17 2000-01-17 Dust core

Country Status (1)

Country Link
JP (1) JP2001196216A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294733A (en) * 2005-04-07 2006-10-26 Nec Tokin Corp Inductor and its manufacturing method
JP2007134591A (en) * 2005-11-11 2007-05-31 Nec Tokin Corp Composite magnetic material, dust core using the same and magnetic element
WO2008007345A2 (en) * 2006-07-12 2008-01-17 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores; magnet core and inductive component with a magnet core
DE102006032520B4 (en) * 2006-07-12 2008-04-10 Vacuumschmelze Gmbh & Co. Kg Method for producing magnetic cores, magnetic core and inductive component with a magnetic core
JP2008141011A (en) * 2006-12-01 2008-06-19 Hitachi Powdered Metals Co Ltd Amorphous dust core
JP2010114222A (en) * 2008-11-05 2010-05-20 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010141183A (en) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd Dust core and method of producing the same
US8048191B2 (en) * 2005-12-28 2011-11-01 Advanced Technology & Material Co., Ltd. Compound magnetic powder and magnetic powder cores, and methods for making them thereof
US8327524B2 (en) 2000-05-19 2012-12-11 Vacuumscmelze Gmbh & Co. Kg Inductive component and method for the production thereof
US8372218B2 (en) 2006-06-19 2013-02-12 Vacuumschmelze Gmbh & Co. Kg Magnet core and method for its production
KR101372553B1 (en) * 2010-12-13 2014-03-14 주식회사 아모텍 Magnetic Components formed of Amorphous Alloy Powders, Electric Motor Using the Same, Producing Method thereof, and Vehicle Wheel Drive Apparatus Using the Same
JP2014175580A (en) * 2013-03-12 2014-09-22 Hitachi Metals Ltd Dust core, coil component using the same and method of producing dust core
JP2015026812A (en) * 2013-07-29 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method thereof
JP2015201481A (en) * 2014-04-04 2015-11-12 Necトーキン株式会社 Powder-compact magnetic core arranged by use of nanocrystal soft magnetic alloy powder, and manufacturing method thereof
JP2016139788A (en) * 2015-01-27 2016-08-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. Inductor containing magnetic material composition and method of manufacturing the same
WO2016185940A1 (en) * 2015-05-19 2016-11-24 アルプス・グリーンデバイス株式会社 Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
US9704627B2 (en) 2012-01-18 2017-07-11 Hitachi Metals, Ltd. Metal powder core comprising copper powder, coil component, and fabrication method for metal powder core
US9818519B2 (en) 2012-10-03 2017-11-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Soft magnetic mixed powder
JPWO2016204008A1 (en) * 2015-06-19 2018-05-24 株式会社村田製作所 Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, and coil component
WO2018207521A1 (en) * 2017-05-10 2018-11-15 アルプス電気株式会社 Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
WO2019031464A1 (en) * 2017-08-07 2019-02-14 日立金属株式会社 CRYSTALLINE Fe-BASED ALLOY POWDER AND METHOD FOR PRODUCING SAME
WO2020040250A1 (en) * 2018-08-23 2020-02-27 日立金属株式会社 Magnetic core powder, magnetic core and coil parts using same, and method for manufacturing magnetic core powder

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327524B2 (en) 2000-05-19 2012-12-11 Vacuumscmelze Gmbh & Co. Kg Inductive component and method for the production thereof
JP2006294733A (en) * 2005-04-07 2006-10-26 Nec Tokin Corp Inductor and its manufacturing method
JP2007134591A (en) * 2005-11-11 2007-05-31 Nec Tokin Corp Composite magnetic material, dust core using the same and magnetic element
US8048191B2 (en) * 2005-12-28 2011-11-01 Advanced Technology & Material Co., Ltd. Compound magnetic powder and magnetic powder cores, and methods for making them thereof
US8372218B2 (en) 2006-06-19 2013-02-12 Vacuumschmelze Gmbh & Co. Kg Magnet core and method for its production
US8287664B2 (en) 2006-07-12 2012-10-16 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core
WO2008007345A2 (en) * 2006-07-12 2008-01-17 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores; magnet core and inductive component with a magnet core
WO2008007345A3 (en) * 2006-07-12 2008-03-13 Vacuumschmelze Gmbh & Co Kg Method for the production of magnet cores; magnet core and inductive component with a magnet core
DE102006032520B4 (en) * 2006-07-12 2008-04-10 Vacuumschmelze Gmbh & Co. Kg Method for producing magnetic cores, magnetic core and inductive component with a magnetic core
GB2454822A (en) * 2006-07-12 2009-05-20 Vacuumschmelze Gmbh & Co Kg Method for the production of magnet cores; magnet cores and inductive component with a magnet core
JP2009543370A (en) * 2006-07-12 2009-12-03 ファキュウムシュメルゼ ゲーエムベーハー ウント コンパニー カーゲー Method for manufacturing magnetic core, magnetic core and inductive member with magnetic core
GB2454822B (en) * 2006-07-12 2010-12-29 Vacuumschmelze Gmbh & Co Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core
JP2008141011A (en) * 2006-12-01 2008-06-19 Hitachi Powdered Metals Co Ltd Amorphous dust core
JP2010114222A (en) * 2008-11-05 2010-05-20 Tamura Seisakusho Co Ltd Dust core and method of manufacturing the same
JP2010141183A (en) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd Dust core and method of producing the same
KR101372553B1 (en) * 2010-12-13 2014-03-14 주식회사 아모텍 Magnetic Components formed of Amorphous Alloy Powders, Electric Motor Using the Same, Producing Method thereof, and Vehicle Wheel Drive Apparatus Using the Same
US10312004B2 (en) 2012-01-18 2019-06-04 Hitachi Metals, Ltd. Metal powder core comprising copper powder, coil component, and fabrication method for metal powder core
KR101805348B1 (en) * 2012-01-18 2017-12-06 히타치 긴조쿠 가부시키가이샤 Dust core, coil component, and method for producing dust core
US9704627B2 (en) 2012-01-18 2017-07-11 Hitachi Metals, Ltd. Metal powder core comprising copper powder, coil component, and fabrication method for metal powder core
US9818519B2 (en) 2012-10-03 2017-11-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Soft magnetic mixed powder
JP2014175580A (en) * 2013-03-12 2014-09-22 Hitachi Metals Ltd Dust core, coil component using the same and method of producing dust core
JP2015026812A (en) * 2013-07-29 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method thereof
JP2015201481A (en) * 2014-04-04 2015-11-12 Necトーキン株式会社 Powder-compact magnetic core arranged by use of nanocrystal soft magnetic alloy powder, and manufacturing method thereof
JP2016139788A (en) * 2015-01-27 2016-08-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. Inductor containing magnetic material composition and method of manufacturing the same
KR101976971B1 (en) * 2015-05-19 2019-05-09 알프스 알파인 가부시키가이샤 Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
CN107533894B (en) * 2015-05-19 2019-10-18 阿尔卑斯阿尔派株式会社 Press-powder core and its manufacturing method have the inductor of the press-powder core and are equipped with the electrical-electronic equipment of the inductor
JPWO2016185940A1 (en) * 2015-05-19 2018-02-15 アルプス電気株式会社 Dust core, method for manufacturing the dust core, inductor including the dust core, and electronic / electric device mounted with the inductor
TWI616541B (en) * 2015-05-19 2018-03-01 Alps Electric Co Ltd Powder core, method for manufacturing the powder core, inductor with the powder core, and electronic and electrical machine with the inductor
KR20170133488A (en) * 2015-05-19 2017-12-05 알프스 덴키 가부시키가이샤 Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
US11529679B2 (en) 2015-05-19 2022-12-20 Alps Alpine Co., Ltd. Dust core, method for manufacturing dust core, inductor including dust core, and electronic/electric device including inductor
CN107533894A (en) * 2015-05-19 2018-01-02 阿尔卑斯电气株式会社 Press-powder core and its manufacture method, possess the inductor of the press-powder core and the electronic electric equipment of the inductor is installed
WO2016185940A1 (en) * 2015-05-19 2016-11-24 アルプス・グリーンデバイス株式会社 Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
JPWO2016204008A1 (en) * 2015-06-19 2018-05-24 株式会社村田製作所 Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, and coil component
WO2018207521A1 (en) * 2017-05-10 2018-11-15 アルプス電気株式会社 Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
WO2019031464A1 (en) * 2017-08-07 2019-02-14 日立金属株式会社 CRYSTALLINE Fe-BASED ALLOY POWDER AND METHOD FOR PRODUCING SAME
US11545286B2 (en) 2017-08-07 2023-01-03 Hitachi Metals, Ltd. Crystalline Fe-based alloy powder and method for producing same
WO2020040250A1 (en) * 2018-08-23 2020-02-27 日立金属株式会社 Magnetic core powder, magnetic core and coil parts using same, and method for manufacturing magnetic core powder
JPWO2020040250A1 (en) * 2018-08-23 2021-02-25 日立金属株式会社 Powder for magnetic core, magnetic core and coil parts using it, and powder for magnetic core
CN112566741A (en) * 2018-08-23 2021-03-26 日立金属株式会社 Powder for magnetic core, magnetic core and coil component using same, and method for producing powder for magnetic core

Similar Documents

Publication Publication Date Title
JP2001196216A (en) Dust core
JP6662436B2 (en) Manufacturing method of dust core
KR100545849B1 (en) Manufacturing method of iron-based amorphous metal powder and manufacturing method of soft magnetic core using same
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
WO2011148826A1 (en) Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for producing dust core
WO2018179812A1 (en) Dust core
CA3053494C (en) Fe-based, soft magnetic alloy
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
JP2014175580A (en) Dust core, coil component using the same and method of producing dust core
JP6229166B2 (en) Composite magnetic material for inductor and manufacturing method thereof
JP2010222670A (en) Composite magnetic material
JP2010053372A (en) Iron-nickel alloy powder, method for producing the same, and powder magnetic core for inductor using the alloy powder
JP2012222062A (en) Composite magnetic material
JP2000294429A (en) Compound magnetic core
JPH06236808A (en) Composite magnetic material and its manufacture
JPH06204021A (en) Composite magnetic material and its manufacture
JP2654944B2 (en) Composite dust core material and manufacturing method thereof
JP2009272615A (en) Dust core, and manufacturing method thereof
JP4568691B2 (en) Magnetite-iron-cobalt composite powder for dust core, method for producing the same, and dust core using the same
JP2004327762A (en) Composite soft magnetic material
WO2022201964A1 (en) Soft magnetic powder, dust core containing same, and method for producing soft magnetic powder
JP2005243895A (en) Powder for pressed powder core and pressed powder core employing it
JP2003188009A (en) Compound magnetic material
JP2000331814A (en) Powder compact magnetic core and choke coil provided therewith