JP2004327762A - Composite soft magnetic material - Google Patents

Composite soft magnetic material Download PDF

Info

Publication number
JP2004327762A
JP2004327762A JP2003121182A JP2003121182A JP2004327762A JP 2004327762 A JP2004327762 A JP 2004327762A JP 2003121182 A JP2003121182 A JP 2003121182A JP 2003121182 A JP2003121182 A JP 2003121182A JP 2004327762 A JP2004327762 A JP 2004327762A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic material
composite
metal soft
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003121182A
Other languages
Japanese (ja)
Inventor
Takeshi Takahashi
岳史 高橋
Shinya Matsutani
伸哉 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003121182A priority Critical patent/JP2004327762A/en
Publication of JP2004327762A publication Critical patent/JP2004327762A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superior composite soft magnetic material, capable of miniaturizing an inductance component, such as choke coil and having superior magnetic characteristics usable in high-frequency bands. <P>SOLUTION: The composite soft magnetic material is made of a metal soft magnetic material and a high proper resistance material, the high resistivity material making the metal soft magnetic material independently of each other and exhibiting a structure which is a continuing body, and is obtained by molding, sintering, melting or casting the powder which consists of constituents of the metal soft magnetic material and the high resistivity material. This material has superior soft magnetic characteristics by reducing the eddy current loss and enhancing the packing ratio. The composite magnetic material, exhibiting superior DC-overlapping characteristics at high-frequency bands and low core-loss characteristics is realized, thereby obtaining the inductance component capable of realizing miniaturization and turning into high-frequency wave characteristic. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はコイル、チョークコイル、トランスあるいはその他のインダクタンス部品に用いられる複合軟磁性材料に関するものである。
【0002】
【従来の技術】
電子機器の小型・薄型化に伴い、これらに用いられる部品やデバイスにも必然的に小型・薄型化することが強く求められている。
【0003】
一方、CPUなどのLSIは高集積化してきており、これに供給される電源回路には数A〜数十Aの電流が供給されることがある。
【0004】
従って、これらに用いられるチョークコイル等のインダクタンス部品においても、小型化要求とともに直流重畳によるインダクタンスの低下が少ないことが必要とされている。
【0005】
また、電子機器の高性能化のために使用周波数が高周波化しており、高周波帯域における損失を低くすることが求められている。すなわち、大電流、高周波領域で使用可能であり、かつ小型・薄型化したインダクタンス部品を実現することが求められている。
【0006】
これらインダクタンス部品に用いられる磁性材料としてはフェライト軟磁性材料や金属軟磁性材料が挙げられる。
【0007】
しかし、フェライト軟磁性材料は金属軟磁性材料に比べて飽和磁束密度が低いことから、磁気飽和によるインダクタンスの低下が大きくなり、直流重畳特性が悪い。そのため、フェライトコアの磁路を妨げる垂直方向に磁気ギャップを設け、見掛けの透磁率を下げて使用することが行われている。
【0008】
しかしながら、このような磁気ギャップはノイズ音の発生源となる。また、透磁率を下げても飽和磁束密度は低いままであることから、直流重畳特性は金属軟磁性材料より悪いといった問題点が有る。
【0009】
一方、金属軟磁性材料はフェライト材料に比べて飽和磁束密度が著しく大きく、直流重畳特性は良いが電気抵抗が低いために数百kHz〜MHzの高周波域では渦電流損失が大きくなることから、そのままでは使用できない。そのために粉末化した金属軟磁性材料を用い、金属軟磁性粉の粒子間絶縁処理を施し、加圧成形して圧粉磁芯(ダストコア)として使用されている。この圧粉磁芯の良好な磁気特性を得るためには金属軟磁性粉の充填率を高める必要があり、FeNi系合金粉末を用いた圧粉磁芯において、高充填率化を目的として加圧成形後の成形体を非酸化性雰囲気中で熱処理し、次に熱硬化性樹脂を含浸させてから加熱して樹脂を硬化させる方法により、体積換算で89%程度の充填率を達成する方法が提案されている(例えば、特許文献1参照)。
【0010】
また、焼結体による磁芯の磁性材料としてはカルボニル鉄粉にNaO,Al,SiO,KO,CaO等の酸化物粉末を混合、成形した後焼結体とする方法が電気抵抗及び飽和磁束密度の向上を目的として提案されている(例えば、特許文献2参照)。
【0011】
【特許文献1】
特開平5−217778号公報
【特許文献2】
特開平9−176779号公報
【0012】
【発明が解決しようとする課題】
しかしながら、より高性能化を図るために体積換算で95%を超える圧粉磁芯の高充填率化の実現と、より高い温度での焼鈍処理も困難となっている。またカルボニル鉄粉を用いる焼結法では微粉を扱うことから取り扱いが煩雑となり生産性に課題を有するものであった。
【0013】
本発明は上記従来の技術における課題を解決し、高周波帯域で優れた直流重畳特性と低いコア損失特性を有する複合軟磁性材料を実現するものである。
【0014】
【課題を解決するための手段】
上記課題を解決するために本発明の請求項1に記載の発明は、金属軟磁性材と高固有抵抗物質からなり、高固有抵抗物質は金属軟磁性材を互いに独立させ且つ連続体である組織を呈する複合軟磁性材料であって、前記金属軟磁性材と高固有抵抗物質の構成元素からなる粉末を成形・焼結して形成した複合軟磁性材料であり、渦電流損失を低減し且つ高充填率化が図られた軟磁気特性を有する複合軟磁性材料を実現することができる。
【0015】
本発明の請求項2に記載の発明は、金属軟磁性材と高固有抵抗物質からなり、高固有抵抗物質は金属軟磁性材を互いに独立させ且つ連続体である組織を呈する複合軟磁性材料であって、溶解・鋳造して形成した複合軟磁性材料であり、渦電流損失を低減し且つ高充填率化が図られ優れた軟磁気特性を有する複合軟磁性材料を実現することができる。
【0016】
本発明の請求項3に記載の発明は、金属軟磁性材がFe系、FeNi系、FeNiMo系、FeSi系およびFeSiAl系のうち少なくとも一種から選ばれた請求項1または2のいずれかに記載の複合軟磁性材料であり、優れた軟磁気特性を有する複合軟磁性材料を実現することができる。
【0017】
本発明の請求項4に記載の発明は、高固有抵抗物質が金属軟磁性材の構成元素から選ばれる少なくとも一種と、B、P、Sのうち少なくとも一種から形成された請求項1または2のいずれかに記載の複合軟磁性材料であり、渦電流損失を低減し、低いコア損失を有する複合軟磁性材料を実現することができる。
【0018】
本発明の請求項5に記載の発明は、金属軟磁性材の充填率が体積換算で95%以上である請求項1または2のいずれかに記載の複合軟磁性材料であり、優れた軟磁気特性を有する複合軟磁性材料を実現することができる。
【0019】
【発明の実施の形態】
以下、本発明の複合軟磁性材料について実施の形態を用いて説明する。
【0020】
(実施の形態1)
本発明の実施の形態1により請求項1、3〜5の発明について説明する。
【0021】
優れた軟磁気特性の実現を目的として鋭意検討を行った結果、本発明における金属軟磁性材構成元素と固溶しにくく、化合物を形成し且つ固有抵抗の高いB、S、Pの少なくとも一種と、本発明における金属軟磁性材構成元素より構成される粉末を用いて加圧成形を行って成形体とした後焼結させることにより、高い充填率の実現と金属軟磁性材の周囲をB、S、Pの少なくとも一種よりなる高固有抵抗物質が取り囲んだ組織を実現するに至った。形成された高固有抵抗物質は金属軟磁性材を互いに独立させ、且つ連続体である組織を呈するために渦電流損失を低減することができる。またB、S、Pは本発明の金属軟磁性材の構成元素とほとんど固溶しないことから金属軟磁性材の保有する良好な軟磁気特性を阻害しないことが分かった。
【0022】
本発明に用いられる粉末の作成方法としては特に限定されるものではなく、水アトマイズ、ガスアトマイズ等各種アトマイズ法や溶解鋳造より作成したインゴットを粉砕して所定の粒径としても良い、また超急冷法より作成した簿帯をそのままあるいは所定粒径に粉砕して用いても良い。
【0023】
また、本発明における成形方法は特に限定されるものではなく、通常の加圧成形や加熱下での加圧成形等があげられる。特に加熱下での加圧成形を行う場合には成形後の焼結工程を同時に行うことも可能である。
【0024】
次に、本発明における焼結工程は非酸化性雰囲気で行うことが望ましく、600℃以上1450℃以下で行うことが望ましい。600℃より低いと十分に焼結させることが困難であり、緻密な焼結体とすることが難しい。また1450℃を超えるとほぼ液相状態となるため成形した形状を維持することが困難となる。
【0025】
また、本発明における高固有抵抗物質により独立された金属軟磁性材の平均粒径は5〜100μmの範囲とすることが望ましい。5μmより小さいと高透磁率化が難しく、100μmを超えると渦電流損失が大きくなってしまうからである。
【0026】
さらに、本発明においては焼結工程以外に熱処理工程を行う場合もある。例えば本発明における焼結体において組織が不均一であり、金属軟磁性材の平均粒径が前記範囲からはずれる場合、あるいは高固有抵抗物質の連続性が不十分であるときには高固有抵抗物質の分解温度以上で熱処理をして十分に均一化を行った後冷却して高固有抵抗物質を析出させて金属軟磁性材の平均粒径を調整したり、あるいは高固有抵抗物質の連続性を十分に確保することが可能である。
【0027】
またこのとき、高固有抵抗物質を十分に析出させるために、さらに高固有抵抗物質の分解温度より低い温度で熱処理を行うことも可能である。また組織制御のために急冷することも可能である。
【0028】
さらに、高固有抵抗物質を十分に析出させて連続性を確保したり、あるいは低下した結晶性を高める目的で急冷後に高固有抵抗物質の分解温度より低い温度で熱処理を行うことも可能である。
【0029】
また、粉末組成の均一性を高めるために溶解鋳造で作成したインゴットの熱処理を行った後粉砕して粉末としても良い。
【0030】
以上説明してきた上記の熱処理は目的に応じて適宜行えば良い。
【0031】
本発明におけるB、S、Pより選ばれる少なくとも一種の元素の含有量としては0.1〜10wt%の範囲とすることが望ましい。0.1Wt%より少ないと高固有抵抗物質が金属軟磁性材を独立させ且つ連続体である組織を実現することが難しく、10wt%を超えると金属軟磁性材の充填率が体積換算で95%以上とすることが困難となる。
【0032】
本発明における金属軟磁性材はFe系、FeNi系、FeNiMo系、FeSi系、FeSiAl系から選ばれる少なくとも一種であり、これら金属軟磁性材は飽和磁束密度、透磁率ともに高く優れた軟磁気特性を示すものであり、主組成に対し微量の不純物あるいは添加物が含まれたとしても同様の効果を示すことはいうまでもない。
【0033】
以下に、本発明の実施例を説明する。
【0034】
各種アトマイズ法により、(表1)に示す組成、粒径の金属軟磁性材の粉末を作成した。得られた粉末を用いて1〜10ton/cmの範囲で加圧成形してトロイダル形状の成形体とした後、Ar雰囲気中にて(表1)に示す温度で熱処理を行い焼結体を得た。得られたサンプルについて直流重畳、コア損失について評価を行った。直流重畳については、印加磁場50Oe、周波数100kHzにおける透磁率をLCRメータにて測定して評価し、コア損失は交流B−Hカーブ測定機を用いて測定周波数100kHz、測定磁束密度0.1Tで測定を行った。またSEM観察及び密度測定を行い、金属軟磁性材の平均粒径及び充填率を算出した。その評価結果を(表1)に示す。
【0035】
【表1】

Figure 2004327762
【0036】
(表1)の結果より、本発明の範囲において良好な直流重畳特性、低いコア損失を示すことがわかる。
【0037】
次に、溶解鋳造により組成が重量%で47.5Fe50Ni2.5Sのインゴットを作成した。得られたインゴットを粉砕して平均粒径100μm程度の粉末としたのち6ton/cmにて加圧成形してトロイダル形状の成形体を作成した。得られた成形体を加熱部と冷却部の2槽より構成されている炉を用いて、まず加熱部においてAr雰囲気中で1100℃、30分間の熱処理をして焼結させた後、冷却部においてArガスを吹き付けて急冷を行った。その後Ar雰囲気中にて625℃にて1時間熱処理を行いサンプルを得た。
【0038】
得られたサンプルについて直流重畳、コア損失について評価を行った。直流重畳特性、コア損失特性、SEM観察及び密度測定を上記と同じ方法で行い、金属軟磁性材の平均粒径及び充填率を算出した。その評価結果は透磁率;70、コア損失;590kw/m、平均粒径;5.2μm、充填率;99.1%であった。上記結果より、本発明の実施例の範囲において良好な直流重畳特性、低いコア損失を示すことがわかる。
【0039】
(実施の形態2)
本発明の実施の形態2により請求項2に記載の発明について説明する。
【0040】
本発明においては溶解鋳造後熱処理工程を行う場合もある。
【0041】
例えば、溶解鋳造により得られたサンプルにおいて組織が不均一であり、金属軟磁性材の平均粒径が前記範囲からはずれる場合、あるいは高固有抵抗物質の連続性が不十分である場合等においては高固有抵抗物質の分解温度以上で熱処理して十分に均一化を行った後冷却し、高固有抵抗物質を析出させて金属軟磁性材の平均粒径を調整する、あるいは高固有抵抗物質の連続性を十分に確保することが可能である。
【0042】
このとき、高固有抵抗物質を十分に析出させるため、さらに高固有抵抗物質の分解温度より低い温度で熱処理を行うことも可能である。
【0043】
また、組織制御のために溶解鋳造後の熱処理時の冷却過程において急冷することも可能である。急冷した場合においても、さらに高固有抵抗物質を十分に析出させて連続性を十分確保するため、あるいは急冷処理により低下した結晶性を高める等の目的で、急冷後高固有抵抗物質の分解温度より低い温度で熱処理を行うことも可能である。これらの熱処理は目的に応じ適宜行えば良い。
【0044】
以下に本発明の実施例を説明する。
【0045】
溶解鋳造により(表2)に示す組成のインゴットを作成した。得られたインゴットを(表2)に示す条件にてAr雰囲気にて熱処理を行った後トロイダル形状に加工してサンプルを得た。
【0046】
得られたサンプルについて直流重畳、コア損失について測定評価した。測定/評価方法は実施の形態1と同じ方法にて行った。
【0047】
また、SEM観察及び密度測定を行い、金属軟磁性材の平均粒径及び充填率を算出した。その評価/測定結果を(表2)に示す。
【0048】
【表2】
Figure 2004327762
【0049】
(表2)の結果より、本発明の実施例の範囲において高い金属軟磁性材の充填率を実現するとともに良好な直流重畳特性、低いコア損失を示すことがわかる。
【0050】
【発明の効果】
以上説明したように、本発明によれば高周波帯域で優れた直流重畳特性、低いコア損失特性を示す複合磁性材料を実現することにより、小型化、高周波化が図れるインダクタンス部品を提供することが可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite soft magnetic material used for a coil, a choke coil, a transformer, and other inductance components.
[0002]
[Prior art]
As electronic devices become smaller and thinner, there is a strong demand for parts and devices used in them to be made smaller and thinner.
[0003]
On the other hand, LSIs such as CPUs have been highly integrated, and a power supply circuit supplied thereto may be supplied with a current of several A to several tens A.
[0004]
Therefore, it is also required that the inductance components such as choke coils used in these components be reduced in size and reduced in inductance due to DC superimposition, as well as in size.
[0005]
In addition, the operating frequency has been increased for higher performance of electronic devices, and it is required to reduce the loss in a high frequency band. In other words, there is a demand for realizing a small and thin inductance component that can be used in a large current and high frequency range.
[0006]
Magnetic materials used for these inductance components include ferrite soft magnetic materials and metallic soft magnetic materials.
[0007]
However, since the ferrite soft magnetic material has a lower saturation magnetic flux density than the metal soft magnetic material, the decrease in inductance due to magnetic saturation is large, and the direct current superposition characteristic is poor. For this reason, a magnetic gap is provided in the vertical direction to obstruct the magnetic path of the ferrite core, and the apparent magnetic permeability is reduced for use.
[0008]
However, such a magnetic gap is a source of noise. Further, since the saturation magnetic flux density remains low even when the magnetic permeability is lowered, there is a problem that the direct current superposition characteristic is worse than that of the metal soft magnetic material.
[0009]
On the other hand, the metal soft magnetic material has a significantly higher saturation magnetic flux density than the ferrite material, has a good DC superimposition characteristic, but has a low electric resistance, so that eddy current loss increases in a high frequency range of several hundred kHz to MHz. Cannot be used. For this purpose, a powdered metal soft magnetic material is used, a metal soft magnetic powder is subjected to inter-particle insulation treatment, and is molded under pressure to be used as a dust core (dust core). In order to obtain good magnetic properties of the dust core, it is necessary to increase the filling rate of the metal soft magnetic powder. A method of achieving a filling factor of about 89% in terms of volume by a method of heat-treating the molded body after molding in a non-oxidizing atmosphere, then impregnating a thermosetting resin, and then heating and curing the resin. It has been proposed (for example, see Patent Document 1).
[0010]
As a magnetic material of a magnetic core made of a sintered body, an oxide powder such as Na 2 O, Al 2 O 3 , SiO 2 , K 2 O, CaO, etc. is mixed with carbonyl iron powder, and then formed into a sintered body. A method has been proposed for the purpose of improving electric resistance and saturation magnetic flux density (for example, see Patent Document 2).
[0011]
[Patent Document 1]
JP-A-5-217778 [Patent Document 2]
JP-A-9-176779
[Problems to be solved by the invention]
However, in order to achieve higher performance, it has been difficult to achieve a high packing ratio of the dust core in excess of 95% in volume conversion and to perform annealing at a higher temperature. Further, in the sintering method using carbonyl iron powder, since fine powder is handled, handling is complicated, and there is a problem in productivity.
[0013]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and realizes a composite soft magnetic material having excellent DC superposition characteristics and low core loss characteristics in a high frequency band.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention comprises a metal soft magnetic material and a high resistivity material, wherein the high resistivity material makes the metal soft magnetic materials independent of each other and is a continuous body. A composite soft magnetic material which is formed by molding and sintering a powder composed of the metallic soft magnetic material and a constituent element of a high resistivity material, and which reduces eddy current loss and has a high soft magnetic material. It is possible to realize a composite soft magnetic material having a soft magnetic property with a high filling factor.
[0015]
The invention according to claim 2 of the present invention comprises a metal soft magnetic material and a high specific resistance material, wherein the high specific resistance material is a composite soft magnetic material that makes the metal soft magnetic materials independent from each other and presents a continuous body structure. In addition, a composite soft magnetic material formed by melting and casting, which can reduce eddy current loss, achieve a high filling factor, and have excellent soft magnetic characteristics can be realized.
[0016]
According to a third aspect of the present invention, the metal soft magnetic material is selected from at least one of Fe-based, FeNi-based, FeNiMo-based, FeSi-based and FeSiAl-based. A composite soft magnetic material which is a composite soft magnetic material and has excellent soft magnetic properties can be realized.
[0017]
The invention according to claim 4 of the present invention is the invention according to claim 1 or 2, wherein the high resistivity material is formed from at least one selected from the constituent elements of the metal soft magnetic material and at least one from B, P, and S. The composite soft magnetic material according to any one of the above, which can reduce an eddy current loss and realize a composite soft magnetic material having a low core loss.
[0018]
The invention according to claim 5 of the present invention is the composite soft magnetic material according to claim 1 or 2, wherein the filling rate of the metal soft magnetic material is 95% or more in terms of volume. A composite soft magnetic material having characteristics can be realized.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the composite soft magnetic material of the present invention will be described using embodiments.
[0020]
(Embodiment 1)
A first embodiment of the present invention will be described with reference to claims 1, 3 to 5.
[0021]
As a result of intensive studies for the purpose of realizing excellent soft magnetic properties, it is difficult to form a solid solution with the constituent elements of the metal soft magnetic material according to the present invention, forming a compound and having at least one of B, S, and P having high specific resistance. By performing pressure molding using a powder composed of the constituent elements of the metal soft magnetic material according to the present invention to form a compact and then sintering, a high filling factor is realized and the periphery of the metal soft magnetic material is B, A structure surrounded by a high resistivity material composed of at least one of S and P has been realized. The formed high resistivity material makes the metallic soft magnetic materials independent of each other and exhibits a continuum structure, so that eddy current loss can be reduced. Further, since B, S, and P hardly form a solid solution with the constituent elements of the metal soft magnetic material of the present invention, it was found that they did not hinder the good soft magnetic properties possessed by the metal soft magnetic material.
[0022]
The method of preparing the powder used in the present invention is not particularly limited, and may be a predetermined particle size by pulverizing an ingot prepared by various atomizing methods such as water atomizing, gas atomizing or melt casting, or a super-quenching method. The thus prepared belt may be used as it is or after being ground to a predetermined particle size.
[0023]
The molding method in the present invention is not particularly limited, and examples thereof include ordinary pressure molding and pressure molding under heating. In particular, when performing pressure molding under heating, it is possible to simultaneously perform the sintering step after molding.
[0024]
Next, the sintering step in the present invention is desirably performed in a non-oxidizing atmosphere, and is desirably performed at 600 ° C. or more and 1450 ° C. or less. When the temperature is lower than 600 ° C., it is difficult to sufficiently sinter, and it is difficult to obtain a dense sintered body. On the other hand, when the temperature exceeds 1450 ° C., it is almost in a liquid phase state, so that it is difficult to maintain a molded shape.
[0025]
Further, it is desirable that the average particle size of the metal soft magnetic material independent of the high specific resistance material in the present invention is in the range of 5 to 100 μm. If the thickness is smaller than 5 μm, it is difficult to increase the magnetic permeability, and if it exceeds 100 μm, the eddy current loss increases.
[0026]
Further, in the present invention, a heat treatment step may be performed in addition to the sintering step. For example, when the structure of the sintered body of the present invention is not uniform and the average particle size of the metal soft magnetic material is out of the above range, or when the continuity of the high resistivity material is insufficient, the decomposition of the high resistivity material is performed. After heat treatment at a temperature higher than the temperature to sufficiently homogenize, cool and precipitate a high resistivity material to adjust the average particle size of the metal soft magnetic material, or sufficiently increase the continuity of the high resistivity material. It is possible to secure.
[0027]
At this time, in order to sufficiently precipitate the high resistivity material, the heat treatment can be further performed at a temperature lower than the decomposition temperature of the high resistivity material. It is also possible to cool rapidly for tissue control.
[0028]
Furthermore, it is also possible to perform a heat treatment at a temperature lower than the decomposition temperature of the high specific resistance material after quenching for the purpose of sufficiently depositing the high specific resistance material to secure continuity or increasing the reduced crystallinity.
[0029]
Further, in order to improve the uniformity of the powder composition, an ingot produced by melting and casting may be subjected to a heat treatment and then pulverized into a powder.
[0030]
The above-described heat treatment may be appropriately performed depending on the purpose.
[0031]
In the present invention, the content of at least one element selected from B, S, and P is preferably in the range of 0.1 to 10% by weight. If it is less than 0.1 Wt%, it is difficult for the high resistivity material to separate the metal soft magnetic material and realize a continuum structure, and if it exceeds 10 wt%, the filling rate of the metal soft magnetic material becomes 95% by volume conversion. It becomes difficult to do the above.
[0032]
The metal soft magnetic material in the present invention is at least one selected from the group consisting of Fe-based, FeNi-based, FeNiMo-based, FeSi-based, and FeSiAl-based. It shows that the same effect is obtained even if a trace amount of impurities or additives are contained in the main composition.
[0033]
Hereinafter, examples of the present invention will be described.
[0034]
Powders of the metal soft magnetic material having the composition and particle size shown in (Table 1) were prepared by various atomizing methods. The obtained powder was pressed into a toroidal shaped body in a pressure range of 1 to 10 ton / cm 2 and then heat-treated at a temperature shown in Table 1 in an Ar atmosphere to obtain a sintered body. Obtained. The obtained samples were evaluated for DC superposition and core loss. For DC superposition, the magnetic permeability at an applied magnetic field of 50 Oe and a frequency of 100 kHz was measured and evaluated using an LCR meter, and the core loss was measured using an AC BH curve measuring machine at a measurement frequency of 100 kHz and a measured magnetic flux density of 0.1 T. Was done. Further, SEM observation and density measurement were performed to calculate an average particle size and a filling factor of the metal soft magnetic material. The evaluation results are shown in (Table 1).
[0035]
[Table 1]
Figure 2004327762
[0036]
From the results shown in Table 1, it can be seen that good DC bias characteristics and low core loss are exhibited within the range of the present invention.
[0037]
Next, an ingot having a composition of 47.5Fe50Ni2.5S in weight% was prepared by melt casting. The obtained ingot was pulverized into powder having an average particle diameter of about 100 μm, and then press-formed at 6 ton / cm 2 to form a toroidal shaped body. The obtained molded body was first subjected to a heat treatment at 1100 ° C. for 30 minutes in an Ar atmosphere at a heating unit in a heating unit and a cooling unit, and then sintered in an Ar atmosphere. In the above, rapid cooling was performed by blowing Ar gas. Thereafter, heat treatment was performed at 625 ° C. for 1 hour in an Ar atmosphere to obtain a sample.
[0038]
The obtained samples were evaluated for DC superposition and core loss. DC superimposition characteristics, core loss characteristics, SEM observation, and density measurement were performed in the same manner as described above, and the average particle size and filling factor of the metal soft magnetic material were calculated. As a result of the evaluation, the magnetic permeability was 70, the core loss was 590 kw / m 3 , the average particle diameter was 5.2 μm, and the filling rate was 99.1%. From the above results, it can be seen that good DC superimposition characteristics and low core loss are exhibited within the range of the example of the present invention.
[0039]
(Embodiment 2)
A second embodiment of the present invention will be described with reference to the second embodiment.
[0040]
In the present invention, a heat treatment step may be performed after the melt casting.
[0041]
For example, when the sample obtained by melt casting has a non-uniform structure and the average particle size of the metal soft magnetic material is out of the above range, or when the continuity of the high specific resistance material is insufficient, a high value is obtained. Heat treatment at a temperature higher than the decomposition temperature of the specific resistance material to sufficiently homogenize it and then cool it to precipitate a high specific resistance material to adjust the average particle size of the metal soft magnetic material, or continuity of the high specific resistance material Can be sufficiently secured.
[0042]
At this time, in order to sufficiently precipitate the high specific resistance material, it is possible to perform the heat treatment at a temperature lower than the decomposition temperature of the high specific resistance material.
[0043]
It is also possible to perform rapid cooling in the cooling process at the time of heat treatment after melting casting for controlling the structure. Even in the case of quenching, in order to ensure sufficient continuity by further precipitating the high resistivity material sufficiently, or to increase the crystallinity reduced by the quenching treatment, the temperature of the high resistivity material after the quenching is decomposed. It is also possible to perform the heat treatment at a low temperature. These heat treatments may be appropriately performed depending on the purpose.
[0044]
Hereinafter, examples of the present invention will be described.
[0045]
An ingot having the composition shown in (Table 2) was prepared by melt casting. The obtained ingot was heat-treated in an Ar atmosphere under the conditions shown in (Table 2) and then processed into a toroidal shape to obtain a sample.
[0046]
The obtained sample was measured and evaluated for DC superposition and core loss. The measurement / evaluation method was the same as in the first embodiment.
[0047]
In addition, SEM observation and density measurement were performed to calculate the average particle size and filling factor of the metal soft magnetic material. The evaluation / measurement results are shown in (Table 2).
[0048]
[Table 2]
Figure 2004327762
[0049]
From the results of Table 2, it can be seen that a high filling ratio of the metal soft magnetic material is realized in the range of the example of the present invention, and good DC bias characteristics and low core loss are exhibited.
[0050]
【The invention's effect】
As described above, according to the present invention, by realizing a composite magnetic material exhibiting excellent DC superimposition characteristics and low core loss characteristics in a high frequency band, it is possible to provide an inductance component that can be reduced in size and increased in frequency. It becomes.

Claims (5)

金属軟磁性材と高固有抵抗物質からなり、高固有抵抗物質は金属軟磁性材を互いに独立させ且つ連続体である組織を呈する複合軟磁性材料であって、前記金属軟磁性材と高固有抵抗物質の構成元素からなる粉末を成形・焼結して形成した複合軟磁性材料。The high-resistivity material is a composite soft-magnetic material that is made of a metal soft magnetic material and a high resistivity material, and is a composite soft magnetic material that makes the metal soft magnetic materials independent from each other and presents a texture that is a continuum. A composite soft magnetic material formed by molding and sintering a powder consisting of the constituent elements of a substance. 金属軟磁性材と高固有抵抗物質からなり、高固有抵抗物質は金属軟磁性材を互いに独立させ且つ連続体である組織を呈する複合軟磁性材料であって、溶解・鋳造して形成した複合軟磁性材料。The high resistivity material is a composite soft magnetic material that is made of a metal soft magnetic material and a high resistivity material, and is a composite soft magnetic material that exhibits a texture that is a continuum of the metal soft magnetic materials independent of each other. Magnetic material. 金属軟磁性材がFe系、FeNi系、FeNiMo系、FeSi系およびFeSiAl系のうち少なくとも一種から選ばれた請求項1または2のいずれかに記載の複合軟磁性材料。3. The composite soft magnetic material according to claim 1, wherein the metal soft magnetic material is selected from at least one of Fe-based, FeNi-based, FeNiMo-based, FeSi-based, and FeSiAl-based. 高固有抵抗物質が金属軟磁性材の構成元素から選ばれた少なくとも一種と、B、P、Sのうち少なくとも一種から形成された請求項1または2のいずれかに記載の複合軟磁性材料。3. The composite soft magnetic material according to claim 1, wherein the high specific resistance material is formed of at least one selected from the constituent elements of the metal soft magnetic material and at least one of B, P, and S. 金属軟磁性材の充填率が体積換算で95%以上である請求項1または2のいずれかに記載の複合軟磁性材料。3. The composite soft magnetic material according to claim 1, wherein the filling rate of the metal soft magnetic material is 95% or more in terms of volume.
JP2003121182A 2003-04-25 2003-04-25 Composite soft magnetic material Pending JP2004327762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121182A JP2004327762A (en) 2003-04-25 2003-04-25 Composite soft magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121182A JP2004327762A (en) 2003-04-25 2003-04-25 Composite soft magnetic material

Publications (1)

Publication Number Publication Date
JP2004327762A true JP2004327762A (en) 2004-11-18

Family

ID=33499827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121182A Pending JP2004327762A (en) 2003-04-25 2003-04-25 Composite soft magnetic material

Country Status (1)

Country Link
JP (1) JP2004327762A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059848A (en) * 2007-08-31 2009-03-19 Tamura Seisakusho Co Ltd Core material, core using the same, and choke coil using the core
EP2963139A2 (en) 2014-06-30 2016-01-06 Aisin Seiki Kabushiki Kaisha Iron-based soft magnetic material
CN106373694A (en) * 2016-08-31 2017-02-01 北京康普锡威科技有限公司 Fabrication method of Fe-based amorphous soft magnetic composite powder core
CN106409461A (en) * 2016-08-31 2017-02-15 北京康普锡威科技有限公司 Preparation method for low-loss FeSi6.5 soft magnetic composite powder core
CN106971804A (en) * 2017-03-17 2017-07-21 华南理工大学 A kind of FeSiB amorphous powder cores and preparation method thereof
CN107974869A (en) * 2017-12-08 2018-05-01 电子科技大学 A kind of preparation method of highly oriented high filling FeSiAl flexible compound paper

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059848A (en) * 2007-08-31 2009-03-19 Tamura Seisakusho Co Ltd Core material, core using the same, and choke coil using the core
EP2963139A2 (en) 2014-06-30 2016-01-06 Aisin Seiki Kabushiki Kaisha Iron-based soft magnetic material
EP2963139A3 (en) * 2014-06-30 2016-03-02 Aisin Seiki Kabushiki Kaisha Iron-based soft magnetic material
CN106373694A (en) * 2016-08-31 2017-02-01 北京康普锡威科技有限公司 Fabrication method of Fe-based amorphous soft magnetic composite powder core
CN106409461A (en) * 2016-08-31 2017-02-15 北京康普锡威科技有限公司 Preparation method for low-loss FeSi6.5 soft magnetic composite powder core
CN106409461B (en) * 2016-08-31 2019-12-10 北京康普锡威科技有限公司 Preparation method of low-loss FeSi6.5 soft magnetic composite powder core
CN106971804A (en) * 2017-03-17 2017-07-21 华南理工大学 A kind of FeSiB amorphous powder cores and preparation method thereof
CN107974869A (en) * 2017-12-08 2018-05-01 电子科技大学 A kind of preparation method of highly oriented high filling FeSiAl flexible compound paper
CN107974869B (en) * 2017-12-08 2020-07-21 电子科技大学 Preparation method of high-orientation high-filling FeSiAl flexible composite paper

Similar Documents

Publication Publication Date Title
JP6459154B2 (en) Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, and coil component
JP5912349B2 (en) Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
Chang et al. Low core loss combined with high permeability for Fe-based amorphous powder cores produced by gas atomization powders
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
KR20050015563A (en) Method for Making Fe-Based Amorphous Metal Powder and Method for Making Soft Magnetic Core Using the Same
KR101953032B1 (en) Soft magnetic metal dust core and reactor having thereof
JP2008258601A (en) Core-shell type magnetic particle, high-frequency magnetic material and magnetic sheet
WO2018179812A1 (en) Dust core
JP2001011563A (en) Manufacture of composite magnetic material
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
KR20200112736A (en) Magnetic core and coil component
JP6229166B2 (en) Composite magnetic material for inductor and manufacturing method thereof
WO2003060930A1 (en) Powder magnetic core and high frequency reactor using the same
JP2012222062A (en) Composite magnetic material
JP2017054910A (en) Soft magnetic metal powder compact core
JP2003160847A (en) Composite magnetic material, magnetic element using the same, and manufacture method therefor
JP2004327762A (en) Composite soft magnetic material
JP2003243215A (en) Composite magnetic material
JP4106966B2 (en) Composite magnetic material and manufacturing method thereof
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP2022168543A (en) Magnetic metal/ferrite composite and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A977 Report on retrieval

Effective date: 20080806

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A02 Decision of refusal

Effective date: 20090804

Free format text: JAPANESE INTERMEDIATE CODE: A02