WO2018207521A1 - Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted - Google Patents

Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted Download PDF

Info

Publication number
WO2018207521A1
WO2018207521A1 PCT/JP2018/014862 JP2018014862W WO2018207521A1 WO 2018207521 A1 WO2018207521 A1 WO 2018207521A1 JP 2018014862 W JP2018014862 W JP 2018014862W WO 2018207521 A1 WO2018207521 A1 WO 2018207521A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
magnetic material
dust core
core
inductor
Prior art date
Application number
PCT/JP2018/014862
Other languages
French (fr)
Japanese (ja)
Inventor
中林 亮
小島 章伸
利男 ▲高▼橋
岡本 淳
佐藤 昭
佐藤 桂一郎
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2018207521A1 publication Critical patent/WO2018207521A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent

Definitions

  • the present invention relates to a dust core, a method for producing the dust core, an inductor including the dust core, and an electronic / electrical device on which the inductor is mounted.
  • the “inductor” means a passive element including a core material including a dust core and a coil.
  • the switching power supply circuit in the electronic device needs to be able to cope with a high frequency. Therefore, the inductor incorporated in the switching power supply circuit is also required to be stably driven at a high frequency.
  • Patent Document 1 For the purpose of providing a constituent material of a magnetic element that can cope with a high driving frequency, Patent Document 1 includes first particles having an average first particle size and second particles having an average second particle size.
  • the ratio of the average first particle diameter to the average second particle diameter is 1/8 to 1/3, and the mixing ratio of the first particles to the second particles is 10/90 to volume ratio.
  • a metal magnetic material powder is described which is 25/75.
  • Inductors especially coil-embedded inductors, when the profile is reduced, the absolute amount of magnetic material located around the coil decreases, so that the insulation characteristics of the inductor and the mechanical characteristics of the core are maintained. It becomes difficult.
  • the present invention provides a dust core suitable as a constituent member of a small and low-profile built-in coil inductor, a dust core that can be used as an inductor material provided with such a dust core, It is an object of the present invention to provide a manufacturing method, an inductor including the dust core, and an electronic / electrical device on which the inductor is mounted.
  • the present invention provided to solve the above-described problems is a powder core containing a powder of a crystalline magnetic material and a powder of an amorphous magnetic material, wherein the powder of the crystalline magnetic material
  • the first mixing ratio which is the mass ratio of the content of the crystalline magnetic material powder to the sum of the content and the content of the amorphous magnetic material powder, is 30% by mass or more and 70% by mass or less
  • the crystalline magnetic material is a dust core made of an Fe—Si—Cr alloy and having a median diameter D 50 C of 2.5 ⁇ m to 6 ⁇ m.
  • the magnetic material constituting the dust core is required to have a high magnetic permeability even when the external magnetic field is high to some extent.
  • This permeability in a high magnetic field is a parameter different from the initial permeability, and it cannot be said that it has a strong correlation with the saturation magnetic flux density.
  • a parameter for evaluating the magnetic permeability in such a high magnetic field is ⁇ 5500, which is a relative magnetic permeability when the external magnetic field is 5500 A / m. It can be said that the higher this ⁇ 5500 is, the magnetic material has excellent magnetic properties even in a high magnetic field.
  • the inductor when the inductor is small and low in profile, the volume of the core located around the built-in coil is reduced. In this case, problems that are a concern include core dielectric breakdown and core damage (cracking, chipping). Therefore, the dielectric strength voltage (unit: V / mm) and the crushing strength (unit: MPa) of the core are preferably high. Therefore, an inductor having excellent magnetic properties in a strong magnetic field can be obtained even if it is small and has a low profile by using a dust core with ⁇ 5500 ⁇ insulation breakdown voltage ⁇ crush ring strength.
  • Magnetic powder is a mixture of crystalline magnetic material powder and amorphous magnetic material powder.
  • the first mixing ratio is 30% by mass or more and 70% by mass or less.
  • the crystalline magnetic material is made of an Fe—Si—Cr alloy, and the median diameter D 50 C is 2.5 ⁇ m or more and 6 ⁇ m or less.
  • the median diameter D 50 A of the powder of the amorphous magnetic material is preferably 5 ⁇ m or more and 8 ⁇ m or less.
  • the median diameter D 50 A is 5 ⁇ m or more, so that the ⁇ 5500 ⁇ the dielectric strength ⁇ the crushing strength can be specifically increased.
  • the median diameter D 50 A is more preferably 5.5 ⁇ m or more.
  • the median diameter D 50 A is preferably 8 ⁇ m or less, and more preferably 7 ⁇ m or less.
  • the median diameter D 50 A of the amorphous magnetic material powder and the median diameter D 50 C of the crystalline magnetic material powder preferably satisfy the following formula (1).
  • the particle diameters of the two types of powders satisfy the relationship of the following formula (1), it is possible to more stably realize ⁇ 5500 ⁇ insulation breakdown voltage ⁇ compression ring strength. 1 ⁇ D 50 A / D 50 C ⁇ 3.5 (1)
  • the amorphous magnetic material is one selected from the group consisting of an Fe—Si—B alloy, an Fe—PC alloy, and a Co—Fe—Si—B alloy, or Two or more kinds of materials may be included, and the amorphous magnetic material may be preferably made of a Fe—PC alloy.
  • the binding component may include a component based on a resin material.
  • the present invention provides a method for producing a powder core containing a binder component including a component based on the resin material.
  • the manufacturing method includes a molding step of obtaining a molded product by a molding process including pressure molding of a mixture including a binder component composed of the crystalline magnetic material powder and the amorphous magnetic material powder and the resin material. .
  • the molding process at this time is preferably compression molding in which pressure is applied at about 0.5 GPa to about 2 GPa in a temperature environment of about room temperature from the viewpoint of increasing productivity.
  • the present invention is an inductor including the powder core, the coil, and a connection terminal connected to each end of the coil, wherein at least a part of the powder core is the connection
  • an inductor disposed so as to be located in an induced magnetic field generated by the current when a current is passed through the coil through a terminal.
  • Such an inductor is based on the excellent characteristics of the dust core, and the core is less likely to break down or break even if it is small and low in profile, and has excellent direct current superposition characteristics.
  • the present invention provides an electronic / electrical device in which the inductor is mounted, wherein the inductor is connected to a substrate at the connection terminal.
  • a circuit in which an inductor is incorporated in such an electronic / electric device is not particularly limited, but when used in a switching power supply circuit such as a DC-DC converter, it is easy to take advantage of the above-described inductor having excellent direct current superposition characteristics.
  • the electronic / electrical device is a portable device such as a smartphone, it is easy to utilize the advantages of the above-described inductor that is small and easily adaptable to a low profile.
  • the composition and particle size distribution of the crystalline magnetic material powder and the mixing ratio (first mixing ratio) of the crystalline magnetic material powder and the amorphous magnetic material powder are appropriate. Therefore, it is possible to improve the DC superposition characteristics of an inductor having such a dust core even if it is small and low in profile. Moreover, according to this invention, the manufacturing method of said powder core, the inductor provided with the said powder core, and the electronic / electrical device by which the said inductor was mounted are provided.
  • FIG. A graph showing the results of Example 3 is a graph showing the relationship between a median diameter D 50 A powder of core loss Pcv and amorphous magnetic material.
  • a graph showing the results of Example 4 is a graph showing the relationship between the core loss Pcv and the median diameter D 50 C of the powder of crystalline magnetic material.
  • a graph showing the results of Example 3 is a graph showing the relationship between a median diameter D 50 A powder of amorphous magnetic material as Myu5500 ⁇ withstand voltage ⁇ radial crushing strength (relative value).
  • a graph showing the results of Example 4 is a graph showing the relationship between Myu5500 ⁇ withstand voltage ⁇ radial crushing strength (relative value) and the median diameter D 50 C of the powder of crystalline magnetic material.
  • a graph showing the results of Example 5 is a graph showing the relationship between a median diameter D 50 A powder of amorphous magnetic material as Myu5500 ⁇ withstand voltage ⁇ radial crushing strength (relative value).
  • a graph showing the results of Example 6 is a graph showing the relationship between Myu5500 ⁇ withstand voltage ⁇ radial crushing strength (relative value) and the median diameter D 50 C of the powder of crystalline magnetic material.
  • Example 5 and Example 6 were normalized by the result of Example 5-2 (ie, Example 6-2), and the powder of the crystalline magnetic material having a median diameter D 50 A of the amorphous magnetic material was used.
  • the ratio of the median diameter D 50 C (D 50 a / D 50 C) is a graph showing as a horizontal axis.
  • a dust core 1 according to one embodiment of the present invention shown in FIG. 1 is a ring-shaped toroidal core, and contains a powder of a crystalline magnetic material and a powder of an amorphous magnetic material. .
  • the powder core 1 according to the present embodiment is manufactured by a manufacturing method including a forming process including pressure forming a mixture containing these powders.
  • the dust core 1 according to the present embodiment includes a crystalline magnetic material powder and an amorphous magnetic material powder as other materials (same type of material) contained in the dust core 1. Or it may be a dissimilar material).
  • the crystalline magnetic material that gives the powder of crystalline magnetic material contained in the dust core 1 according to one embodiment of the present invention is crystalline (by general X-ray diffraction measurement, It is made of a Fe—Si—Cr alloy that is ferromagnetic and capable of obtaining a diffraction spectrum having a distinct peak to the extent that the material type can be specified.
  • the Fe—Si—Cr alloy is a material having a relatively high saturation magnetic flux density, a good soft magnetic property, and a high specific resistance among crystalline magnetic materials. Therefore, compared with other crystalline magnetic materials such as carbonyl iron powder, the loss is low even under high magnetic field and high frequency conditions, and good magnetic properties are easily exhibited.
  • the powder of the crystalline magnetic material contained in the dust core 1 from an Fe—Si—Cr alloy, the content of the powder of the crystalline magnetic material in the dust core 1 and the amorphous Even if the mass ratio of the powder content of the crystalline magnetic material to the total content of the powder of the magnetic material (also referred to as “first mixing ratio” in this specification) is increased, the ratio in a high magnetic field environment is increased. Magnetic permeability, specifically, ⁇ 5500 is unlikely to decrease.
  • the Si content and the Cr content in the Fe—Si—Cr alloy are not limited. As a non-limiting example, the Si content is about 2 to 7% by mass, the Cr content is about 2 to 7% by mass, and the balance is Fe and inevitable impurities.
  • the shape of the powder of the crystalline magnetic material contained in the dust core 1 is not limited.
  • the shape of the powder may be spherical or non-spherical. When it is non-spherical, it may have a shape having shape anisotropy such as a scale shape, an oval shape, a droplet shape, or a needle shape.
  • the shape of the powder may be a shape obtained at the stage of producing the powder, or a shape obtained by secondary processing of the produced powder.
  • the former shape include a spherical shape, an oval shape, a droplet shape, and a needle shape, and examples of the latter shape include a scale shape.
  • the particle size of the powder of the crystalline magnetic material contained in the powder core 1 according to the embodiment of the present invention is such that the cumulative particle size distribution from the small particle size side is 50% in the volume-based particle size distribution ( In this specification, it is also referred to as “crystalline powder median diameter.”) D 50 C is 2.5 ⁇ m or more and 6 ⁇ m or less.
  • D 50 C is 2.5 ⁇ m or more and 6 ⁇ m or less.
  • the crystalline powder median diameter D 50 C may be preferably 2.5 ⁇ m or more and 5.5 ⁇ m or less.
  • Surface insulation treatment may be applied to at least a part of the powder of the crystalline magnetic material.
  • the insulation resistance of the dust core 1 tends to be improved.
  • the type of surface insulation treatment applied to the crystalline magnetic material powder is not limited. Examples include phosphoric acid treatment, phosphate treatment, and oxidation treatment.
  • the amorphous magnetic material that provides the amorphous magnetic material powder contained in the dust core 1 according to an embodiment of the present invention is amorphous (generally As long as the X-ray diffraction measurement does not provide a diffraction spectrum with a clear peak that can identify the material type), and the material is a ferromagnetic material, particularly a soft magnetic material, the specific types are limited. Not. Specific examples of the amorphous magnetic material include Fe—Si—B alloys, Fe—PC alloys, and Co—Fe—Si—B alloys. Said amorphous magnetic material may be comprised from one type of material, and may be comprised from multiple types of material.
  • the magnetic material constituting the powder of the amorphous magnetic material is preferably one or two or more materials selected from the group consisting of the above materials, and among these, an Fe—PC alloy is used. It is preferably contained, and more preferably made of an Fe—PC alloy.
  • Fe-P-C-based alloy composition formula, shown in Fe 100 atomic% -a-b-c-x -y-z-t Ni a Sn b Cr c P x C y B z Si t 0 atom% ⁇ a ⁇ 10 atom%, 0 atom% ⁇ b ⁇ 3 atom%, 0 atom% ⁇ c ⁇ 6 atom%, 6.8 atom% ⁇ x ⁇ 13 atom%, 2.2 atom% ⁇
  • Examples include Fe-based amorphous alloys in which y ⁇ 13 atomic%, 0 atomic% ⁇ z ⁇ 9 atomic%, and 0 atomic% ⁇ t ⁇ 7 atomic%.
  • Ni, Sn, Cr, B, and Si are optional added elements.
  • the addition amount a of Ni is preferably 0 atom% or more and 6 atom% or less, and more preferably 0 atom% or more and 4 atom% or less.
  • the addition amount b of Sn is preferably 0 atom% or more and 2 atom% or less, and may be added in the range of 1 atom% or more and 2 atom% or less.
  • the addition amount c of Cr is preferably 0 atom% or more and 2 atom% or less, and more preferably 1 atom% or more and 2 atom% or less.
  • the addition amount x of P is preferably 8.8 atomic% or more.
  • the addition amount y of C may be preferably 5.8 atomic% or more and 8.8 atomic% or less.
  • the addition amount z of B is preferably 0 atom% or more and 3 atom% or less, and more preferably 0 atom% or more and 2 atom% or less.
  • the addition amount t of Si is preferably 0 atom% or more and 6 atom% or less, and more preferably 0 atom% or more and 2 atom% or less.
  • the shape of the powder of the amorphous magnetic material contained in the dust core 1 is not limited. Since the kind of the powder shape is the same as that of the crystalline magnetic material powder, the description thereof is omitted. In some cases, the amorphous magnetic material can be easily formed into a spherical shape or an elliptical spherical shape because of the manufacturing method. In general, since an amorphous magnetic material is harder than a crystalline magnetic material, it may be preferable to make the crystalline magnetic material non-spherical so that it is easily deformed during pressure molding.
  • the shape of the powder of the amorphous magnetic material contained in the dust core 1 may be the shape obtained in the stage of producing the powder, or the produced powder is secondary
  • the shape obtained by processing may be sufficient.
  • the former shape include a sphere, an oval sphere, and a needle shape, and examples of the latter shape include a scale shape.
  • the particle size of the powder of the amorphous magnetic material contained in the dust core 1 is such that the cumulative particle size distribution from the small particle size side is 50% in the volume-based particle size distribution.
  • amorphous powder median diameter D 50 A is preferably 5 ⁇ m or more and 8 ⁇ m or less.
  • the amorphous powder median diameter D 50 A is 5 ⁇ m or more, so that ⁇ 5500 ⁇ insulation breakdown voltage ⁇ compression ring strength can be specifically increased.
  • the amorphous powder median diameter D 50 A is more preferably 5.5 ⁇ m or more.
  • the amorphous powder median diameter D 50 A is preferably 8 ⁇ m or less, and more preferably 7 ⁇ m or less.
  • the particle size of the powder of the amorphous magnetic material contained in the dust core 1 is the next to the particle size of the powder of the amorphous magnetic material contained in the dust core 1.
  • D 50 A / D 50 C When D 50 A / D 50 C is in the range of 1 to 3.5, it is easy to specifically increase ⁇ 5500 ⁇ insulation breakdown voltage ⁇ compression ring strength of the dust core 1. From the viewpoint of more stably realizing ⁇ 5500 ⁇ dielectric withstand voltage ⁇ compressive ring strength, D 50 A / D 50 C may be preferably in the range of 1.2 to 2.5, It may be preferable to be in the range of 1.3 to 2.0.
  • the first mixing ratio is preferably 40% by mass or more and 60% by mass or less, More preferably, it is at least 55% by mass.
  • the powder core 1 includes a binder component that binds the powder of the crystalline magnetic material and the powder of the amorphous magnetic material to the other materials contained in the powder core 1. It may be.
  • the binder component is a powder of crystalline magnetic material and powder of amorphous magnetic material contained in the dust core 1 according to the present embodiment (in this specification, these powders are collectively referred to as “magnetic powder”).
  • the composition is not limited as long as the material contributes to fixing.
  • an organic material such as a resin material and a thermal decomposition residue of the resin material (in this specification, these are collectively referred to as “components based on a resin material”), an inorganic material, and the like
  • the resin material include acrylic resin, silicone resin, epoxy resin, phenol resin, urea resin, and melamine resin.
  • the binder component made of an inorganic material is exemplified by a glass-based material such as water glass.
  • the binder component may be composed of one type of material or may be composed of a plurality of materials.
  • the binder component may be a mixture of an organic material and an inorganic material.
  • An insulating material is usually used as a binding component. Thereby, it becomes possible to improve the insulation as the dust core 1.
  • the manufacturing method of the powder core 1 according to an embodiment of the present invention may include a molding step described below, and may further include a heat treatment step.
  • a mixture containing magnetic powder and a component that provides a binding component in the powder core 1 is prepared.
  • the component that gives the binding component (also referred to as “binder component” in this specification) may be the binding component itself or may be a material different from the binding component. Specific examples of the latter include a case where the binder component is a resin material and the binder component is a thermal decomposition residue thereof. Such a thermal decomposition residue is formed by the heat treatment process performed subsequent to a shaping
  • a molded product can be obtained by a molding process including pressure molding of this mixture.
  • the pressurizing condition is not limited and is appropriately set based on the composition of the binder component.
  • the binder component is made of a thermosetting resin, it is preferable to heat the resin together with pressure to advance the resin curing reaction in the mold.
  • the pressing force is high, heating is not a necessary condition and pressurization is performed for a short time.
  • the pressing force in the case of compression molding is appropriately set. If it illustrates without being limited, it is 0.5 GPa or more and 2 GPa or less, and it may be preferable to set it as 1 GPa or more and 2 GPa or less.
  • the mixture is granulated powder and compression molding. Since the granulated powder is excellent in handleability, it is possible to improve the workability of the compression molding process in which the molding time is short and the productivity is excellent.
  • the granulated powder contains magnetic powder and a binder component.
  • the content of the binder component in the granulated powder is not particularly limited. When this content is too low, it becomes difficult for the binder component to hold the magnetic powder.
  • the binder component composed of the thermal decomposition residue of the binder component causes a plurality of magnetic powders to be separated from each other. It becomes difficult to insulate.
  • the content of the binder component is excessively high, the content of the binder component contained in the powder core 1 obtained through the heat treatment step tends to be high.
  • the content of the binder component in the granulated powder is preferably set to an amount that is 0.5% by mass or more and 5.0% by mass or less with respect to the entire granulated powder. From the viewpoint of more stably reducing the possibility that the magnetic properties of the dust core 1 will decrease, the content of the binder component in the granulated powder is 1.0 mass% or more with respect to the entire granulated powder. The amount is preferably 5% by mass or less, and more preferably 1.2% by mass or more and 3.0% by mass or less.
  • the granulated powder may contain materials other than the above magnetic powder and binder component.
  • materials include lubricants, silane coupling agents, and insulating fillers.
  • the type is not particularly limited. It may be an organic lubricant or an inorganic lubricant. Specific examples of the organic lubricant include metal soaps such as zinc stearate and aluminum stearate. It is considered that such an organic lubricant is vaporized in the heat treatment step and hardly remains in the powder core 1.
  • the method for producing the granulated powder is not particularly limited.
  • the ingredients that give the granulated powder may be kneaded as they are, and the resulting kneaded product may be pulverized by a known method to obtain granulated powder, or a dispersion medium (water as an example) It is also possible to obtain a granulated powder by preparing a slurry to which is added, and drying and pulverizing the slurry. Screening and classification may be performed after pulverization to control the particle size distribution of the granulated powder.
  • a method using a spray dryer can be mentioned.
  • a rotator 201 is provided in the spray dryer apparatus 200, and the slurry S is injected toward the rotator 201 from the upper part of the apparatus.
  • the rotor 201 rotates at a predetermined number of revolutions, and sprays the slurry S as droplets by centrifugal force in a chamber inside the spray dryer apparatus 200. Further, hot air is introduced into the chamber inside the spray dryer apparatus 200, whereby the dispersion medium (water) contained in the droplet-like slurry S is volatilized while maintaining the droplet shape.
  • the granulated powder P is formed from the slurry S.
  • the granulated powder P is collected from the lower part of the spray dryer apparatus 200.
  • Each parameter such as the number of rotations of the rotor 201, the temperature of hot air introduced into the spray dryer apparatus 200, and the temperature at the bottom of the chamber may be set as appropriate.
  • the rotational speed of the rotor 201 is 4000 to 8000 rpm
  • the hot air temperature introduced into the spray dryer apparatus 200 is 100 to 170 ° C.
  • the temperature at the bottom of the chamber is 80 to 90 ° C.
  • the atmosphere in the chamber and its pressure may be set as appropriate.
  • the inside of the chamber is an air atmosphere
  • the pressure is 2 mmH 2 O (about 0.02 kPa) as a differential pressure from the atmospheric pressure. You may further control the particle size distribution of the obtained granulated powder P by sieving.
  • the pressing conditions in compression molding are not particularly limited. What is necessary is just to set suitably considering the composition of granulated powder, the shape of a molded article, etc. If the pressure applied when the granulated powder is compression-molded is excessively low, the mechanical strength of the molded product decreases. For this reason, it becomes easy to produce the problem that the handleability of a molded article falls and the mechanical strength of the compacting core 1 obtained from the molded article falls. Moreover, the magnetic characteristics of the dust core 1 may deteriorate or the insulating properties may decrease. On the other hand, if the applied pressure during compression molding of the granulated powder is excessively high, it becomes difficult to create a molding die that can withstand the pressure.
  • the applied pressure is preferably 0.3 GPa to 2 GPa, more preferably 0.5 GPa to 2 GPa, and particularly preferably 0.8 GPa to 2 GPa.
  • pressurization may be performed while heating, or pressurization may be performed at room temperature.
  • the molded product obtained in the molding step may be the powder core 1 according to the present embodiment, or the molded product may be subjected to a heat treatment step and pressed as described below. A powder core 1 may be obtained.
  • the molded product obtained by the above molding process is heated to adjust the magnetic properties by correcting the distance between the magnetic powders and to relax the strain applied to the magnetic powder in the molding process.
  • the powder core 1 is obtained by adjusting the magnetic characteristics.
  • the heat treatment conditions such as the heat treatment temperature are set so that the magnetic properties of the dust core 1 are the best.
  • a method for setting the heat treatment conditions it is possible to change the heating temperature of the molded product and to make other conditions constant, such as the heating rate and the holding time at the heating temperature.
  • the evaluation criteria for the magnetic properties of the dust core 1 when setting the heat treatment conditions are not particularly limited.
  • the iron loss Pcv of the powder core 1 can be given as a specific example of the evaluation item. In this case, what is necessary is just to set the heating temperature of a molded product so that the iron loss Pcv of the powder core 1 may become the minimum.
  • the measurement conditions of the iron loss Pcv are set as appropriate. As an example, the conditions are a frequency of 2 MHz and an effective maximum magnetic flux density Bm of 15 mT.
  • the atmosphere during the heat treatment is not particularly limited.
  • an oxidizing atmosphere the possibility of excessive thermal decomposition of the binder component and the possibility of progress of oxidation of the magnetic powder increases, so that an inert atmosphere such as nitrogen or argon, or a reducing property such as hydrogen Heat treatment is preferably performed in an atmosphere.
  • an inert atmosphere such as nitrogen or argon, or a reducing property such as hydrogen Heat treatment is preferably performed in an atmosphere.
  • the binder component may become a thermal decomposition residue by the heat treatment as described above. It is considered that the binder component is a thermal decomposition residue when the strain is relaxed as described above.
  • An inductor according to an embodiment of the present invention includes the dust core 1 according to the embodiment of the present invention, a coil, and a connection terminal connected to each end of the coil.
  • at least a part of the dust core 1 is disposed so as to be located in an induced magnetic field generated by the current when a current is passed through the coil via the connection terminal. Since the inductor according to an embodiment of the present invention includes the dust core 1 according to the embodiment of the present invention described above, the inductor has excellent direct current superposition characteristics and excellent insulation characteristics and mechanical characteristics.
  • the toroidal coil 10 includes a coil 2 a formed by winding a coated conductive wire 2 around a ring-shaped dust core (toroidal core) 1.
  • the ends 2d and 2e of the coil 2a can be defined in the portion of the conductive wire located between the coil 2a formed of the wound covered conductive wire 2 and the ends 2b and 2c of the covered conductive wire 2.
  • the member constituting the coil and the member constituting the connection terminal may be composed of the same member.
  • the coil-embedded inductor 20 can be formed in a small chip shape of several mm square, and includes a dust core 21 having a box shape, and a coil portion 22c in the covered conductive wire 22 is provided therein. Buried. End portions 22a and 22b of the coated conductive wire 22 are located on the surface of the powder core 21 and exposed. Part of the surface of the dust core 21 is covered with connection end portions 23a and 23b that are electrically independent from each other.
  • connection end portion 23 a is electrically connected to the end portion 22 a of the covered conductive wire 22, and the connection end portion 23 b is electrically connected to the end portion 22 b of the covered conductive wire 22.
  • the end portion 22a of the covered conductive wire 22 is covered with the connection end portion 23a, and the end portion 22b of the covered conductive wire 22 is covered with the connection end portion 23b.
  • the method for embedding the coil portion 22c of the coated conductive wire 22 in the dust core 21 is not limited.
  • a member around which the coated conductive wire 22 is wound may be placed in a mold, and a mixture (granulated powder) containing magnetic powder may be supplied into the mold to perform pressure molding.
  • a plurality of members obtained by preforming a mixture (granulated powder) containing magnetic powder in advance are prepared, these members are combined, and the coated conductive wire 22 is arranged in the gap formed at that time.
  • a solid may be obtained and this assembly may be pressure molded.
  • the material of the covered conductive wire 22 including the coil portion 22c is not limited. For example, a copper alloy can be used.
  • the coil portion 22c may be an edgewise coil.
  • connection end portions 23a and 23b is not limited. From the viewpoint of excellent productivity, it may be preferable to include a metallized layer formed from a conductive paste such as a silver paste and a plating layer formed on the metallized layer.
  • the material for forming the plating layer is not limited. Examples of the metal element contained in the material include copper, aluminum, zinc, nickel, iron, and tin.
  • An electronic / electrical device is an electronic / electrical device in which the inductor according to the above-described embodiment of the present invention is mounted, and the inductor is connected to a substrate at its connection terminal.
  • An example of a circuit including such an inductor is a switching power supply circuit such as a DC-DC converter.
  • the switching power supply circuit tends to increase the switching frequency and increase the amount of current flowing through the circuit in order to meet various demands such as downsizing, weight reduction, and high functionality of electronic and electrical devices. For this reason, the current flowing through the inductor, which is a component of the circuit, also tends to increase the fluctuation frequency and increase the average current amount.
  • an inductor including a dust core according to an embodiment of the present invention can appropriately operate in a high magnetic field environment even if the inductor is small and low-profile. Therefore, in the switching power supply circuit provided with such an inductor, a decrease in efficiency is suppressed, and the above various requirements can be met without causing a problem of heat generation.
  • an electronic / electrical device on which an inductor according to an embodiment of the present invention is mounted can achieve high functionality while corresponding to downsizing and weight reduction.
  • the powder of the crystalline magnetic material Fe—Si—Cr alloy, specifically, the Si content is 3.5 mass%, the Cr content is 4.5 mass%, and the balance is A powder comprising an alloy composed of Fe and inevitable impurities and having a crystalline powder median diameter D 50 C of 4.0 ⁇ m was prepared. Therefore, in the powder according to Example 1, D 50 A / D 50 C was 1.6.
  • the obtained slurry was granulated under the above-described conditions using the spray dryer apparatus 200 shown in FIG. 2 to obtain granulated powder.
  • the obtained molded body is placed in a furnace in a nitrogen stream atmosphere, and the furnace temperature is 200 to 400 which is the optimum core heat treatment temperature from room temperature (23 ° C.) at a heating rate of 10 ° C./min.
  • the mixture was heated to 0 ° C., held at this temperature for 1 hour, and then heat-treated to cool to room temperature in a furnace to obtain a toroidal core composed of a dust core.
  • Example 2 Using the amorphous magnetic material powder produced in Example 1, the classification conditions were changed to prepare an amorphous magnetic material powder having an amorphous powder median diameter D 50 A of 5.0 ⁇ m.
  • a powder of crystalline magnetic material Fe—Si—Cr alloy, specifically, Si content is 6.4% by mass, Cr content is 3.1% by mass, and the balance is A powder comprising an alloy composed of Fe and inevitable impurities and having a crystalline powder median diameter D 50 C of 2.0 ⁇ m was prepared. Therefore, in the powder according to Example 2, D 50 A / D 50 C was 2.5.
  • the above amorphous magnetic material powder and crystalline magnetic material powder were mixed at the first mixing ratio shown in Table 2 to obtain a magnetic powder. Thereafter, a plurality of types of toroidal cores were obtained in the same manner as in Example 1.
  • Example 1 Measurement of core density ⁇
  • the dimensions and weights of the toroidal cores produced in Example 1 and Example 2 were measured, and the density (core density) ⁇ (unit: g / g) of each toroidal core was determined from these numerical values. cc) was calculated. The results are shown in Tables 1 and 2.
  • Test Example 2 Measurement of initial permeability ⁇ 0 For toroidal coils obtained by winding the coated copper wires 40 times on the primary side and 10 times on the secondary side respectively on the toroidal cores produced in Example 1 and Example 2, The initial permeability ⁇ 0 was measured using an analyzer (“4192A” manufactured by HP) under the condition of 100 kHz. The results are shown in Tables 1 and 2.
  • Test Example 3 Measurement of ⁇ 5500 Using the toroidal coil produced in Test Example 2, a direct current was superimposed under the condition of 100 kHz, and a relative permeability ⁇ 5500 when the induced magnetic field of the superimposed direct current was 5500 A / m was obtained. It was measured. The measurement results are shown in Table 1.
  • Example 4 Measurement of crushing strength The toroidal core produced in Example 1 and Example 2 was measured by a test method based on JIS Z2507: 2000, and crushing strength was obtained. The measurement results are shown in Tables 1 and 2.
  • Test Example 5 Measurement of dielectric strength voltage
  • the dielectric breakdown voltage (unit: V) of the toroidal core produced in Example 1 and Example 2 was measured (measuring instrument: “TOS5051” manufactured by Kikusui Electronics Corporation). The measurement was performed in accordance with JIS C2110-1, and both end surfaces of the toroidal core shown in FIG. A dielectric breakdown electric field (unit: V / mm) was determined from the obtained dielectric breakdown voltage. The results are shown in Tables 1 and 2.
  • Test Example 6 Measurement of iron loss Pcv
  • the BH analyzer (“SY-8217” manufactured by Iwasaki Tsushinki Co., Ltd.) was used to measure the iron loss Pcv (unit: kW / m 3 ) at a measurement frequency of 2 MHz under the condition that the effective maximum magnetic flux density Bm was 15 mT.
  • the measurement results are shown in Tables 1 and 2.
  • Example 1 (Evaluation Example 1) ⁇ 5500 ⁇ Insulation Withstand Pressure ⁇ Rubber Strength Based on the results measured in Test Example 3 to Test Example 5, ⁇ 5500 ⁇ Insulation Withstand Voltage ⁇ Rubble Strength was calculated. The calculation results are shown in Tables 3 and 4 and FIG. The “relative value” in the above table and figure is the result of normalizing the values of Example 1-2 to Example 1-9 in Example 1 by ⁇ 5500 ⁇ Insulation withstand voltage ⁇ Drum strength in Example 1-1.
  • Example 2 shows the result of normalizing the values of Example 2-2 to Example 2-8 by ⁇ 5500 ⁇ insulation breakdown voltage ⁇ cylinder strength in Example 2-1.
  • Example 1 in contrast to Example 2, when the first mixing ratio is 30% by mass or more and 70% by mass or less, the relative value is specifically high. The result was obtained. It turns out that the tendency becomes remarkable especially in 40 mass% or more and 60 mass% or less.
  • Example 3 Using the amorphous magnetic material powder produced in Example 1, the classification conditions were changed to prepare an amorphous magnetic material powder having an amorphous powder median diameter D 50 A shown in Table 5. Further, as a powder of the crystalline magnetic material, a powder of an Fe—Si—Cr-based alloy having a crystalline powder median diameter D 50 C shown in Table 5 was prepared. The above-mentioned amorphous magnetic material powder and crystalline magnetic material powder were mixed so that the first mixing ratio was 50% by mass to obtain a magnetic powder. Thereafter, a plurality of types of toroidal cores were obtained in the same manner as in Example 1. The obtained toroidal core was subjected to various measurements and evaluations in the same manner as in Example 1. The results are shown in Table 5.
  • Example 4 Using the amorphous magnetic material powder produced in Example 1, the classification conditions were changed to prepare an amorphous magnetic material powder having a median diameter D 50 A of 5.0 ⁇ m. Further, as a powder of the crystalline magnetic material, a powder of an Fe—Si—Cr alloy having a median diameter D 50 C shown in Table 6 was prepared. The above-mentioned amorphous magnetic material powder and crystalline magnetic material powder were mixed so that the first mixing ratio was 30% by mass to obtain a magnetic powder. Thereafter, a plurality of types of toroidal cores were obtained in the same manner as in Example 1. The obtained toroidal core was subjected to various measurements and evaluations in the same manner as in Example 1. The results are shown in Table 6.
  • the median diameter D 50 A of the powder of the amorphous magnetic material is 5 ⁇ m or more and 8 ⁇ m or less. It was confirmed that when the median diameter D 50 C of the powder of the crystalline magnetic material is 2.5 ⁇ m or more and 6 ⁇ m or less, ⁇ 5500 ⁇ insulation breakdown voltage ⁇ compressive ring strength is specifically increased.
  • Example 5 Using the powder of the amorphous magnetic material produced in Example 1, the classification conditions were changed, and the median diameter D 50 A was 5.0 ⁇ m (Example 5-1), 6.5 ⁇ m (Example 5-2), And 11.0 ⁇ m (Example 5-3) amorphous magnetic material powder. Further, as a powder of the crystalline magnetic material, a powder of an Fe—Si—Cr alloy having a median diameter D 50 C of 4.0 ⁇ m was prepared. The above-mentioned amorphous magnetic material powder and crystalline magnetic material powder were mixed so that the first mixing ratio was 50% by mass to obtain a magnetic powder. Thereafter, a plurality of types of toroidal cores were obtained in the same manner as in Example 1. The obtained toroidal core was subjected to various measurements and evaluations in the same manner as in Example 1. The results are shown in Table 7 and FIG.
  • Example 6 Using the amorphous magnetic material powder produced in Example 1, the classification conditions were changed to prepare an amorphous magnetic material powder having a median diameter D 50 A of 6.5 ⁇ m. Further, the powder of the crystalline magnetic material is an Fe—Si—Cr alloy, and the median diameter D 50 C is 2.0 ⁇ m (Example 5-1), 4.0 ⁇ m (Example 5-2), and A powder of 6.0 ⁇ m (Example 5-3) was prepared. The above-mentioned amorphous magnetic material powder and crystalline magnetic material powder were mixed so that the first mixing ratio was 50% by mass to obtain a magnetic powder. Thereafter, a plurality of types of toroidal cores were obtained in the same manner as in Example 1. The obtained toroidal core was subjected to various measurements and evaluations in the same manner as in Example 1. The results are shown in Table 8 and FIG.
  • Example 5 and Example 6 were normalized by the result of Example 5-2 (ie, Example 6-2), and the powder of the crystalline magnetic material having a median diameter D 50 A of the amorphous magnetic material was used.
  • FIG. 12 is a graph showing the ratio (D 50 A / D 50 C) with respect to the median diameter D 50 C of FIG.
  • the dependence of ⁇ 5500 ⁇ dielectric withstand voltage ⁇ compression ring strength on D 50 A / D 50 C is such that D 50 A / D 50 C has a vertex in the range of 1.3 to 2.0.
  • the distribution has a mountain-shaped trend line.
  • the inductor having the dust core of the present invention can be suitably used as an inductor that is a component of a switching power supply circuit such as a DC-DC converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Provided is a dust core which is suitable as a constituent member for a small and low inductor with a built-in coil, and which contains a powder of a crystalline magnetic material and a powder of an amorphous magnetic material. This dust core is configured such that: a first mixing ratio, which is the mass ratio of the content of the powder of the crystalline magnetic material to the sum of the content of the powder of the crystalline magnetic material and the content of the powder of the amorphous magnetic material, is from 30% by mass to 70% by mass (inclusive); the crystalline magnetic material is composed of an Fe-Si-Cr system alloy; and the median diameter D50C thereof is from 2.5 μm to 6 μm (inclusive).

Description

圧粉コア、当該圧粉コアの製造方法、該圧粉コアを備えるインダクタ、および該インダクタが実装された電子・電気機器Dust core, method for manufacturing the dust core, inductor including the dust core, and electronic / electric device mounted with the inductor
 本発明は、圧粉コア、当該圧粉コアの製造方法、該圧粉コアを備えるインダクタ、および当該インダクタが実装された電子・電気機器に関する。本明細書において、「インダクタ」とは、圧粉コアを含む芯材およびコイルを備える受動素子を意味する。 The present invention relates to a dust core, a method for producing the dust core, an inductor including the dust core, and an electronic / electrical device on which the inductor is mounted. In this specification, the “inductor” means a passive element including a core material including a dust core and a coil.
 スマートフォン、タブレット端末、ノートパソコンなどの電子機器では、小型化、軽量化、高性能化への要求が高まっている。こうした要求に応えるために、電子機器内のスイッチング電源回路は高い周波数に対応できることが必要となる。それゆえ、スイッチング電源回路に組み込まれるインダクタも、高周波で安定的に駆動できることが求められている。 In electronic devices such as smartphones, tablet terminals, and notebook computers, there are increasing demands for miniaturization, weight reduction, and high performance. In order to meet such demands, the switching power supply circuit in the electronic device needs to be able to cope with a high frequency. Therefore, the inductor incorporated in the switching power supply circuit is also required to be stably driven at a high frequency.
 高い駆動周波数に対応できる磁性素子の構成材料を提供することを目的として、特許文献1には、平均第1粒径を有する第1粒子と、平均第2粒径を有する第2粒子とを含み、前記平均第1粒径と前記平均第2粒径との比が1/8~1/3であり、前記第1粒子と前記第2粒子との混合比が、体積比で10/90~25/75である、金属磁性材料粉末が記載されている。 For the purpose of providing a constituent material of a magnetic element that can cope with a high driving frequency, Patent Document 1 includes first particles having an average first particle size and second particles having an average second particle size. The ratio of the average first particle diameter to the average second particle diameter is 1/8 to 1/3, and the mixing ratio of the first particles to the second particles is 10/90 to volume ratio. A metal magnetic material powder is described which is 25/75.
特開2011-192729号公報JP2011-192729A
 近年、スイッチング電源回路、特にDC-DCコンバータには小型化への要求が特に高まっており、この要求に応えた結果として、内部に組み込まれるインダクタには、小形でありながら大きな直流電流が流れるようになってきている。このため、インダクタを構成する磁性材料が置かれる磁気的環境は、この直流電流に起因する誘導磁界がバイアスとして印加された状態で、高周波でのスイッチングに基づく電流変動(リップル電流)に起因する変動磁場がさらに印加される環境となる。したがって、インダクタを構成する磁性材料は、このような磁気的には過酷な環境で、適切な磁気特性(例えば高い比透磁率)を有することが求められてきている。 In recent years, switching power supply circuits, particularly DC-DC converters, have been particularly demanded for miniaturization. As a result of satisfying this requirement, a large direct current flows through an inductor incorporated therein, although it is small. It is becoming. For this reason, the magnetic environment in which the magnetic material constituting the inductor is placed is a fluctuation caused by a current fluctuation (ripple current) based on switching at a high frequency in a state where an induced magnetic field due to the direct current is applied as a bias. It becomes an environment where a magnetic field is further applied. Therefore, the magnetic material constituting the inductor has been required to have appropriate magnetic characteristics (for example, high relative permeability) in such a magnetically harsh environment.
 また、電子機器には薄型化の要請も強いため、機器内の基板上の部品には低背化も強く求められている。インダクタ、特にコイル埋め込み型のインダクタでは低背化が進むと、コイルの周囲に位置する磁性材料の絶対的な量が少なくなるため、インダクタの絶縁特性を維持することおよびコアの機械特性を維持することが困難となってくる。 Also, since there is a strong demand for thinning electronic devices, there is a strong demand for lowering the height of components on the board in the device. Inductors, especially coil-embedded inductors, when the profile is reduced, the absolute amount of magnetic material located around the coil decreases, so that the insulation characteristics of the inductor and the mechanical characteristics of the core are maintained. It becomes difficult.
 本発明は、かかる現状を鑑み、小型で低背のコイル内蔵インダクタの構成部材として好適な圧粉コアおよびかかる圧粉コアを備えるインダクタ材料として用いることが可能な圧粉コア、当該圧粉コアの製造方法、該圧粉コアを備えるインダクタ、および該インダクタが実装された電子・電気機器を提供することを目的とする。 In view of the present situation, the present invention provides a dust core suitable as a constituent member of a small and low-profile built-in coil inductor, a dust core that can be used as an inductor material provided with such a dust core, It is an object of the present invention to provide a manufacturing method, an inductor including the dust core, and an electronic / electrical device on which the inductor is mounted.
 上記課題を解決するために提供される本発明は、一態様において、結晶質磁性材料の粉末および非晶質磁性材料の粉末を含有する圧粉コアであって、前記結晶質磁性材料の粉末の含有量と前記非晶質磁性材料の粉末の含有量との総和に対する前記結晶質磁性材料の粉末の含有量の質量比率である第一混合比率は、30質量%以上70質量%以下であり、前記結晶質磁性材料は、Fe-Si-Cr系合金からなり、メジアン径D50Cが2.5μm以上6μm以下であることを特徴とする圧粉コアである。 In one aspect, the present invention provided to solve the above-described problems is a powder core containing a powder of a crystalline magnetic material and a powder of an amorphous magnetic material, wherein the powder of the crystalline magnetic material The first mixing ratio, which is the mass ratio of the content of the crystalline magnetic material powder to the sum of the content and the content of the amorphous magnetic material powder, is 30% by mass or more and 70% by mass or less, The crystalline magnetic material is a dust core made of an Fe—Si—Cr alloy and having a median diameter D 50 C of 2.5 μm to 6 μm.
 上記のように、インダクタに流れる電流は、直流が重畳された状態で電流値が変動する。このため、圧粉コアを構成する磁性材料は、外部磁場がある程度高い状態においても高い透磁率を有していることが求められる。この高磁場中での透磁率は、初透磁率とは異質なパラメータであって、また飽和磁束密度と強い相間を有しているともいえない。このような高磁場中の透磁率を評価するパラメータの一例として、外部磁場が5500A/mの場合の比透磁率であるμ5500を挙げることができる。このμ5500が高ければ高いほど、高磁場中でも優れた磁気特性を有する磁性材料であるといえる。また、インダクタが小型かつ低背になると、内蔵コイルの周囲に位置するコアの体積は少なくなる。この場合に懸念される不具合として、コアの絶縁破壊およびコアの破損(割れ、欠け)が挙げられる。したがって、コアの絶縁耐圧(単位:V/mm)および圧環強度(単位:MPa)は高いことが好ましい。それゆえ、μ5500×絶縁耐圧×圧環強度が高い圧粉コアを用いることにより、小形かつ低背であっても強磁場中で優れた磁気特性を有するインダクタを得ることができる。 As described above, the current value of the current flowing through the inductor fluctuates with the direct current superimposed. For this reason, the magnetic material constituting the dust core is required to have a high magnetic permeability even when the external magnetic field is high to some extent. This permeability in a high magnetic field is a parameter different from the initial permeability, and it cannot be said that it has a strong correlation with the saturation magnetic flux density. One example of a parameter for evaluating the magnetic permeability in such a high magnetic field is μ5500, which is a relative magnetic permeability when the external magnetic field is 5500 A / m. It can be said that the higher this μ5500 is, the magnetic material has excellent magnetic properties even in a high magnetic field. Further, when the inductor is small and low in profile, the volume of the core located around the built-in coil is reduced. In this case, problems that are a concern include core dielectric breakdown and core damage (cracking, chipping). Therefore, the dielectric strength voltage (unit: V / mm) and the crushing strength (unit: MPa) of the core are preferably high. Therefore, an inductor having excellent magnetic properties in a strong magnetic field can be obtained even if it is small and has a low profile by using a dust core with μ5500 × insulation breakdown voltage × crush ring strength.
 そこで、μ5500×絶縁耐圧×圧環強度が高い圧粉コアを与える条件について検討した結果、圧粉コアに含まれる磁性材料の粉末(磁性粉末)が次の事項を満たすことにより、小型かつ低背な形状を有していてもコアの絶縁破壊や破損の問題が生じにくく、係るコアを用いてなるインダクタは高磁場中で使用されても適切な磁気特性を有することができるとの知見を得た。
(事項1)磁性粉末を結晶質磁性材料の粉末と非晶質磁性材料の粉末との混合体とする。(事項2)第一混合比率を30質量%以上70質量%以下とする。
(事項3)結晶質磁性材料は、Fe-Si-Cr系合金からなり、メジアン径D50Cが2.5μm以上6μm以下であるものとする。
Therefore, as a result of examining the conditions for providing a dust core having a high μ5500 × insulation pressure resistance × crushing ring strength, the magnetic material powder (magnetic powder) contained in the dust core satisfies the following conditions, thereby achieving a small and low profile. Even if it has a shape, it has been found that the problem of dielectric breakdown or breakage of the core hardly occurs, and that an inductor using such a core can have appropriate magnetic characteristics even when used in a high magnetic field. .
(Item 1) Magnetic powder is a mixture of crystalline magnetic material powder and amorphous magnetic material powder. (Item 2) The first mixing ratio is 30% by mass or more and 70% by mass or less.
(Item 3) The crystalline magnetic material is made of an Fe—Si—Cr alloy, and the median diameter D 50 C is 2.5 μm or more and 6 μm or less.
 これらの事項を満たすことにより、μ5500×絶縁耐圧×圧環強度が特異的に高い圧粉コアを得ることができる。 By satisfying these matters, it is possible to obtain a powder core having a specifically high μ5500 × insulation breakdown voltage × crushing ring strength.
 上記の圧粉コアにおいて、前記非晶質磁性材料の粉末のメジアン径D50Aは、5μm以上8μm以下であることが好ましい。事項2を満たす場合には、メジアン径D50Aが5μm以上であることによりμ5500×絶縁耐圧×圧環強度を特異的に高めることができる。この観点から、メジアン径D50Aは5.5μm以上であることがより好ましい。一方、メジアン径D50Aが過度に大きい場合にはμ5500×絶縁耐圧×圧環強度が低下したり、鉄損、特に高周波における鉄損が高まったりしやすい。したがって、メジアン径D50Aは、8μm以下であることが好ましく、7μm以下であることがより好ましい。 In the above powder core, the median diameter D 50 A of the powder of the amorphous magnetic material is preferably 5 μm or more and 8 μm or less. When the matter 2 is satisfied, the median diameter D 50 A is 5 μm or more, so that the μ5500 × the dielectric strength × the crushing strength can be specifically increased. In this respect, the median diameter D 50 A is more preferably 5.5 μm or more. On the other hand, when the median diameter D 50 A is excessively large, μ5500 × insulation breakdown voltage × compressive ring strength tends to decrease, and iron loss, particularly iron loss at high frequencies, tends to increase. Therefore, the median diameter D 50 A is preferably 8 μm or less, and more preferably 7 μm or less.
 上記の圧粉コアにおいて、前記非晶質磁性材料の粉末のメジアン径D50Aと前記結晶質磁性材料の粉末のメジアン径D50Cとは下記式(1)を満たすことが好ましい。2種類の粉末の粒径が下記式(1)の関係を満たすことにより、μ5500×絶縁耐圧×圧環強度を高めることがより安定的に実現される。
  1≦D50A/D50C≦3.5    (1)
In the above powder core, the median diameter D 50 A of the amorphous magnetic material powder and the median diameter D 50 C of the crystalline magnetic material powder preferably satisfy the following formula (1). When the particle diameters of the two types of powders satisfy the relationship of the following formula (1), it is possible to more stably realize μ5500 × insulation breakdown voltage × compression ring strength.
1 ≦ D 50 A / D 50 C ≦ 3.5 (1)
 上記の圧粉コアにおいて、前記第一混合比率が40質量%以上60質量%以下であることにより、μ5500×絶縁耐圧×圧環強度を特に高めることできる。 In the above dust core, when the first mixing ratio is 40% by mass or more and 60% by mass or less, μ5500 × insulation breakdown voltage × compression ring strength can be particularly increased.
 上記の圧粉コアにおいて、前記非晶質磁性材料は、Fe-Si-B系合金、Fe-P-C系合金およびCo-Fe-Si-B系合金からなる群から選ばれた1種または2種以上の材料を含んでいてもよく、前記非晶質磁性材料はFe-P-C系合金からなることが好ましい場合がある。 In the above powder core, the amorphous magnetic material is one selected from the group consisting of an Fe—Si—B alloy, an Fe—PC alloy, and a Co—Fe—Si—B alloy, or Two or more kinds of materials may be included, and the amorphous magnetic material may be preferably made of a Fe—PC alloy.
 上記の圧粉コアにおいて、前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末を、前記圧粉コアに含有される他の材料に対して結着させる結着成分を含有することにより、圧粉コアの絶縁耐圧を高めたり圧環強度を高めたりすることが容易になる場合がある。この場合において、前記結着成分は、樹脂材料に基づく成分を含んでいてもよい。 In the above-mentioned dust core, by containing a binding component that binds the powder of the crystalline magnetic material and the powder of the amorphous magnetic material to another material contained in the dust core In some cases, it is easy to increase the dielectric strength of the dust core or increase the crushing strength. In this case, the binding component may include a component based on a resin material.
 本発明は、他の一態様において、上記の樹脂材料に基づく成分を含む結着成分を含有する圧粉コアの製造方法を提供する。かかる製造方法は、前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末ならびに前記樹脂材料からなるバインダー成分を含む混合物の加圧成形を含む成形処理により成形製造物を得る成形工程を備える。この際の成形処理は常温程度の温度環境にて0.5GPa程度から2GPa程度で加圧する圧縮成形であることが生産性を高める観点などから好ましい。 In another aspect, the present invention provides a method for producing a powder core containing a binder component including a component based on the resin material. The manufacturing method includes a molding step of obtaining a molded product by a molding process including pressure molding of a mixture including a binder component composed of the crystalline magnetic material powder and the amorphous magnetic material powder and the resin material. . The molding process at this time is preferably compression molding in which pressure is applied at about 0.5 GPa to about 2 GPa in a temperature environment of about room temperature from the viewpoint of increasing productivity.
 本発明は、別の一態様において、上記の圧粉コア、コイルおよび前記コイルのそれぞれの端部に接続された接続端子を備えるインダクタであって、前記圧粉コアの少なくとも一部は、前記接続端子を介して前記コイルに電流を流したときに前記電流により生じた誘導磁界内に位置するように配置されているインダクタを提供する。かかるインダクタは、圧粉コアの優れた特性に基づき、小型かつ低背であってもコアが絶縁破壊や破損しにくく、しかも直流重畳特性に優れる。 In another aspect, the present invention is an inductor including the powder core, the coil, and a connection terminal connected to each end of the coil, wherein at least a part of the powder core is the connection Provided is an inductor disposed so as to be located in an induced magnetic field generated by the current when a current is passed through the coil through a terminal. Such an inductor is based on the excellent characteristics of the dust core, and the core is less likely to break down or break even if it is small and low in profile, and has excellent direct current superposition characteristics.
 本発明は、また別の一態様において、上記のインダクタが実装された電子・電気機器であって、前記インダクタは前記接続端子にて基板に接続されている電子・電気機器を提供する。かかる電子・電気機器におけるインダクタが組み込まれた回路は特に限定されないが、DC-DCコンバータなどのスイッチング電源回路に用いられた場合には、直流重畳特性に優れる上記のインダクタの利点を活かしやすい。また、電子・電気機器がスマートフォンなどの携帯型の機器である場合には、小型かつ低背に対応しやすい上記のインダクタの利点を活かしやすい。 In another aspect, the present invention provides an electronic / electrical device in which the inductor is mounted, wherein the inductor is connected to a substrate at the connection terminal. A circuit in which an inductor is incorporated in such an electronic / electric device is not particularly limited, but when used in a switching power supply circuit such as a DC-DC converter, it is easy to take advantage of the above-described inductor having excellent direct current superposition characteristics. In addition, when the electronic / electrical device is a portable device such as a smartphone, it is easy to utilize the advantages of the above-described inductor that is small and easily adaptable to a low profile.
 上記の発明に係る圧粉コアは、結晶質磁性材料の粉末の組成および粒径分布、ならびに結晶質磁性材料の粉末と非晶質磁性材料の粉末との混合割合(第一混合比率)が適切に調整されているため、かかる圧粉コアを備えるインダクタについて、小形かつ低背であっても直流重畳特性を向上させることが可能である。また、本発明によれば、上記の圧粉コアの製造方法、当該圧粉コアを備えるインダクタ、および当該インダクタが実装された電子・電気機器が提供される。 In the dust core according to the invention, the composition and particle size distribution of the crystalline magnetic material powder and the mixing ratio (first mixing ratio) of the crystalline magnetic material powder and the amorphous magnetic material powder are appropriate. Therefore, it is possible to improve the DC superposition characteristics of an inductor having such a dust core even if it is small and low in profile. Moreover, according to this invention, the manufacturing method of said powder core, the inductor provided with the said powder core, and the electronic / electrical device by which the said inductor was mounted are provided.
本発明の一実施形態に係る圧粉コアの形状を概念的に示す斜視図である。It is a perspective view which shows notionally the shape of the powder core which concerns on one Embodiment of this invention. 造粒粉を製造する方法の一例において使用されるスプレードライヤー装置およびその動作を概念的に示す図である。It is a figure which shows notionally the spray dryer apparatus used in an example of the method of manufacturing granulated powder, and its operation | movement. 本発明の一実施形態に係る圧粉コアを備えるインダクタの一種であるトロイダルコイルの形状を概念的に示す斜視図である。It is a perspective view which shows notionally the shape of the toroidal coil which is 1 type of an inductor provided with the dust core which concerns on one Embodiment of this invention. 本発明の一実施形態に係る圧粉コアを備えるインダクタの一種であるコイル埋設型インダクタの形状を概念的に示す斜視図である。It is a perspective view which shows notionally the shape of the coil embedding type | mold inductor which is a kind of inductor provided with the powder core which concerns on one Embodiment of this invention. 実施例1および実施例2におけるμ5500×絶縁耐圧×圧環強度(相対値)と第一混合比率との関係を示すグラフである。It is a graph which shows the relationship between (micro | micron | mu) 5500 x dielectric strength voltage x pressure ring strength (relative value) and the 1st mixing ratio in Example 1 and Example 2. FIG. 実施例3の結果を示すグラフであって、鉄損Pcvと非晶質磁性材料の粉末のメジアン径D50Aとの関係を示すグラフである。A graph showing the results of Example 3 is a graph showing the relationship between a median diameter D 50 A powder of core loss Pcv and amorphous magnetic material. 実施例4の結果を示すグラフであって、鉄損Pcvと結晶質磁性材料の粉末のメジアン径D50Cとの関係を示すグラフである。A graph showing the results of Example 4 is a graph showing the relationship between the core loss Pcv and the median diameter D 50 C of the powder of crystalline magnetic material. 実施例3の結果を示すグラフであって、μ5500×絶縁耐圧×圧環強度(相対値)と非晶質磁性材料の粉末のメジアン径D50Aとの関係を示すグラフである。A graph showing the results of Example 3 is a graph showing the relationship between a median diameter D 50 A powder of amorphous magnetic material as Myu5500 × withstand voltage × radial crushing strength (relative value). 実施例4の結果を示すグラフであって、μ5500×絶縁耐圧×圧環強度(相対値)と結晶質磁性材料の粉末のメジアン径D50Cとの関係を示すグラフである。A graph showing the results of Example 4 is a graph showing the relationship between Myu5500 × withstand voltage × radial crushing strength (relative value) and the median diameter D 50 C of the powder of crystalline magnetic material. 実施例5の結果を示すグラフであって、μ5500×絶縁耐圧×圧環強度(相対値)と非晶質磁性材料の粉末のメジアン径D50Aとの関係を示すグラフである。A graph showing the results of Example 5 is a graph showing the relationship between a median diameter D 50 A powder of amorphous magnetic material as Myu5500 × withstand voltage × radial crushing strength (relative value). 実施例6の結果を示すグラフであって、μ5500×絶縁耐圧×圧環強度(相対値)と結晶質磁性材料の粉末のメジアン径D50Cとの関係を示すグラフである。A graph showing the results of Example 6 is a graph showing the relationship between Myu5500 × withstand voltage × radial crushing strength (relative value) and the median diameter D 50 C of the powder of crystalline magnetic material. 実施例5および実施例6の結果を、実施例5-2(すなわち実施例6-2)の結果により規格化するとともに、非晶質磁性材料のメジアン径D50Aの結晶質磁性材料の粉末のメジアン径D50Cに対する比(D50A/D50C)を横軸をとして表したグラフである。The results of Example 5 and Example 6 were normalized by the result of Example 5-2 (ie, Example 6-2), and the powder of the crystalline magnetic material having a median diameter D 50 A of the amorphous magnetic material was used. the ratio of the median diameter D 50 C (D 50 a / D 50 C) is a graph showing as a horizontal axis.
 以下、本発明の実施形態について詳しく説明する。
1.圧粉コア
 図1に示す本発明の一実施形態に係る圧粉コア1は、その外観がリング状のトロイダルコアであって、結晶質磁性材料の粉末および非晶質磁性材料の粉末を含有する。本実施形態に係る圧粉コア1は、これらの粉末を含む混合物を加圧成形することを含む成形処理を備える製造方法により製造されたものである。限定されない一例として、本実施形態に係る圧粉コア1は、結晶質磁性材料の粉末および非晶質磁性材料の粉末を、圧粉コア1に含有される他の材料(同種の材料である場合もあれば、異種の材料である場合もある。)に対して結着させる結着成分を含有する。
Hereinafter, embodiments of the present invention will be described in detail.
1. A dust core 1 according to one embodiment of the present invention shown in FIG. 1 is a ring-shaped toroidal core, and contains a powder of a crystalline magnetic material and a powder of an amorphous magnetic material. . The powder core 1 according to the present embodiment is manufactured by a manufacturing method including a forming process including pressure forming a mixture containing these powders. As a non-limiting example, the dust core 1 according to the present embodiment includes a crystalline magnetic material powder and an amorphous magnetic material powder as other materials (same type of material) contained in the dust core 1. Or it may be a dissimilar material).
(1)結晶質磁性材料の粉末
 本発明の一実施形態に係る圧粉コア1が含有する結晶質磁性材料の粉末を与える結晶質磁性材料は、結晶質(一般的なX線回折測定により、材料種類を特定できる程度に明確なピークを有する回折スペクトルが得られること)であって強磁性である、Fe-Si-Cr系合金からなる。Fe-Si-Cr系合金は、結晶質磁性材料の中では比較的飽和磁束密度が高く軟磁気特性が良好であり、比抵抗も高い材料である。したがって、他の結晶質磁性材料、例えばカルボニル鉄粉などに比べると、高磁場および高周波の条件下でも損失が低く、良好な磁気特性を示しやすい。それゆえ、圧粉コア1に含有される結晶質磁性材料の粉末をFe-Si-Cr系合金からなるものとすることにより、圧粉コア1における結晶質磁性材料の粉末の含有量と非晶質磁性材料の粉末の含有量との総和に対する結晶質磁性材料の粉末の含有量の質量比率(本明細書において「第一混合比率」ともいう。)を高めても、高磁場環境での比透磁率、具体的には、μ5500が低下しにくい。Fe-Si-Cr系合金におけるSiの含有量およびCrの含有量は限定されない。限定されない例示として、Siの含有量を2~7質量%程度とし、Crの含有量を2~7質量%程度とし、残部はFeおよび不可避不純物とすることが挙げられる。
(1) Powder of crystalline magnetic material The crystalline magnetic material that gives the powder of crystalline magnetic material contained in the dust core 1 according to one embodiment of the present invention is crystalline (by general X-ray diffraction measurement, It is made of a Fe—Si—Cr alloy that is ferromagnetic and capable of obtaining a diffraction spectrum having a distinct peak to the extent that the material type can be specified. The Fe—Si—Cr alloy is a material having a relatively high saturation magnetic flux density, a good soft magnetic property, and a high specific resistance among crystalline magnetic materials. Therefore, compared with other crystalline magnetic materials such as carbonyl iron powder, the loss is low even under high magnetic field and high frequency conditions, and good magnetic properties are easily exhibited. Therefore, by making the powder of the crystalline magnetic material contained in the dust core 1 from an Fe—Si—Cr alloy, the content of the powder of the crystalline magnetic material in the dust core 1 and the amorphous Even if the mass ratio of the powder content of the crystalline magnetic material to the total content of the powder of the magnetic material (also referred to as “first mixing ratio” in this specification) is increased, the ratio in a high magnetic field environment is increased. Magnetic permeability, specifically, μ5500 is unlikely to decrease. The Si content and the Cr content in the Fe—Si—Cr alloy are not limited. As a non-limiting example, the Si content is about 2 to 7% by mass, the Cr content is about 2 to 7% by mass, and the balance is Fe and inevitable impurities.
 本発明の一実施形態に係る圧粉コア1が含有する結晶質磁性材料の粉末の形状は限定されない。粉末の形状は球状であってもよいし非球状であってもよい。非球状である場合には、鱗片状、楕円球状、液滴状、針状といった形状異方性を有する形状であってもよい。 The shape of the powder of the crystalline magnetic material contained in the dust core 1 according to one embodiment of the present invention is not limited. The shape of the powder may be spherical or non-spherical. When it is non-spherical, it may have a shape having shape anisotropy such as a scale shape, an oval shape, a droplet shape, or a needle shape.
 粉末の形状は、粉末を製造する段階で得られた形状であってもよいし、製造された粉末を二次加工することにより得られた形状であってもよい。前者の形状としては、球状、楕円球状、液滴状、針状などが例示され、後者の形状としては、鱗片状が例示される。 The shape of the powder may be a shape obtained at the stage of producing the powder, or a shape obtained by secondary processing of the produced powder. Examples of the former shape include a spherical shape, an oval shape, a droplet shape, and a needle shape, and examples of the latter shape include a scale shape.
 本発明の一実施形態に係る圧粉コア1が含有する結晶質磁性材料の粉末の粒径は、体積基準の粒度分布において小粒径側からの積算粒径分布が50%となる粒径(本明細書において「結晶質粉末メジアン径」ともいう。)D50Cが2.5μm以上6μm以下である。結晶質粉末メジアン径D50Cが上記範囲にあることにより、第一混合比率が30質量%以上70質量%以下のときに、μ5500×絶縁耐圧×圧環強度を特異的に高くすることができる。高周波、特に1MHz以上での鉄損Pcvの影響もさらに考慮すれば、結晶質粉末メジアン径D50Cは2.5μm以上5.5μm以下であることが好ましい場合がある。 The particle size of the powder of the crystalline magnetic material contained in the powder core 1 according to the embodiment of the present invention is such that the cumulative particle size distribution from the small particle size side is 50% in the volume-based particle size distribution ( In this specification, it is also referred to as “crystalline powder median diameter.”) D 50 C is 2.5 μm or more and 6 μm or less. When the crystalline powder median diameter D 50 C is within the above range, when the first mixing ratio is 30% by mass or more and 70% by mass or less, μ5500 × insulation breakdown voltage × compression ring strength can be specifically increased. If the influence of the iron loss Pcv at high frequency, particularly 1 MHz or more is further taken into consideration, the crystalline powder median diameter D 50 C may be preferably 2.5 μm or more and 5.5 μm or less.
 結晶質磁性材料の粉末の少なくとも一部には表面絶縁処理が施されていてもよい。結晶質磁性材料の粉末に表面絶縁処理が施されている場合には、圧粉コア1の絶縁抵抗が向上する傾向がみられる。結晶質磁性材料の粉末に施す表面絶縁処理の種類は限定されない。リン酸処理、リン酸塩処理、酸化処理などが例示される。 Surface insulation treatment may be applied to at least a part of the powder of the crystalline magnetic material. When the surface insulation treatment is performed on the powder of the crystalline magnetic material, the insulation resistance of the dust core 1 tends to be improved. The type of surface insulation treatment applied to the crystalline magnetic material powder is not limited. Examples include phosphoric acid treatment, phosphate treatment, and oxidation treatment.
(2)非晶質磁性材料の粉末
 本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末を与える非晶質磁性材料は、非晶質であること(一般的なX線回折測定により、材料種類を特定できる程度に明確なピークを有する回折スペクトルが得られないこと)、および強磁性体、特に軟磁性体であることを満たす限り、具体的な種類は限定されない。非晶質磁性材料の具体例として、Fe-Si-B系合金、Fe-P-C系合金およびCo-Fe-Si-B系合金が挙げられる。上記の非晶質磁性材料は1種類の材料から構成されていてもよいし複数種類の材料から構成されていてもよい。非晶質磁性材料の粉末を構成する磁性材料は、上記の材料からなる群から選ばれた1種または2種以上の材料であることが好ましく、これらの中でも、Fe-P-C系合金を含有することが好ましく、Fe-P-C系合金からなることがより好ましい。
(2) Amorphous Magnetic Material Powder The amorphous magnetic material that provides the amorphous magnetic material powder contained in the dust core 1 according to an embodiment of the present invention is amorphous (generally As long as the X-ray diffraction measurement does not provide a diffraction spectrum with a clear peak that can identify the material type), and the material is a ferromagnetic material, particularly a soft magnetic material, the specific types are limited. Not. Specific examples of the amorphous magnetic material include Fe—Si—B alloys, Fe—PC alloys, and Co—Fe—Si—B alloys. Said amorphous magnetic material may be comprised from one type of material, and may be comprised from multiple types of material. The magnetic material constituting the powder of the amorphous magnetic material is preferably one or two or more materials selected from the group consisting of the above materials, and among these, an Fe—PC alloy is used. It is preferably contained, and more preferably made of an Fe—PC alloy.
 Fe-P-C系合金の具体例として、組成式が、Fe100原子%-a-b-c-x-y-z-tNiSnCrSiで示され、0原子%≦a≦10原子%、0原子%≦b≦3原子%、0原子%≦c≦6原子%、6.8原子%≦x≦13原子%、2.2原子%≦y≦13原子%、0原子%≦z≦9原子%、0原子%≦t≦7原子%であるFe基非晶質合金が挙げられる。上記の組成式において、Ni,Sn,Cr,BおよびSiは任意添加元素である。 Specific examples of the Fe-P-C-based alloy, composition formula, shown in Fe 100 atomic% -a-b-c-x -y-z-t Ni a Sn b Cr c P x C y B z Si t 0 atom% ≦ a ≦ 10 atom%, 0 atom% ≦ b ≦ 3 atom%, 0 atom% ≦ c ≦ 6 atom%, 6.8 atom% ≦ x ≦ 13 atom%, 2.2 atom% ≦ Examples include Fe-based amorphous alloys in which y ≦ 13 atomic%, 0 atomic% ≦ z ≦ 9 atomic%, and 0 atomic% ≦ t ≦ 7 atomic%. In the above composition formula, Ni, Sn, Cr, B, and Si are optional added elements.
 Niの添加量aは、0原子%以上6原子%以下とすることが好ましく、0原子%以上4原子%以下とすることがより好ましい。Snの添加量bは、0原子%以上2原子%以下とすることが好ましく、1原子%以上2原子%以下の範囲で添加されていても良い。Crの添加量cは、0原子%以上2原子%以下とすることが好ましく、1原子%以上2原子%以下とすることがより好ましい。Pの添加量xは、8.8原子%以上とすることが好ましい場合もある。Cの添加量yは、5.8原子%以上8.8原子%以下とすることが好ましい場合もある。Bの添加量zは、0原子%以上3原子%以下とすることが好ましく、0原子%以上2原子%以下とすることがより好ましい。Siの添加量tは、0原子%以上6原子%以下とすることが好ましく、0原子%以上2原子%以下とすることがより好ましい。 The addition amount a of Ni is preferably 0 atom% or more and 6 atom% or less, and more preferably 0 atom% or more and 4 atom% or less. The addition amount b of Sn is preferably 0 atom% or more and 2 atom% or less, and may be added in the range of 1 atom% or more and 2 atom% or less. The addition amount c of Cr is preferably 0 atom% or more and 2 atom% or less, and more preferably 1 atom% or more and 2 atom% or less. In some cases, the addition amount x of P is preferably 8.8 atomic% or more. The addition amount y of C may be preferably 5.8 atomic% or more and 8.8 atomic% or less. The addition amount z of B is preferably 0 atom% or more and 3 atom% or less, and more preferably 0 atom% or more and 2 atom% or less. The addition amount t of Si is preferably 0 atom% or more and 6 atom% or less, and more preferably 0 atom% or more and 2 atom% or less.
 本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末の形状は限定されない。粉末の形状の種類については結晶質磁性材料の粉末の場合と同様であるから説明を省略する。製造方法の関係で非晶質磁性材料は球状または楕円球状とすることが容易である場合もある。また、一般論として非晶質磁性材料は結晶質磁性材料よりも硬質であるから、結晶質磁性材料を非球状として加圧成形の際に変形しやすいようにすることが好ましい場合もある。 The shape of the powder of the amorphous magnetic material contained in the dust core 1 according to one embodiment of the present invention is not limited. Since the kind of the powder shape is the same as that of the crystalline magnetic material powder, the description thereof is omitted. In some cases, the amorphous magnetic material can be easily formed into a spherical shape or an elliptical spherical shape because of the manufacturing method. In general, since an amorphous magnetic material is harder than a crystalline magnetic material, it may be preferable to make the crystalline magnetic material non-spherical so that it is easily deformed during pressure molding.
 本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末の形状は、粉末を製造する段階で得られた形状であってもよいし、製造された粉末を二次加工することにより得られた形状であってもよい。前者の形状としては、球状、楕円球状、針状などが例示され、後者の形状としては、鱗片状が例示される。 The shape of the powder of the amorphous magnetic material contained in the dust core 1 according to the embodiment of the present invention may be the shape obtained in the stage of producing the powder, or the produced powder is secondary The shape obtained by processing may be sufficient. Examples of the former shape include a sphere, an oval sphere, and a needle shape, and examples of the latter shape include a scale shape.
 本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末の粒径は、体積基準の粒度分布において小粒径側からの積算粒径分布が50%となる粒径(本明細書において「非晶質粉末メジアン径」ともいう。)D50Aが、5μm以上8μm以下であることが好ましい。第一混合比率が30質量%以上70質量%以下のときに非晶質粉末メジアン径D50Aが5μm以上であることにより、μ5500×絶縁耐圧×圧環強度を特異的に高めることができる。この観点から、非晶質粉末メジアン径D50Aは5.5μm以上であることがより好ましい。一方、非晶質粉末メジアン径D50Aが過度に大きい場合にはμ5500×絶縁耐圧×圧環強度が低下したり、鉄損Pcv、特に高周波における鉄損Pcvが高まったりする傾向を有することもある。したがって、非晶質粉末メジアン径D50Aは、8μm以下であることが好ましく、7μm以下であることがより好ましい。 The particle size of the powder of the amorphous magnetic material contained in the dust core 1 according to one embodiment of the present invention is such that the cumulative particle size distribution from the small particle size side is 50% in the volume-based particle size distribution. (In the present specification, it is also referred to as “amorphous powder median diameter”.) D 50 A is preferably 5 μm or more and 8 μm or less. When the first mixing ratio is not less than 30% by mass and not more than 70% by mass, the amorphous powder median diameter D 50 A is 5 μm or more, so that μ5500 × insulation breakdown voltage × compression ring strength can be specifically increased. In this respect, the amorphous powder median diameter D 50 A is more preferably 5.5 μm or more. On the other hand, when the amorphous powder median diameter D 50 A is excessively large, there is a tendency that μ5500 × insulation breakdown voltage × compressive ring strength decreases or iron loss Pcv, particularly iron loss Pcv at high frequency increases. . Therefore, the amorphous powder median diameter D 50 A is preferably 8 μm or less, and more preferably 7 μm or less.
 また、本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末の粒径は、圧粉コア1が含有する非晶質磁性材料の粉末の粒径との次の関係を有してもよい。すなわち、非晶質粉末メジアン径D50Aと結晶質粉末メジアン径D50Cとは、下記式(1)を満たしてもよい。
  1≦D50A/D50C≦3.5    (1)
Moreover, the particle size of the powder of the amorphous magnetic material contained in the dust core 1 according to one embodiment of the present invention is the next to the particle size of the powder of the amorphous magnetic material contained in the dust core 1. You may have a relationship. That is, the amorphous powder median diameter D 50 A and the crystalline powder median diameter D 50 C may satisfy the following formula (1).
1 ≦ D 50 A / D 50 C ≦ 3.5 (1)
 D50A/D50Cが1から3.5の範囲内にあることにより、圧粉コア1についてμ5500×絶縁耐圧×圧環強度を特異的に高めることが容易となる。μ5500×絶縁耐圧×圧環強度を特異的に高めることをより安定的に実現させる観点から、D50A/D50Cは、1.2から2.5の範囲にあることが好ましい場合があり、1.3から2.0の範囲にあることが好ましい場合がある。 When D 50 A / D 50 C is in the range of 1 to 3.5, it is easy to specifically increase μ5500 × insulation breakdown voltage × compression ring strength of the dust core 1. From the viewpoint of more stably realizing μ5500 × dielectric withstand voltage × compressive ring strength, D 50 A / D 50 C may be preferably in the range of 1.2 to 2.5, It may be preferable to be in the range of 1.3 to 2.0.
 圧粉コア1についてμ5500×絶縁耐圧×圧環強度が特異的に高くなることをより安定的に実現させる観点から、第一混合比率は、40質量%以上60質量%以下であることが好ましく、40質量%以上55質量%以下であることがより好ましい。 From the viewpoint of more stably realizing μ5500 × insulation withstand pressure × crushing ring strength with respect to the dust core 1, the first mixing ratio is preferably 40% by mass or more and 60% by mass or less, More preferably, it is at least 55% by mass.
(3)結着成分
 圧粉コア1は、結晶質磁性材料の粉末および非晶質磁性材料の粉末を圧粉コア1に含有される他の材料に対して結着させる結着成分を含有していてもよい。結着成分は、本実施形態に係る圧粉コア1に含有される結晶質磁性材料の粉末および非晶質磁性材料の粉末(本明細書において、これらの粉末を「磁性粉末」と総称することもある。)を固定することに寄与する材料である限り、その組成は限定されない。結着成分を構成する材料として、樹脂材料および樹脂材料の熱分解残渣(本明細書において、これらを「樹脂材料に基づく成分」と総称する。)などの有機系の材料、無機系の材料などが例示される。樹脂材料として、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂などが例示される。無機系の材料からなる結着成分は水ガラスなどガラス系材料が例示される。結着成分は一種類の材料から構成されていてもよいし、複数の材料から構成されていてもよい。結着成分は有機系の材料と無機系の材料との混合体であってもよい。
(3) Binder Component The powder core 1 includes a binder component that binds the powder of the crystalline magnetic material and the powder of the amorphous magnetic material to the other materials contained in the powder core 1. It may be. The binder component is a powder of crystalline magnetic material and powder of amorphous magnetic material contained in the dust core 1 according to the present embodiment (in this specification, these powders are collectively referred to as “magnetic powder”). The composition is not limited as long as the material contributes to fixing. As a material constituting the binder component, an organic material such as a resin material and a thermal decomposition residue of the resin material (in this specification, these are collectively referred to as “components based on a resin material”), an inorganic material, and the like Is exemplified. Examples of the resin material include acrylic resin, silicone resin, epoxy resin, phenol resin, urea resin, and melamine resin. The binder component made of an inorganic material is exemplified by a glass-based material such as water glass. The binder component may be composed of one type of material or may be composed of a plurality of materials. The binder component may be a mixture of an organic material and an inorganic material.
 結着成分として、通常、絶縁性の材料が使用される。これにより、圧粉コア1としての絶縁性を高めることが可能となる。 An insulating material is usually used as a binding component. Thereby, it becomes possible to improve the insulation as the dust core 1.
2.圧粉コアの製造方法
 上記の本発明の一実施形態に係る圧粉コア1の製造方法は特に限定されないが、次に説明する製造方法を採用すれば、圧粉コア1をより効率的に製造することが実現される。
2. Manufacturing method of powder core Although the manufacturing method of the powder core 1 which concerns on one embodiment of said this invention is not specifically limited, if the manufacturing method demonstrated below is employ | adopted, the powder core 1 will be manufactured more efficiently. Is realized.
 本発明の一実施形態に係る圧粉コア1の製造方法は、次に説明する成形工程を備え、さらに熱処理工程を備えていてもよい。 The manufacturing method of the powder core 1 according to an embodiment of the present invention may include a molding step described below, and may further include a heat treatment step.
(1)成形工程
 まず、磁性粉末、および圧粉コア1において結着成分を与える成分を含む混合物を用意する。結着成分を与える成分(本明細書において、「バインダー成分」ともいう。)とは、結着成分そのものである場合もあれば、結着成分と異なる材料である場合もある。後者の具体例として、バインダー成分が樹脂材料であって、結着成分がその熱分解残渣である場合が挙げられる。このような熱分解残渣は、後述するように、成形工程に引き続いて行われる熱処理工程によって形成されるものである。
(1) Molding step First, a mixture containing magnetic powder and a component that provides a binding component in the powder core 1 is prepared. The component that gives the binding component (also referred to as “binder component” in this specification) may be the binding component itself or may be a material different from the binding component. Specific examples of the latter include a case where the binder component is a resin material and the binder component is a thermal decomposition residue thereof. Such a thermal decomposition residue is formed by the heat treatment process performed subsequent to a shaping | molding process so that it may mention later.
 この混合物の加圧成形を含む成形処理により成形製造物を得ることができる。加圧条件は限定されず、バインダー成分の組成などに基づき適宜設定される。例えば、バインダー成分が熱硬化性の樹脂からなる場合には、加圧とともに加熱して、金型内で樹脂の硬化反応を進行させることが好ましい。一方、圧縮成形の場合には、加圧力が高いものの、加熱は必要条件とならず、短時間の加圧となる。圧縮成形の場合における加圧力は適宜設定される。限定されない例示を行えば、0.5GPa以上2GPa以下であり、1GPa以上2GPa以下とすることが好ましい場合がある。 A molded product can be obtained by a molding process including pressure molding of this mixture. The pressurizing condition is not limited and is appropriately set based on the composition of the binder component. For example, when the binder component is made of a thermosetting resin, it is preferable to heat the resin together with pressure to advance the resin curing reaction in the mold. On the other hand, in the case of compression molding, although the pressing force is high, heating is not a necessary condition and pressurization is performed for a short time. The pressing force in the case of compression molding is appropriately set. If it illustrates without being limited, it is 0.5 GPa or more and 2 GPa or less, and it may be preferable to set it as 1 GPa or more and 2 GPa or less.
 以下、混合物が造粒粉であって、圧縮成形を行う場合について、やや詳しく説明する。造粒粉は取り扱い性に優れるため、成形時間が短く生産性に優れる圧縮成形工程の作業性を向上させることができる。 Hereinafter, the case where the mixture is granulated powder and compression molding will be described in some detail. Since the granulated powder is excellent in handleability, it is possible to improve the workability of the compression molding process in which the molding time is short and the productivity is excellent.
(1-1)造粒粉
 造粒粉は、磁性粉末およびバインダー成分を含有する。造粒粉におけるバインダー成分の含有量は特に限定されない。かかる含有量が過度に低い場合には、バインダー成分が磁性粉末を保持しにくくなる。また、バインダー成分の含有量が過度に低い場合には、熱処理工程を経て得られた圧粉コア1中で、バインダー成分の熱分解残渣からなる結着成分が、複数の磁性粉末を互いに他から絶縁しにくくなる。一方、上記のバインダー成分の含有量が過度に高い場合には、熱処理工程を経て得られた圧粉コア1に含有される結着成分の含有量が高くなりやすい。圧粉コア1中の結着成分の含有量が高くなると、圧粉コア1の磁気特性が低下しやすくなる。それゆえ、造粒粉中のバインダー成分の含有量は、造粒粉全体に対して、0.5質量%以上5.0質量%以下となる量にすることが好ましい。圧粉コア1の磁気特性が低下する可能性をより安定的に低減させる観点から、造粒粉中のバインダー成分の含有量は、造粒粉全体に対して、1.0質量%以上3.5質量%以下となる量にすることが好ましく、1.2質量%以上3.0質量%以下となる量にすることがより好ましい。
(1-1) Granulated powder The granulated powder contains magnetic powder and a binder component. The content of the binder component in the granulated powder is not particularly limited. When this content is too low, it becomes difficult for the binder component to hold the magnetic powder. In addition, when the content of the binder component is excessively low, in the powder core 1 obtained through the heat treatment step, the binder component composed of the thermal decomposition residue of the binder component causes a plurality of magnetic powders to be separated from each other. It becomes difficult to insulate. On the other hand, when the content of the binder component is excessively high, the content of the binder component contained in the powder core 1 obtained through the heat treatment step tends to be high. When the content of the binder component in the dust core 1 is increased, the magnetic properties of the dust core 1 are likely to be reduced. Therefore, the content of the binder component in the granulated powder is preferably set to an amount that is 0.5% by mass or more and 5.0% by mass or less with respect to the entire granulated powder. From the viewpoint of more stably reducing the possibility that the magnetic properties of the dust core 1 will decrease, the content of the binder component in the granulated powder is 1.0 mass% or more with respect to the entire granulated powder. The amount is preferably 5% by mass or less, and more preferably 1.2% by mass or more and 3.0% by mass or less.
 造粒粉は、上記の磁性粉末およびバインダー成分以外の材料を含有してもよい。そのような材料として、潤滑剤、シランカップリング剤、絶縁性のフィラーなどが例示される。潤滑剤を含有させる場合において、その種類は特に限定されない。有機系の潤滑剤であってもよいし、無機系の潤滑剤であってもよい。有機系の潤滑剤の具体例として、ステアリン酸亜鉛、ステアリン酸アルミニウムなどの金属石鹸が挙げられる。こうした有機系の潤滑剤は、熱処理工程において気化し、圧粉コア1にはほとんど残留していないと考えられる。 The granulated powder may contain materials other than the above magnetic powder and binder component. Examples of such materials include lubricants, silane coupling agents, and insulating fillers. In the case of containing a lubricant, the type is not particularly limited. It may be an organic lubricant or an inorganic lubricant. Specific examples of the organic lubricant include metal soaps such as zinc stearate and aluminum stearate. It is considered that such an organic lubricant is vaporized in the heat treatment step and hardly remains in the powder core 1.
 造粒粉の製造方法は特に限定されない。上記の造粒粉を与える成分をそのまま混錬し、得られた混練物を公知の方法で粉砕するなどして造粒粉を得てもよいし、上記の成分に分散媒(水が一例として挙げられる。)を添加してなるスラリーを調製し、このスラリーを乾燥させて粉砕することにより造粒粉を得てもよい。粉砕後にふるい分けや分級を行って、造粒粉の粒度分布を制御してもよい。 The method for producing the granulated powder is not particularly limited. The ingredients that give the granulated powder may be kneaded as they are, and the resulting kneaded product may be pulverized by a known method to obtain granulated powder, or a dispersion medium (water as an example) It is also possible to obtain a granulated powder by preparing a slurry to which is added, and drying and pulverizing the slurry. Screening and classification may be performed after pulverization to control the particle size distribution of the granulated powder.
 上記のスラリーから造粒粉を得る方法の一例として、スプレードライヤーを用いる方法が挙げられる。図2に示されるように、スプレードライヤー装置200内には回転子201が設けられ、装置上部からスラリーSを回転子201に向けて注入する。回転子201は所定の回転数により回転しており、スプレードライヤー装置200内部のチャンバーにてスラリーSを遠心力により小滴状として噴霧する。さらにスプレードライヤー装置200内部のチャンバーに熱風を導入し、これにより小滴状のスラリーSに含有される分散媒(水)を、小滴形状を維持したまま揮発させる。その結果、スラリーSから造粒粉Pが形成される。この造粒粉Pをスプレードライヤー装置200の下部から回収する。回転子201の回転数、スプレードライヤー装置200内に導入する熱風温度、チャンバー下部の温度など各パラメータは適宜設定すればよい。これらのパラメータの設定範囲の具体例として、回転子201の回転数として4000~8000rpm、スプレードライヤー装置200内に導入する熱風温度として100~170℃、チャンバー下部の温度として80~90℃が挙げられる。またチャンバー内の雰囲気およびその圧力も適宜設定すればよい。一例として、チャンバー内をエアー(空気)雰囲気として、その圧力を大気圧との差圧で2mmHO(約0.02kPa)とすることが挙げられる。得られた造粒粉Pの粒度分布をふるい分けなどによりさらに制御してもよい。 As an example of a method for obtaining granulated powder from the above slurry, a method using a spray dryer can be mentioned. As shown in FIG. 2, a rotator 201 is provided in the spray dryer apparatus 200, and the slurry S is injected toward the rotator 201 from the upper part of the apparatus. The rotor 201 rotates at a predetermined number of revolutions, and sprays the slurry S as droplets by centrifugal force in a chamber inside the spray dryer apparatus 200. Further, hot air is introduced into the chamber inside the spray dryer apparatus 200, whereby the dispersion medium (water) contained in the droplet-like slurry S is volatilized while maintaining the droplet shape. As a result, the granulated powder P is formed from the slurry S. The granulated powder P is collected from the lower part of the spray dryer apparatus 200. Each parameter such as the number of rotations of the rotor 201, the temperature of hot air introduced into the spray dryer apparatus 200, and the temperature at the bottom of the chamber may be set as appropriate. As specific examples of the setting ranges of these parameters, the rotational speed of the rotor 201 is 4000 to 8000 rpm, the hot air temperature introduced into the spray dryer apparatus 200 is 100 to 170 ° C., and the temperature at the bottom of the chamber is 80 to 90 ° C. . The atmosphere in the chamber and its pressure may be set as appropriate. As an example, the inside of the chamber is an air atmosphere, and the pressure is 2 mmH 2 O (about 0.02 kPa) as a differential pressure from the atmospheric pressure. You may further control the particle size distribution of the obtained granulated powder P by sieving.
(1-2)加圧条件
 圧縮成形における加圧条件は特に限定されない。造粒粉の組成、成形品の形状などを考慮して適宜設定すればよい。造粒粉を圧縮成形する際の加圧力が過度に低い場合には、成形品の機械的強度が低下する。このため、成形品の取り扱い性が低下する、成形品から得られた圧粉コア1の機械的強度が低下する、といった問題が生じやすくなる。また、圧粉コア1の磁気特性が低下したり絶縁性が低下したりする場合もある。一方、造粒粉を圧縮成形する際の加圧力が過度に高い場合には、その圧力に耐えうる成形金型を作成するのが困難になってくる。圧縮加圧工程が圧粉コア1の機械特性や磁気特性に悪影響を与える可能性をより安定的に低減させ、工業的に大量生産を容易に行う観点から、造粒粉を圧縮成形する際の加圧力は、0.3GPa以上2GPa以下とすることが好ましく、0.5GPa以上2GPa以下とすることがより好ましく、0.8GPa以上2GPa以下とすることが特に好ましい。
(1-2) Pressing conditions The pressing conditions in compression molding are not particularly limited. What is necessary is just to set suitably considering the composition of granulated powder, the shape of a molded article, etc. If the pressure applied when the granulated powder is compression-molded is excessively low, the mechanical strength of the molded product decreases. For this reason, it becomes easy to produce the problem that the handleability of a molded article falls and the mechanical strength of the compacting core 1 obtained from the molded article falls. Moreover, the magnetic characteristics of the dust core 1 may deteriorate or the insulating properties may decrease. On the other hand, if the applied pressure during compression molding of the granulated powder is excessively high, it becomes difficult to create a molding die that can withstand the pressure. From the viewpoint of more stably reducing the possibility that the compression and pressurization process will adversely affect the mechanical properties and magnetic properties of the dust core 1 and facilitating mass production industrially, The applied pressure is preferably 0.3 GPa to 2 GPa, more preferably 0.5 GPa to 2 GPa, and particularly preferably 0.8 GPa to 2 GPa.
 圧縮成形では、加熱しながら加圧を行ってもよいし、常温で加圧を行ってもよい。 In compression molding, pressurization may be performed while heating, or pressurization may be performed at room temperature.
(2)熱処理工程
 成形工程により得られた成形製造物が本実施形態に係る圧粉コア1であってもよいし、次に説明するように成形製造物に対して熱処理工程を実施して圧粉コア1を得てもよい。
(2) Heat treatment step The molded product obtained in the molding step may be the powder core 1 according to the present embodiment, or the molded product may be subjected to a heat treatment step and pressed as described below. A powder core 1 may be obtained.
 熱処理工程では、上記の成形工程により得られた成形製造物を加熱することにより、磁性粉末間の距離を修正することによる磁気特性の調整および成形工程において磁性粉末に付与された歪を緩和させて磁気特性の調整を行って、圧粉コア1を得る。 In the heat treatment process, the molded product obtained by the above molding process is heated to adjust the magnetic properties by correcting the distance between the magnetic powders and to relax the strain applied to the magnetic powder in the molding process. The powder core 1 is obtained by adjusting the magnetic characteristics.
 熱処理工程は上記のように圧粉コア1の磁気特性の調整が目的であるから、熱処理温度などの熱処理条件は、圧粉コア1の磁気特性が最も良好となるように設定される。熱処理条件を設定する方法の一例として、成形製造物の加熱温度を変化させ、昇温速度および加熱温度での保持時間など他の条件は一定とすることが挙げられる。 Since the heat treatment step is intended to adjust the magnetic properties of the dust core 1 as described above, the heat treatment conditions such as the heat treatment temperature are set so that the magnetic properties of the dust core 1 are the best. As an example of a method for setting the heat treatment conditions, it is possible to change the heating temperature of the molded product and to make other conditions constant, such as the heating rate and the holding time at the heating temperature.
 熱処理条件を設定する際の圧粉コア1の磁気特性の評価基準は特に限定されない。評価項目の具体例として圧粉コア1の鉄損Pcvを挙げることができる。この場合には、圧粉コア1の鉄損Pcvが最低となるように成形製造物の加熱温度を設定すればよい。鉄損Pcvの測定条件は適宜設定され、一例として、周波数を2MHz、実効最大磁束密度Bmを15mTとする条件が挙げられる。 The evaluation criteria for the magnetic properties of the dust core 1 when setting the heat treatment conditions are not particularly limited. The iron loss Pcv of the powder core 1 can be given as a specific example of the evaluation item. In this case, what is necessary is just to set the heating temperature of a molded product so that the iron loss Pcv of the powder core 1 may become the minimum. The measurement conditions of the iron loss Pcv are set as appropriate. As an example, the conditions are a frequency of 2 MHz and an effective maximum magnetic flux density Bm of 15 mT.
 熱処理の際の雰囲気は特に限定されない。酸化性雰囲気の場合には、バインダー成分の熱分解が過度に進行する可能性や、磁性粉末の酸化が進行する可能性が高まるため、窒素、アルゴンなどの不活性雰囲気や、水素などの還元性雰囲気で熱処理を行うことが好ましい。バインダー成分が樹脂材料で形成されている場合には、上記のような熱処理によってこのバインダー成分が熱分解残渣となる場合がある。上記のように歪を緩和させる際に、バインダー成分が熱分解残渣となっていることが考えられる。 The atmosphere during the heat treatment is not particularly limited. In the case of an oxidizing atmosphere, the possibility of excessive thermal decomposition of the binder component and the possibility of progress of oxidation of the magnetic powder increases, so that an inert atmosphere such as nitrogen or argon, or a reducing property such as hydrogen Heat treatment is preferably performed in an atmosphere. When the binder component is formed of a resin material, the binder component may become a thermal decomposition residue by the heat treatment as described above. It is considered that the binder component is a thermal decomposition residue when the strain is relaxed as described above.
3.インダクタ、電子・電気機器
 本発明の一実施形態に係るインダクタは、上記の本発明の一実施形態に係る圧粉コア1、コイルおよびこのコイルのそれぞれの端部に接続された接続端子を備える。ここで、圧粉コア1の少なくとも一部は、接続端子を介してコイルに電流を流したときにこの電流により生じた誘導磁界内に位置するように配置されている。本発明の一実施形態に係るインダクタは、上記の本発明の一実施形態に係る圧粉コア1を備えるため、直流重畳特性に優れるとともに、絶縁特性および機械特性に優れる。
3. Inductor, Electronic / Electric Device An inductor according to an embodiment of the present invention includes the dust core 1 according to the embodiment of the present invention, a coil, and a connection terminal connected to each end of the coil. Here, at least a part of the dust core 1 is disposed so as to be located in an induced magnetic field generated by the current when a current is passed through the coil via the connection terminal. Since the inductor according to an embodiment of the present invention includes the dust core 1 according to the embodiment of the present invention described above, the inductor has excellent direct current superposition characteristics and excellent insulation characteristics and mechanical characteristics.
 このようなインダクタの一例として、図3に示されるトロイダルコイル10が挙げられる。トロイダルコイル10は、リング状の圧粉コア(トロイダルコア)1に、被覆導電線2を巻回することによって形成されたコイル2aを備える。巻回された被覆導電線2からなるコイル2aと被覆導電線2の端部2b,2cとの間に位置する導電線の部分において、コイル2aの端部2d,2eを定義することができる。このように、本実施形態に係るインダクタは、コイルを構成する部材と接続端子を構成する部材とが同一の部材から構成されていてもよい。 An example of such an inductor is the toroidal coil 10 shown in FIG. The toroidal coil 10 includes a coil 2 a formed by winding a coated conductive wire 2 around a ring-shaped dust core (toroidal core) 1. The ends 2d and 2e of the coil 2a can be defined in the portion of the conductive wire located between the coil 2a formed of the wound covered conductive wire 2 and the ends 2b and 2c of the covered conductive wire 2. Thus, in the inductor according to the present embodiment, the member constituting the coil and the member constituting the connection terminal may be composed of the same member.
 本発明の一実施形態に係るインダクタの他の一例として、図4に示されるコイル埋設型インダクタ20が挙げられる。コイル埋設型インダクタ20は、数mm角の小形のチップ状に形成することが可能であり、箱型の形状を有する圧粉コア21を備え、その内部に、被覆導電線22におけるコイル部22cが埋設されている。被覆導電線22の端部22a,22bは、圧粉コア21の表面に位置し、露出している。圧粉コア21の表面の一部は、互いに電気的に独立な接続端部23a,23bによって覆われている。接続端部23aは被覆導電線22の端部22aと電気的に接続され、接続端部23bは被覆導電線22の端部22bと電気的に接続されている。図4に示されるコイル埋設型インダクタ20では、被覆導電線22の端部22aは接続端部23aによって覆われ、被覆導電線22の端部22bは接続端部23bによって覆われている。 As another example of the inductor according to the embodiment of the present invention, there is a coil-buried inductor 20 shown in FIG. The coil-embedded inductor 20 can be formed in a small chip shape of several mm square, and includes a dust core 21 having a box shape, and a coil portion 22c in the covered conductive wire 22 is provided therein. Buried. End portions 22a and 22b of the coated conductive wire 22 are located on the surface of the powder core 21 and exposed. Part of the surface of the dust core 21 is covered with connection end portions 23a and 23b that are electrically independent from each other. The connection end portion 23 a is electrically connected to the end portion 22 a of the covered conductive wire 22, and the connection end portion 23 b is electrically connected to the end portion 22 b of the covered conductive wire 22. In the coil-embedded inductor 20 shown in FIG. 4, the end portion 22a of the covered conductive wire 22 is covered with the connection end portion 23a, and the end portion 22b of the covered conductive wire 22 is covered with the connection end portion 23b.
 被覆導電線22のコイル部22cの圧粉コア21内への埋設方法は限定されない。被覆導電線22を巻回した部材を金型内に配置し、さらに磁性粉末を含む混合物(造粒粉)を金型内に供給して、加圧成形を行ってもよい。あるいは、磁性粉末を含む混合物(造粒粉)をあらかじめ予備成形してなる複数の部材を用意し、これらの部材を組み合わせ、その際に形成される空隙部内に被覆導電線22を配置して組立体を得て、この組立体を加圧成形してもよい。コイル部22cを含む被覆導電線22の材質は限定されない。例えば、銅合金とすることが挙げられる。コイル部22cはエッジワイズコイルであってもよい。接続端部23a,23bの材質も限定されない。生産性に優れる観点から、銀ペーストなどの導電ペーストから形成されたメタライズ層とこのメタライズ層上に形成されためっき層とを備えることが好ましい場合がある。このめっき層を形成する材料は限定されない。当該材料が含有する金属元素として、銅、アルミ、亜鉛、ニッケル、鉄、スズなどが例示される。 The method for embedding the coil portion 22c of the coated conductive wire 22 in the dust core 21 is not limited. A member around which the coated conductive wire 22 is wound may be placed in a mold, and a mixture (granulated powder) containing magnetic powder may be supplied into the mold to perform pressure molding. Alternatively, a plurality of members obtained by preforming a mixture (granulated powder) containing magnetic powder in advance are prepared, these members are combined, and the coated conductive wire 22 is arranged in the gap formed at that time. A solid may be obtained and this assembly may be pressure molded. The material of the covered conductive wire 22 including the coil portion 22c is not limited. For example, a copper alloy can be used. The coil portion 22c may be an edgewise coil. The material of the connection end portions 23a and 23b is not limited. From the viewpoint of excellent productivity, it may be preferable to include a metallized layer formed from a conductive paste such as a silver paste and a plating layer formed on the metallized layer. The material for forming the plating layer is not limited. Examples of the metal element contained in the material include copper, aluminum, zinc, nickel, iron, and tin.
 本発明の一実施形態に係る電子・電気機器は、上記の本発明の一実施形態に係るインダクタが実装された電子・電気機器であって、インダクタがその接続端子にて基板に接続されているものである。かかるインダクタを備える回路の一例として、DC-DCコンバータのようなスイッチング電源回路が挙げられる。スイッチング電源回路は、電子・電気機器の小型化、軽量化、高機能化といった多様な要求に応えるために、スイッチング周波数が高くなり、回路を流れる電流量が増加する傾向がある。このため、回路の構成部品であるインダクタに流れる電流も、変動周波数が高くなり、平均電流量が増加する傾向がある。この点に関し、上記のとおり、本発明の一実施形態に係る圧粉コアを備えるインダクタは小型かつ低背であっても、高磁場環境において適切に動作することが可能である。それゆえ、かかるインダクタを備えるスイッチング電源回路では効率の低下が抑制され、発熱の問題を生じることなく上記の多様な要求に応えることができる。このように、本発明の一実施形態に係るインダクタが実装された電子・電気機器は、小型化、軽量化に対応しつつ、高機能化を実現することが可能である。 An electronic / electrical device according to an embodiment of the present invention is an electronic / electrical device in which the inductor according to the above-described embodiment of the present invention is mounted, and the inductor is connected to a substrate at its connection terminal. Is. An example of a circuit including such an inductor is a switching power supply circuit such as a DC-DC converter. The switching power supply circuit tends to increase the switching frequency and increase the amount of current flowing through the circuit in order to meet various demands such as downsizing, weight reduction, and high functionality of electronic and electrical devices. For this reason, the current flowing through the inductor, which is a component of the circuit, also tends to increase the fluctuation frequency and increase the average current amount. In this regard, as described above, an inductor including a dust core according to an embodiment of the present invention can appropriately operate in a high magnetic field environment even if the inductor is small and low-profile. Therefore, in the switching power supply circuit provided with such an inductor, a decrease in efficiency is suppressed, and the above various requirements can be met without causing a problem of heat generation. As described above, an electronic / electrical device on which an inductor according to an embodiment of the present invention is mounted can achieve high functionality while corresponding to downsizing and weight reduction.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(実施例1)
EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further more concretely, the scope of the present invention is not limited to these Examples etc.
Example 1
(1)Fe基非晶質合金粉末の作製
 Fe71原子%Ni6原子%Cr2原子%11原子%8原子%2原子%なる組成になるように原料を秤量して、水アトマイズ法を用いて非晶質磁性材料の粉末(アモルファス粉末)を作製した。得られた非晶質磁性材料の粉末を分級し、分級後の粉末の粒度分布を日機装社製「マイクロトラック粒度分布測定装置 MT3300EX」を用いて体積分布で測定した。体積基準の粒度分布において小粒径側からの積算粒径分布が50%となる粒径(非晶質粉末メジアン径)D50Aは6.5μmであった。また、結晶質磁性材料の粉末として、Fe-Si-Cr系合金、具体的には、Siの含有量が3.5質量%、Crの含有量が4.5質量%であって、残部はFeおよび不可避的不純物からなる合金からなり、結晶質粉末メジアン径D50Cが4.0μmの粉末を用意した。したがって、実施例1に係る粉末では、D50A/D50Cは、1.6であった。
(1) Preparation of Fe-based amorphous alloy powder Fe 71 atomic% Ni 6 atomic% Cr 2 atomic% P 11 atomic% C 8 atomic% B 2 atomic% The powder of the amorphous magnetic material (amorphous powder) was produced using the method. The obtained powder of the amorphous magnetic material was classified, and the particle size distribution of the classified powder was measured by volume distribution using “Microtrac particle size distribution measuring device MT3300EX” manufactured by Nikkiso Co., Ltd. In the volume-based particle size distribution, the particle size (amorphous powder median diameter) D 50 A at which the cumulative particle size distribution from the small particle size side becomes 50% was 6.5 μm. As the powder of the crystalline magnetic material, Fe—Si—Cr alloy, specifically, the Si content is 3.5 mass%, the Cr content is 4.5 mass%, and the balance is A powder comprising an alloy composed of Fe and inevitable impurities and having a crystalline powder median diameter D 50 C of 4.0 μm was prepared. Therefore, in the powder according to Example 1, D 50 A / D 50 C was 1.6.
(2)造粒粉の作製
 上記の非晶質磁性材料の粉末および結晶質磁性材料の粉末を表1に示される第一混合比率となるように混合して磁性粉末を得た。磁性粉末を97.2質量部、アクリル樹脂およびフェノール樹脂からなる絶縁性結着材を2~3質量部、およびステアリン酸亜鉛からなる潤滑剤0~0.5質量部を、溶媒としての水に混合してスラリーを得た。
(2) Production of Granulated Powder The above-mentioned amorphous magnetic material powder and crystalline magnetic material powder were mixed so as to have the first mixing ratio shown in Table 1 to obtain a magnetic powder. 97.2 parts by mass of magnetic powder, 2 to 3 parts by mass of an insulating binder made of an acrylic resin and a phenol resin, and 0 to 0.5 parts by mass of a lubricant made of zinc stearate are added to water as a solvent. A slurry was obtained by mixing.
 得られたスラリーを、図2に示されるスプレードライヤー装置200を用いて、上述した条件にて造粒し、造粒粉を得た。 The obtained slurry was granulated under the above-described conditions using the spray dryer apparatus 200 shown in FIG. 2 to obtain granulated powder.
(3)圧縮成形
 得られた造粒粉を金型に充填し、面圧1GPaで加圧成形して、外径20mm×内径12mm×厚さ3mmのリング形状を有する成形体を得た。
(3) Compression molding The obtained granulated powder was filled in a mold and pressure-molded with a surface pressure of 1 GPa to obtain a molded body having a ring shape with an outer diameter of 20 mm, an inner diameter of 12 mm, and a thickness of 3 mm.
(4)熱処理
 得られた成形体を、窒素気流雰囲気の炉内に載置し、炉内温度を、室温(23℃)から昇温速度10℃/分で最適コア熱処理温度である200~400℃まで加熱し、この温度にて1時間保持し、その後、炉内で室温まで冷却する熱処理を行い、圧粉コアからなるトロイダルコアを得た。
(4) Heat treatment The obtained molded body is placed in a furnace in a nitrogen stream atmosphere, and the furnace temperature is 200 to 400 which is the optimum core heat treatment temperature from room temperature (23 ° C.) at a heating rate of 10 ° C./min. The mixture was heated to 0 ° C., held at this temperature for 1 hour, and then heat-treated to cool to room temperature in a furnace to obtain a toroidal core composed of a dust core.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 実施例1において製造した非晶質磁性材料の粉末を用い、分級条件を変更して非晶質粉末メジアン径D50Aが5.0μmの非晶質磁性材料の粉末を用意した。また、結晶質磁性材料の粉末として、Fe-Si-Cr系合金、具体的には、Siの含有量が6.4質量%、Crの含有量が3.1質量%であって、残部はFeおよび不可避的不純物からなる合金からなり、結晶質粉末メジアン径D50Cが2.0μmの粉末を用意した。したがって、実施例2に係る粉末では、D50A/D50Cは、2.5であった。上記の非晶質磁性材料の粉末および結晶質磁性材料の粉末を表2に示される第一混合比率となるように混合して磁性粉末を得た。以下、実施例1と同様にして、複数種類のトロイダルコアを得た。
(Example 2)
Using the amorphous magnetic material powder produced in Example 1, the classification conditions were changed to prepare an amorphous magnetic material powder having an amorphous powder median diameter D 50 A of 5.0 μm. In addition, as a powder of crystalline magnetic material, Fe—Si—Cr alloy, specifically, Si content is 6.4% by mass, Cr content is 3.1% by mass, and the balance is A powder comprising an alloy composed of Fe and inevitable impurities and having a crystalline powder median diameter D 50 C of 2.0 μm was prepared. Therefore, in the powder according to Example 2, D 50 A / D 50 C was 2.5. The above amorphous magnetic material powder and crystalline magnetic material powder were mixed at the first mixing ratio shown in Table 2 to obtain a magnetic powder. Thereafter, a plurality of types of toroidal cores were obtained in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(試験例1)コア密度ρの測定
 実施例1および実施例2において作製したトロイダルコアの寸法および重量を測定して、これらの数値から各トロイダルコアの密度(コア密度)ρ(単位:g/cc)を算出した。その結果を表1および表2に示す。
(Test Example 1) Measurement of core density ρ The dimensions and weights of the toroidal cores produced in Example 1 and Example 2 were measured, and the density (core density) ρ (unit: g / g) of each toroidal core was determined from these numerical values. cc) was calculated. The results are shown in Tables 1 and 2.
(試験例2)初透磁率μ0の測定
 実施例1および実施例2において作製したトロイダルコアに被覆銅線をそれぞれ1次側40回、2次側10回巻いて得られたトロイダルコイルについて、インピーダンスアナライザー(HP社製「4192A」)を用いて、100kHzの条件で初透磁率μ0を測定した。結果を表1および表2に示す。
(Test Example 2) Measurement of initial permeability μ0 For toroidal coils obtained by winding the coated copper wires 40 times on the primary side and 10 times on the secondary side respectively on the toroidal cores produced in Example 1 and Example 2, The initial permeability μ 0 was measured using an analyzer (“4192A” manufactured by HP) under the condition of 100 kHz. The results are shown in Tables 1 and 2.
(試験例3)μ5500の測定
 試験例2で作製したトロイダルコイルを用いて、100kHzの条件で直流電流を重畳し、その重畳した直流電流の誘導磁界が5500A/mのときの比透磁率μ5500を測定した。測定結果を表1に示す。
(Test Example 3) Measurement of μ5500 Using the toroidal coil produced in Test Example 2, a direct current was superimposed under the condition of 100 kHz, and a relative permeability μ5500 when the induced magnetic field of the superimposed direct current was 5500 A / m was obtained. It was measured. The measurement results are shown in Table 1.
(試験例4)圧環強度の測定
 実施例1および実施例2において作製したトロイダルコアを、JIS Z2507:2000に準拠した試験方法により測定して、圧環強度を求めた。測定結果を表1および表2に示す。
(Test Example 4) Measurement of crushing strength The toroidal core produced in Example 1 and Example 2 was measured by a test method based on JIS Z2507: 2000, and crushing strength was obtained. The measurement results are shown in Tables 1 and 2.
(試験例5)絶縁耐圧の測定
 実施例1および実施例2において作製したトロイダルコアの絶縁破壊電圧(単位:V)を測定した(測定機器:菊水電子工業社製「TOS5051」)。測定はJIS C2110-1に従って行い、図1に示されるトロイダルコアの両端面を金属板で挟み、60秒段階昇圧試験で行った。得られた絶縁破壊電圧から、絶縁破壊電界(単位:V/mm)を求めた。その結果を表1および表2に示す。
(Test Example 5) Measurement of dielectric strength voltage The dielectric breakdown voltage (unit: V) of the toroidal core produced in Example 1 and Example 2 was measured (measuring instrument: “TOS5051” manufactured by Kikusui Electronics Corporation). The measurement was performed in accordance with JIS C2110-1, and both end surfaces of the toroidal core shown in FIG. A dielectric breakdown electric field (unit: V / mm) was determined from the obtained dielectric breakdown voltage. The results are shown in Tables 1 and 2.
(試験例6)鉄損Pcvの測定
 実施例1および実施例2において作製したトロイダルコアに被覆銅線をそれぞれ1次側15回、2次側10回巻いて得られたトロイダルコイルについて、BHアナライザー(岩崎通信機社製「SY-8217」)を用いて、実効最大磁束密度Bmを15mTとする条件で、測定周波数2MHzで鉄損Pcv(単位:kW/m)を測定した。測定結果を表1および表2に示す。
(Test Example 6) Measurement of iron loss Pcv For the toroidal coil obtained by winding the coated copper wire on the toroidal core produced in Example 1 and Example 2 15 times on the primary side and 10 times on the secondary side, respectively, the BH analyzer (“SY-8217” manufactured by Iwasaki Tsushinki Co., Ltd.) was used to measure the iron loss Pcv (unit: kW / m 3 ) at a measurement frequency of 2 MHz under the condition that the effective maximum magnetic flux density Bm was 15 mT. The measurement results are shown in Tables 1 and 2.
(評価例1)μ5500×絶縁耐圧×圧環強度
 試験例3から試験例5により測定された結果に基づき、μ5500×絶縁耐圧×圧環強度を算出した。算出結果を表3および表4ならびに図5に示す。なお、上記の表および図における「相対値」は、実施例1では実施例1-1におけるμ5500×絶縁耐圧×圧環強度によって実施例1-2から実施例1-9の値を規格化した結果を示し、実施例2では実施例2-1におけるμ5500×絶縁耐圧×圧環強度によって実施例2-2から実施例2-8の値を規格化した結果を示している。
(Evaluation Example 1) μ5500 × Insulation Withstand Pressure × Rubber Strength Based on the results measured in Test Example 3 to Test Example 5, μ5500 × Insulation Withstand Voltage × Rubble Strength was calculated. The calculation results are shown in Tables 3 and 4 and FIG. The “relative value” in the above table and figure is the result of normalizing the values of Example 1-2 to Example 1-9 in Example 1 by μ5500 × Insulation withstand voltage × Drum strength in Example 1-1. Example 2 shows the result of normalizing the values of Example 2-2 to Example 2-8 by μ5500 × insulation breakdown voltage × cylinder strength in Example 2-1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3および表4ならびに図5に示されるように、実施例1では、実施例2との対比において、第一混合比率が30質量%以上、70質量%以下となると特異的に相対値が高くなる結果が得られた。特に40質量%以上60質量%以下でその傾向が顕著となることが分かる。 As shown in Table 3 and Table 4 and FIG. 5, in Example 1, in contrast to Example 2, when the first mixing ratio is 30% by mass or more and 70% by mass or less, the relative value is specifically high. The result was obtained. It turns out that the tendency becomes remarkable especially in 40 mass% or more and 60 mass% or less.
(実施例3)
 実施例1において製造した非晶質磁性材料の粉末を用い、分級条件を変更して非晶質粉末メジアン径D50Aが表5に示される値の非晶質磁性材料の粉末を用意した。また、結晶質磁性材料の粉末として、Fe-Si-Cr系合金であって、結晶質粉末メジアン径D50Cが表5に示される値の粉末を用意した。上記の非晶質磁性材料の粉末および結晶質磁性材料の粉末を第一混合比率が50質量%となるように混合して磁性粉末を得た。以下、実施例1と同様にして、複数種類のトロイダルコアを得た。得られたトロイダルコアについて、実施例1の場合と同様に、各種測定および評価を行った。結果を表5に示す。
(Example 3)
Using the amorphous magnetic material powder produced in Example 1, the classification conditions were changed to prepare an amorphous magnetic material powder having an amorphous powder median diameter D 50 A shown in Table 5. Further, as a powder of the crystalline magnetic material, a powder of an Fe—Si—Cr-based alloy having a crystalline powder median diameter D 50 C shown in Table 5 was prepared. The above-mentioned amorphous magnetic material powder and crystalline magnetic material powder were mixed so that the first mixing ratio was 50% by mass to obtain a magnetic powder. Thereafter, a plurality of types of toroidal cores were obtained in the same manner as in Example 1. The obtained toroidal core was subjected to various measurements and evaluations in the same manner as in Example 1. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例4)
 実施例1において製造した非晶質磁性材料の粉末を用い、分級条件を変更してメジアン径D50Aが5.0μmの非晶質磁性材料の粉末を用意した。また、結晶質磁性材料の粉末として、Fe-Si-Cr系合金であって、メジアン径D50Cが表6に示される値の粉末を用意した。上記の非晶質磁性材料の粉末および結晶質磁性材料の粉末を第一混合比率が30質量%となるように混合して磁性粉末を得た。以下、実施例1と同様にして、複数種類のトロイダルコアを得た。得られたトロイダルコアについて、実施例1の場合と同様に、各種測定および評価を行った。結果を表6に示す。
Example 4
Using the amorphous magnetic material powder produced in Example 1, the classification conditions were changed to prepare an amorphous magnetic material powder having a median diameter D 50 A of 5.0 μm. Further, as a powder of the crystalline magnetic material, a powder of an Fe—Si—Cr alloy having a median diameter D 50 C shown in Table 6 was prepared. The above-mentioned amorphous magnetic material powder and crystalline magnetic material powder were mixed so that the first mixing ratio was 30% by mass to obtain a magnetic powder. Thereafter, a plurality of types of toroidal cores were obtained in the same manner as in Example 1. The obtained toroidal core was subjected to various measurements and evaluations in the same manner as in Example 1. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5および表6ならびに鉄損Pcvの測定結果を図示した図6および図7に示されるように、非晶質磁性材料の粉末および結晶質磁性材料の粉末のいずれについても、メジアン径が増加すると鉄損Pcvは増加する傾向があることが確認された。また、表5および表6ならびに相対値の測定結果を図示した図8および図9に示されるように、非晶質磁性材料の粉末のメジアン径D50Aは、5μm以上8μm以下であることや、結晶質磁性材料の粉末のメジアン径D50Cが2.5μm以上6μm以下であることにより、μ5500×絶縁耐圧×圧環強度が特異的に高くなることが確認された。 As shown in Tables 5 and 6 and FIG. 6 and FIG. 7 illustrating the measurement results of the iron loss Pcv, when the median diameter increases for both the amorphous magnetic material powder and the crystalline magnetic material powder, It was confirmed that the iron loss Pcv tends to increase. Further, as shown in Tables 5 and 6 and FIGS. 8 and 9 illustrating the measurement results of the relative values, the median diameter D 50 A of the powder of the amorphous magnetic material is 5 μm or more and 8 μm or less. It was confirmed that when the median diameter D 50 C of the powder of the crystalline magnetic material is 2.5 μm or more and 6 μm or less, μ5500 × insulation breakdown voltage × compressive ring strength is specifically increased.
(実施例5)
 実施例1において製造した非晶質磁性材料の粉末を用い、分級条件を変更してメジアン径D50Aが5.0μm(実施例5-1)、6.5μm(実施例5-2)、および11.0μm(実施例5-3)の非晶質磁性材料の粉末を用意した。また、結晶質磁性材料の粉末として、Fe-Si-Cr系合金であって、メジアン径D50Cが4.0μmの粉末を用意した。上記の非晶質磁性材料の粉末および結晶質磁性材料の粉末を第一混合比率が50質量%となるように混合して磁性粉末を得た。以下、実施例1と同様にして、複数種類のトロイダルコアを得た。得られたトロイダルコアについて、実施例1の場合と同様に、各種測定および評価を行った。結果を表7および図10に示す。
(Example 5)
Using the powder of the amorphous magnetic material produced in Example 1, the classification conditions were changed, and the median diameter D 50 A was 5.0 μm (Example 5-1), 6.5 μm (Example 5-2), And 11.0 μm (Example 5-3) amorphous magnetic material powder. Further, as a powder of the crystalline magnetic material, a powder of an Fe—Si—Cr alloy having a median diameter D 50 C of 4.0 μm was prepared. The above-mentioned amorphous magnetic material powder and crystalline magnetic material powder were mixed so that the first mixing ratio was 50% by mass to obtain a magnetic powder. Thereafter, a plurality of types of toroidal cores were obtained in the same manner as in Example 1. The obtained toroidal core was subjected to various measurements and evaluations in the same manner as in Example 1. The results are shown in Table 7 and FIG.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(実施例6)
 実施例1において製造した非晶質磁性材料の粉末を用い、分級条件を変更してメジアン径D50Aが6.5μmの非晶質磁性材料の粉末を用意した。また、結晶質磁性材料の粉末として、Fe-Si-Cr系合金であって、メジアン径D50Cが2.0μm(実施例5-1)、4.0μm(実施例5-2)、および6.0μm(実施例5-3)の粉末を用意した。上記の非晶質磁性材料の粉末および結晶質磁性材料の粉末を第一混合比率が50質量%となるように混合して磁性粉末を得た。以下、実施例1と同様にして、複数種類のトロイダルコアを得た。得られたトロイダルコアについて、実施例1の場合と同様に、各種測定および評価を行った。結果を表8および図11に示す。
(Example 6)
Using the amorphous magnetic material powder produced in Example 1, the classification conditions were changed to prepare an amorphous magnetic material powder having a median diameter D 50 A of 6.5 μm. Further, the powder of the crystalline magnetic material is an Fe—Si—Cr alloy, and the median diameter D 50 C is 2.0 μm (Example 5-1), 4.0 μm (Example 5-2), and A powder of 6.0 μm (Example 5-3) was prepared. The above-mentioned amorphous magnetic material powder and crystalline magnetic material powder were mixed so that the first mixing ratio was 50% by mass to obtain a magnetic powder. Thereafter, a plurality of types of toroidal cores were obtained in the same manner as in Example 1. The obtained toroidal core was subjected to various measurements and evaluations in the same manner as in Example 1. The results are shown in Table 8 and FIG.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例5および実施例6の結果を、実施例5-2(すなわち実施例6-2)の結果により規格化するとともに、非晶質磁性材料のメジアン径D50Aの結晶質磁性材料の粉末のメジアン径D50Cに対する比(D50A/D50C)を横軸をとして表したグラフを図12に示した。図12に示されるように、μ5500×絶縁耐圧×圧環強度のD50A/D50Cに対する依存性は、D50A/D50Cが1.3から2.0の範囲に頂点が位置する山型の傾向線を有する分布となった。 The results of Example 5 and Example 6 were normalized by the result of Example 5-2 (ie, Example 6-2), and the powder of the crystalline magnetic material having a median diameter D 50 A of the amorphous magnetic material was used. FIG. 12 is a graph showing the ratio (D 50 A / D 50 C) with respect to the median diameter D 50 C of FIG. As shown in FIG. 12, the dependence of μ5500 × dielectric withstand voltage × compression ring strength on D 50 A / D 50 C is such that D 50 A / D 50 C has a vertex in the range of 1.3 to 2.0. The distribution has a mountain-shaped trend line.
 本発明の圧粉コアを備えるインダクタは、DC-DCコンバータなどスイッチング電源回路の構成部品となるインダクタとして好適に使用されうる。 The inductor having the dust core of the present invention can be suitably used as an inductor that is a component of a switching power supply circuit such as a DC-DC converter.
1…圧粉コア(トロイダルコア)
10…トロイダルコイル
2…被覆導電線
2a…コイル
2b,2c…被覆導電線2の端部
2d,2e…コイル2aの端部
20…コイル埋設型インダクタ
21…圧粉コア
22…被覆導電線
22a,22b…端部
23a,23b…接続端部
22c…コイル部
200…スプレードライヤー装置
201…回転子
S…スラリー
P…造粒粉
1 ... Compact core (toroidal core)
DESCRIPTION OF SYMBOLS 10 ... Toroidal coil 2 ... Coated conductive wire 2a ... Coils 2b, 2c ... End 2d, 2e of coated conductive wire 2 ... End 20 of coil 2a ... Coil buried type inductor 21 ... Powder core 22 ... Coated conductive wire 22a, 22b ... Ends 23a, 23b ... Connection end 22c ... Coil part 200 ... Spray dryer device 201 ... Rotor S ... Slurry P ... Granulated powder

Claims (11)

  1.  結晶質磁性材料の粉末および非晶質磁性材料の粉末を含有する圧粉コアであって、
     前記結晶質磁性材料の粉末の含有量と前記非晶質磁性材料の粉末の含有量との総和に対する前記結晶質磁性材料の粉末の含有量の質量比率である第一混合比率は、30質量%以上70質量%以下であり、
     前記結晶質磁性材料は、Fe-Si-Cr系合金からなり、メジアン径D50Cが2.5μm以上6μm以下であること
    を特徴とする圧粉コア。
    A powder core containing a powder of crystalline magnetic material and a powder of amorphous magnetic material,
    The first mixing ratio, which is the mass ratio of the content of the crystalline magnetic material powder to the sum of the content of the crystalline magnetic material powder and the content of the amorphous magnetic material powder, is 30% by mass. 70 mass% or less,
    The dust core according to claim 1, wherein the crystalline magnetic material is made of an Fe—Si—Cr alloy and has a median diameter D 50 C of 2.5 μm to 6 μm.
  2.  前記非晶質磁性材料の粉末のメジアン径D50Aは、5μm以上8μm以下である、請求項1に記載の圧粉コア。 The powder core according to claim 1, wherein a median diameter D 50 A of the powder of the amorphous magnetic material is 5 µm or more and 8 µm or less.
  3.  前記非晶質磁性材料の粉末のメジアン径D50Aと前記結晶質磁性材料の粉末のメジアン径D50Cとは下記式(1)を満たす、請求項1または2に記載の圧粉コア。
      1≦D50A/D50C≦3.5    (1)
    The powder core according to claim 1 or 2, wherein the median diameter D 50 A of the powder of the amorphous magnetic material and the median diameter D 50 C of the powder of the crystalline magnetic material satisfy the following formula (1).
    1 ≦ D 50 A / D 50 C ≦ 3.5 (1)
  4.  前記第一混合比率は、40質量%以上60質量%以下である、請求項1から3のいずれか一項に記載の圧粉コア。 The powder core according to any one of claims 1 to 3, wherein the first mixing ratio is 40 mass% or more and 60 mass% or less.
  5.  前記非晶質磁性材料は、Fe-Si-B系合金、Fe-P-C系合金およびCo-Fe-Si-B系合金からなる群から選ばれた1種または2種以上の材料を含む、請求項1から4のいずれか一項に記載の圧粉コア。 The amorphous magnetic material includes one or more materials selected from the group consisting of an Fe—Si—B alloy, an Fe—PC alloy, and a Co—Fe—Si—B alloy. The powder core according to any one of claims 1 to 4.
  6.  前記非晶質磁性材料はFe-P-C系合金からなる、請求項5に記載の圧粉コア。 The dust core according to claim 5, wherein the amorphous magnetic material is made of an Fe-PC-based alloy.
  7.  前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末を、前記圧粉コアに含有される他の材料に対して結着させる結着成分を含有する、請求項1から6のいずれか一項に記載の圧粉コア。 7. The composition according to claim 1, further comprising a binding component that binds the powder of the crystalline magnetic material and the powder of the amorphous magnetic material to another material contained in the powder core. The dust core according to one item.
  8.  前記結着成分は、樹脂材料に基づく成分を含む、請求項7に記載の圧粉コア。 The powder core according to claim 7, wherein the binding component includes a component based on a resin material.
  9.  請求項8に記載される圧粉コアの製造方法であって、前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末ならびに前記樹脂材料からなるバインダー成分を含む混合物の加圧成形を含む成形処理により成形製造物を得る成形工程を備えることを特徴とする圧粉コアの製造方法。 9. A method for producing a dust core according to claim 8, comprising pressure molding of a mixture comprising a binder component comprising the crystalline magnetic material powder and the amorphous magnetic material powder and the resin material. A method for producing a powder core, comprising a molding step of obtaining a molded product by a molding process.
  10.  請求項1から8のいずれかに記載される圧粉コア、コイルおよび前記コイルのそれぞれの端部に接続された接続端子を備えるインダクタであって、前記圧粉コアの少なくとも一部は、前記接続端子を介して前記コイルに電流を流したときに前記電流により生じた誘導磁界内に位置するように配置されているインダクタ。 It is an inductor provided with the connecting terminal connected to each end part of the dust core, the coil, and the coil according to any one of claims 1 to 8, wherein at least a part of the dust core is the connection An inductor disposed so as to be located in an induced magnetic field generated by the current when a current is passed through the coil via a terminal.
  11.  請求項10に記載されるインダクタが実装された電子・電気機器であって、前記インダクタは前記接続端子にて基板に接続されている電子・電気機器。 11. An electronic / electrical device in which the inductor according to claim 10 is mounted, wherein the inductor is connected to a substrate at the connection terminal.
PCT/JP2018/014862 2017-05-10 2018-04-09 Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted WO2018207521A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017094018 2017-05-10
JP2017-094018 2017-05-10
JP2017-173812 2017-09-11
JP2017173812 2017-09-11

Publications (1)

Publication Number Publication Date
WO2018207521A1 true WO2018207521A1 (en) 2018-11-15

Family

ID=64104512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014862 WO2018207521A1 (en) 2017-05-10 2018-04-09 Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted

Country Status (2)

Country Link
TW (1) TWI720292B (en)
WO (1) WO2018207521A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200343029A1 (en) * 2019-04-23 2020-10-29 Chilisin Electronics Corp. Alloy powder composition, molding and the manufacturing method thereof, and inductors
US20210090789A1 (en) * 2019-09-19 2021-03-25 Ford Global Technologies, Llc Inductor structure with multiple windings with uncoupled magnetic fields

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196216A (en) * 2000-01-17 2001-07-19 Hitachi Ferrite Electronics Ltd Dust core
JP2004197218A (en) * 2002-11-22 2004-07-15 Toko Inc Composite magnetic material, core using the same, and magnetic element
JP2010118486A (en) * 2008-11-13 2010-05-27 Nec Tokin Corp Inductor and method of manufacturing the same
JP2016012715A (en) * 2014-06-06 2016-01-21 アルプス・グリーンデバイス株式会社 Powder compact core, manufacturing method thereof, electronic/electric part having powder compact core, and electronic/electric device with electronic/electric part mounted thereon
WO2016204008A1 (en) * 2015-06-19 2016-12-22 株式会社村田製作所 Magnetic-substance powder and production process therefor, magnetic core and production process therefor, and coil component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196216A (en) * 2000-01-17 2001-07-19 Hitachi Ferrite Electronics Ltd Dust core
JP2004197218A (en) * 2002-11-22 2004-07-15 Toko Inc Composite magnetic material, core using the same, and magnetic element
JP2010118486A (en) * 2008-11-13 2010-05-27 Nec Tokin Corp Inductor and method of manufacturing the same
JP2016012715A (en) * 2014-06-06 2016-01-21 アルプス・グリーンデバイス株式会社 Powder compact core, manufacturing method thereof, electronic/electric part having powder compact core, and electronic/electric device with electronic/electric part mounted thereon
WO2016204008A1 (en) * 2015-06-19 2016-12-22 株式会社村田製作所 Magnetic-substance powder and production process therefor, magnetic core and production process therefor, and coil component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200343029A1 (en) * 2019-04-23 2020-10-29 Chilisin Electronics Corp. Alloy powder composition, molding and the manufacturing method thereof, and inductors
US20210090789A1 (en) * 2019-09-19 2021-03-25 Ford Global Technologies, Llc Inductor structure with multiple windings with uncoupled magnetic fields

Also Published As

Publication number Publication date
TW201901709A (en) 2019-01-01
TWI720292B (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP6513458B2 (en) Dust core, method of manufacturing the dust core, electronic / electrical component comprising the dust core, and electronic / electrical device on which the electronic / electrical component is mounted
US11574764B2 (en) Dust core, method for manufacturing dust core, electric/electronic component including dust core, and electric/electronic device equipped with electric/electronic component
TWI616541B (en) Powder core, method for manufacturing the powder core, inductor with the powder core, and electronic and electrical machine with the inductor
KR102104701B1 (en) Compressed powder core, method of manufacturing the compressed powder core, inductor comprising the compressed powder core and electronic-electric device mounted with the inductor
JP6213809B2 (en) Powder magnetic core, coil component using the same, and method for manufacturing powder magnetic core
WO2017038295A1 (en) Dust core, method for producing said dust core, electric/electronic component provided with said dust core, and electric/electronic device on which said electric/electronic component is mounted
TW201738908A (en) Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
WO2018207521A1 (en) Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
TWI652700B (en) Powder core, manufacturing method of the powder core, electric and electronic parts provided with the powder core, and electric and electronic equipment equipped with the electric and electronic parts
US10283266B2 (en) Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
JP5158163B2 (en) Powder magnetic core and magnetic element
JP6486262B2 (en) Fe-based amorphous alloy, magnetic metal powder, magnetic member, magnetic component, and electrical / electronic equipment
JP6035490B2 (en) Compact core, electrical / electronic components and electrical / electronic equipment
JP7152504B2 (en) Compacted core, method for manufacturing the compacted core, inductor provided with the compacted core, and electronic/electrical device mounted with the inductor
JP2012144810A (en) Soft magnetic powder, powder magnetic core, and magnetic element
JP6944313B2 (en) Magnetic powder, powder core, inductor, and electronic and electrical equipment
WO2017221475A1 (en) Magnetic powder, powder mixture, dust core, method for producing dust core, inductor, and electronic/electrical device
JP2012054569A (en) Soft magnetic powder, method for producing soft magnetic powder, dust core, and magnetic element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18797840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP