JPH11238614A - Soft magnetic material and manufacture thereof and electrical equipment using the same - Google Patents

Soft magnetic material and manufacture thereof and electrical equipment using the same

Info

Publication number
JPH11238614A
JPH11238614A JP5575898A JP5575898A JPH11238614A JP H11238614 A JPH11238614 A JP H11238614A JP 5575898 A JP5575898 A JP 5575898A JP 5575898 A JP5575898 A JP 5575898A JP H11238614 A JPH11238614 A JP H11238614A
Authority
JP
Japan
Prior art keywords
metal
iron
soft magnetic
magnetic material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5575898A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ikeda
満昭 池田
Toshiyuki Ishibashi
利之 石橋
Yuji Ishida
雄二 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP5575898A priority Critical patent/JPH11238614A/en
Publication of JPH11238614A publication Critical patent/JPH11238614A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a soft magnetic material having high permeability, superior frequency characteristics, even superior mechanical strength and high saturation magnetic flux density. SOLUTION: In the manufacture of the soft magnetic material, a molded form 4 is molded of magnetic powder 1, consisting of the metallic particles 2 of iron or an iron alloy having initial oxide films 31 on surfaces and having mean grain size of 10-400 μm, the void sections of the molded form are impregnated with at least one kind from among of a binding metal 6 of molten aluminum, magnesium and these alloys as an element easier to be oxidized than iron, and the oxide of iron is reduced, thus obtaining the soft magnetic material with the final oxide films 32 of the binding metal. Heat treatment is conducted at a temperature of 300 deg.C or higher after the impregnation of the binding metal, and the final oxide films 32 may also be formed. Accordingly, a stator or a rotor for a motor, a transformer, a reactor, a thyristor valve, a magnetic head, etc., can be manufactured by the use of the prepared soft magnetic material as an iron core.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度で、低渦電
流損失、高飽和磁束密度および高周波における高透磁率
を有する軟質磁性材料とその製造方法ならびにそれを用
いた電動機のロータおよびステータ、リアクトル、トラ
ンス、磁気ヘッド用ヨークなどの電気機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic material having high strength, low eddy current loss, high saturation magnetic flux density and high magnetic permeability at high frequencies, a method of manufacturing the same, a rotor and a stator of a motor using the same, The present invention relates to electrical equipment such as a reactor, a transformer, and a yoke for a magnetic head.

【0002】[0002]

【従来の技術】モータをはじめとする電気機器は近年高
周波領域で使用される事が多くなった。このような機器
に使用される磁性材料は優れた磁気特性を有する軟質磁
性材料が選定され使用される。ところが、交流使用では
鉄損( ヒステリシス損失と渦電流損失の和) が大きくて
エネルギーロスとなる。渦電流損失は周波数の二乗に比
例して増加するために、交流損失を少なくする目的で、
例えば珪素鋼板を積層して使用する。それでも商用周波
数領域で鉄損の20%を渦電流損失が占める。また、1
kHz 以上に成るとヒステリシス損失より渦電流損失
が大きくなると共にヒステリシス損失も大きくなる。従
って、高周波領域で使用される磁性材料は透磁率の低下
で本来の材料自身が持っている飽和磁束密度よりはるか
に低い磁束密度でしか使用する事が出来なくなる。地球
環境問題からもエネルギーの節約が叫ばれており、モー
タでは効率の向上が不可欠となっている。
2. Description of the Related Art In recent years, electric devices such as motors have been frequently used in a high frequency range. As a magnetic material used for such a device, a soft magnetic material having excellent magnetic properties is selected and used. However, in AC use, iron loss (sum of hysteresis loss and eddy current loss) is large, resulting in energy loss. Eddy current loss increases in proportion to the square of the frequency, so in order to reduce AC loss,
For example, a silicon steel sheet is laminated and used. Nevertheless, eddy current loss accounts for 20% of iron loss in the commercial frequency range. Also, 1
When the frequency exceeds kHz, the eddy current loss becomes larger than the hysteresis loss, and the hysteresis loss also becomes larger. Therefore, a magnetic material used in a high-frequency region can be used only at a magnetic flux density much lower than the saturation magnetic flux density of the original material due to a decrease in magnetic permeability. Energy conservation is also being called out from global environmental issues, and it is essential to improve the efficiency of motors.

【0003】[0003]

【発明が解決しようとする課題】このような問題に対し
て、軟質磁性材料にアモルファスを適用する事が検討さ
れたが、渦電流損失の低減効果は有るものの製品成形時
の少しの応力で磁気特性が低下するために用途がきわめ
て限定される。また、酸化皮膜で覆われた鉄を圧縮成形
して形成した圧粉磁心(たとえば、特公平6−8257
7号)や樹脂を鉄粉表面に被覆した樹脂成形体(たとえ
ば、特開平9−102409号)などが検討されてい
る。圧粉磁心は粉体どおしの結合剤が弱いために、製品
成形体が取り扱い時に欠けたり割れたりするために用途
が限定される事や、電気抵抗が低くならない範囲で磁気
特性を向上させる高温熱処理を長時間できないために磁
気特性も不十分であった。樹脂成形体は樹脂を結合材と
して使用している関係で、成形時に応力で劣化した鉄の
磁気特性を改善させるための熱処理を700℃以上で出
来ないために、電気抵抗だけは大きいが、磁気特性は非
常に低かった。700℃以上で熱処理すれば樹脂皮膜が
消失し電気抵抗値が低下する。そこで、本発明は高透磁
率で優れた周波数特性を有し、機械的強度にも優れた高
飽和磁束密度を有する軟質磁性材料とその製造方法なら
びにそれを用いた電気機器を提供することを目的とす
る。
In order to solve such a problem, application of an amorphous material to a soft magnetic material has been studied. However, although there is an effect of reducing eddy current loss, the magnetic material can be applied with a small stress during molding of a product. The use is very limited due to the reduced properties. A dust core formed by compression molding iron covered with an oxide film (for example, Japanese Patent Publication No. 6-8257)
No. 7) and a resin molded product in which a resin is coated on the surface of an iron powder (for example, Japanese Patent Application Laid-Open No. 9-102409). Dust cores have weak binders in the powder, which limits the application of the molded product to chipping or cracking during handling, and improves magnetic properties as long as the electrical resistance does not decrease. Magnetic properties were also insufficient because high-temperature heat treatment could not be performed for a long time. Since the resin molded body uses resin as a binder, heat treatment for improving the magnetic properties of iron deteriorated by stress at the time of molding cannot be performed at 700 ° C. or more, so only electric resistance is large, Properties were very low. If the heat treatment is performed at 700 ° C. or more, the resin film disappears and the electric resistance decreases. Therefore, an object of the present invention is to provide a soft magnetic material having a high magnetic flux density and a high saturation magnetic flux density having an excellent mechanical strength and an excellent frequency characteristic, a method of manufacturing the same, and an electric device using the same. And

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は以下の構成としたものである。 (1) 平均粒径10〜400μmの鉄又は鉄合金からなる
金属粒子とこの金属粒子の周囲を覆う鉄より酸化しやす
い元素を主成分とした金属酸化物とからなる磁性粉末
と、前記磁性粉末同志を結合させ、かつ前記金属酸化物
の成分を含有する結合金属とを有する軟質磁性材料であ
る。鉄より酸化しやすい金属で酸化物を構成したので、
鉄酸化物を還元して新しい酸化物を作り、同時に結合材
とすることができる。 (2) 前記金属酸化物の厚さが0.02〜10μmで、か
つ前記磁性粉末の体積が全体の80%以上である。酸化
物の厚さを0.02〜10μmの範囲に限定することに
より、絶縁性が保たれ、固有抵抗値が100μΩc m以
上と高くなる。固有抵抗値が100μΩcm以上は珪素
鋼板5倍の固有抵抗値となるため、渦電流の損失を25
分の1にすることができる。また、材料全体の中の非磁
性相の存在が少ないので、飽和磁束密度が低下すること
がない。さらに、磁性粉末の体積を80%以上としたの
で、磁性材料の部分の減少がなく、飽和磁束密度が現在
使用されている磁性鋼の値と同等の15000G以上に
なる。 (3) 前記金属粒子が珪素、アルミニウムのうち少なくと
も一つを含み、かつその体積が8%以下である。 (4) 前記金属粒子がセンダストまたはFe−Co系合金
である。 (5) 前記金属酸化物がアルミニウム酸化物、シリコン酸
化物、マグネシウム酸化物のいずれかである。 (6) 前記金属酸化物の一部が鉄酸化物である請求項1か
ら5のいずれか1項に記載の軟質磁性材料。 (7) 前記結合金属がアルミニウム、マグネシウム、また
はそれらの合金である。これらの元素は鉄より酸化物生
成エネルギーの大きので、鉄の酸化物を還元し、絶縁抵
抗の高い新しい金属酸化膜が得られる。 (8) 前記結合金属が珪素を体積比で40〜70%含むア
ルミニウム合金である。 珪素を40〜70%に限定す
ることにより、熱膨張係数が鉄粒子と同じに成る。この
ため、熱処理時に鉄粒子に応力がかからないので、磁気
特性の低下が非常に小さくなる。 (9) 表面に金属酸化物を有する平均粒径10〜400μ
mの鉄又は鉄合金の金属粒子からなる磁性粉末で成形体
を成形し、前記成形体を加熱した状態で前記成形体の空
隙部に結合金属である溶融したアルミニウム、マグネシ
ウムおよびそれらの合金の少なくとも一種類を含浸さ
せ、軟質磁性材料を得る製造方法である。表面が酸化さ
れた鉄粒子の成型体に溶融した例えばアルミニウムを加
圧・含浸することにより、鉄の酸化物が還元されてアル
ミニウムの酸化物に変わる。すなわち、アルミニウムの
酸化物で覆われた鉄粒子と粒子間に結合材としてのアル
ミニウムが存在する材料が形成される。結合材としての
アルミニウムと酸化アルミニウムの境界は傾斜合金に成
っている。つまり、金属アルミニウムから鉄粒子の方向
に向かって次第に酸化アルミに変化していることで結合
力を強くしている。更にこの構造は、成形時に鉄粒子に
残存する応力を除去するために700℃以上で加熱して
も酸化アルミの特性を変化させない。 (10)平均粒径10〜400μmの鉄又は鉄合金の金属粒
子からなる磁性粉末で成形体を成形し、前記成形体を3
00℃以上に加熱して前記金属粒子の表面を酸化させて
金属酸化物を生成し、前記成形体を加熱した状態で前記
成形体の空隙部に結合金属である溶融したアルミニウ
ム、マグネシウムおよびそれらの合金の少なくとも一種
類を含浸させ、軟質磁性材料を得る製造方法である。 (11)前記結合金属を含浸した後、700℃以上で熱処理
を行い前記金属粒子の残留応力を除去する軟質磁性材料
の製造方法である。700℃以上で熱処理することによ
り鉄の残留応力が除去できるので、磁気特性を著しく向
上できる。 また、鉄酸化物の還元と同時に新しい酸化皮
膜の形成を促進できる。 (12)前記結合金属を含浸した後、前記結合金属の融点か
ら300℃の間の一定温度に保持する熱処理を行い、前
記金属粒子の表面に形成されていた鉄の金属酸化物を前
記結合金属で還元し、前記金属酸化物を前記金属粒子の
周囲に形成する軟質磁性材料の製造方法である。300
℃以上でアルミニウムと鉄酸化物を接触させると鉄酸化
物が還元されアルミ酸化物が出来る。まだ低い温度でも
良いが時間がかかるのでコスト的に不利になる。鉄酸化
物とはFe2 3 、Fe3 4 、FeO、これらの複合
物質を言う。鉄酸化物を還元するために、還元条件によ
っては鉄酸化物が残る事もあり、特性的に影響無い程度
なら問題ない。 (13)前記結合金属を前記磁性粉末に含浸する時に前記成
形体内部を減圧する軟質磁性材料の製造方法である。成
形体内部を減圧することにより、溶融した金属は粒子間
に入りやすくなる。また、含浸時の加熱は温度を高くし
たほうが融けた金属は粒子間に入りやすい。 (14)平均粒径10〜400μmの鉄又は鉄合金からなる
金属粒子とこの金属粒子の周囲を覆う鉄より酸化しやす
い元素を主成分とした金属酸化物とからなる磁性粉末
と、前記磁性粉末同志を結合させ、かつ前記金属酸化物
の成分を含有する結合金属とを有した軟質磁性材料を用
いて鉄心コアを成形した電動機の固定子または回転子、
トランス、リアクトル、サイリスタバルブ、磁気ヘッド
である。
Means for Solving the Problems To solve the above problems, the present invention has the following constitution. (1) a magnetic powder composed of metal particles made of iron or an iron alloy having an average particle diameter of 10 to 400 μm and a metal oxide covering the periphery of the metal particles and mainly containing an element more easily oxidized than iron, and the magnetic powder A soft magnetic material which binds together and has a bonding metal containing the component of the metal oxide. Since the oxide is composed of a metal that is easier to oxidize than iron,
Iron oxide can be reduced to form a new oxide and at the same time be used as a binder. (2) The thickness of the metal oxide is 0.02 to 10 μm, and the volume of the magnetic powder is 80% or more of the whole. By limiting the thickness of the oxide to the range of 0.02 to 10 μm, the insulating property is maintained, and the specific resistance is increased to 100 μΩcm or more. When the specific resistance is 100 μΩcm or more, the specific resistance is five times as large as that of the silicon steel sheet.
Can be reduced by a factor of one. Further, since there is little nonmagnetic phase in the entire material, the saturation magnetic flux density does not decrease. Further, since the volume of the magnetic powder is set to 80% or more, the portion of the magnetic material does not decrease, and the saturation magnetic flux density becomes 15000 G or more, which is equivalent to the value of magnetic steel currently used. (3) The metal particles contain at least one of silicon and aluminum, and have a volume of 8% or less. (4) The metal particles are Sendust or an Fe-Co alloy. (5) The metal oxide is any of aluminum oxide, silicon oxide, and magnesium oxide. (6) The soft magnetic material according to any one of claims 1 to 5, wherein a part of the metal oxide is an iron oxide. (7) The binding metal is aluminum, magnesium, or an alloy thereof. Since these elements have a higher oxide generation energy than iron, they reduce the oxide of iron, and a new metal oxide film having high insulation resistance can be obtained. (8) The binding metal is an aluminum alloy containing 40 to 70% by volume of silicon. By limiting silicon to 40-70%, the coefficient of thermal expansion becomes the same as that of iron particles. For this reason, since no stress is applied to the iron particles during the heat treatment, the deterioration of the magnetic properties is very small. (9) Average particle size having metal oxide on the surface 10 to 400μ
m is formed of a magnetic powder made of metal particles of iron or an iron alloy, and at least one of molten aluminum, magnesium, and their alloys as bonding metals in the voids of the molded body while the molded body is heated. This is a production method in which one type is impregnated to obtain a soft magnetic material. By pressurizing and impregnating, for example, aluminum, which has been melted into a molded body of iron particles whose surface has been oxidized, iron oxide is reduced and changed to aluminum oxide. That is, a material in which aluminum as a binder is present between iron particles covered with aluminum oxide and particles is formed. The boundary between aluminum as the binder and aluminum oxide is made of a graded alloy. That is, the bonding force is increased by gradually changing from metallic aluminum to aluminum oxide in the direction of the iron particles. Furthermore, this structure does not change the characteristics of aluminum oxide even when heated at 700 ° C. or higher to remove the stress remaining on the iron particles during molding. (10) A compact is formed from magnetic powder composed of iron or iron alloy metal particles having an average particle size of 10 to 400 μm,
The surface of the metal particles is oxidized by heating to at least 00 ° C. to form a metal oxide, and in a state where the molded body is heated, molten aluminum, magnesium, and the like, which are bonding metals in voids of the molded body, This is a method for producing a soft magnetic material by impregnating at least one kind of alloy. (11) A method for producing a soft magnetic material in which after the impregnation with the binding metal, heat treatment is performed at 700 ° C. or higher to remove the residual stress of the metal particles. By performing the heat treatment at 700 ° C. or more, the residual stress of iron can be removed, so that the magnetic properties can be significantly improved. Further, the formation of a new oxide film can be promoted simultaneously with the reduction of the iron oxide. (12) After impregnating the binding metal, a heat treatment is performed to maintain a constant temperature between the melting point of the binding metal and 300 ° C. to remove the metal oxide of iron formed on the surface of the metal particles by the binding metal. And forming the metal oxide around the metal particles by a soft magnetic material. 300
When aluminum and iron oxide are brought into contact at a temperature of not less than ° C, iron oxide is reduced to form aluminum oxide. Although a lower temperature may be used, it takes time, which is disadvantageous in terms of cost. Iron oxide refers to Fe 2 O 3 , Fe 3 O 4 , FeO, and composite substances thereof. In order to reduce iron oxides, iron oxides may remain depending on the reducing conditions, and there is no problem as long as the characteristics are not affected. (13) A method for producing a soft magnetic material, wherein the inside of the compact is depressurized when the magnetic powder is impregnated with the binding metal. By reducing the pressure inside the molded body, the molten metal easily enters between the particles. In addition, as for the heating during the impregnation, the higher the temperature, the more easily the molten metal enters between the particles. (14) a magnetic powder composed of metal particles made of iron or an iron alloy having an average particle diameter of 10 to 400 μm and a metal oxide covering the periphery of the metal particles and mainly containing an element more easily oxidized than iron, and the magnetic powder A stator or a rotor of an electric motor in which a core is formed using a soft magnetic material having a bonding metal containing the components of the metal oxide, and
Transformers, reactors, thyristor valves, and magnetic heads.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて詳細に説明する。図1は本発明の軟質磁性材料を製
造する製造工程の概念を示す模式図である。図におい
て、1は磁性粉末、2は金属粒子、3は金属粒子2の表
面を覆う金属酸化物、4は磁性粉末1を所望の形状に成
形した成形体、5は磁性粉末1の間の空隙、6は空隙5
に含浸させ磁性粉末1同志を結合させる結合金属であ
る。7は成形体4と結合金属6とを加圧含浸させる容
器、8はピストンである。金属酸化物3は二種類あり、
一つは金属粒子2の酸化膜で最初から既に生成している
場合と、酸化処理により生成させる場合とがある初期酸
化膜31であり、他の一つは結合金属6との反応により
新たに生成し、最終的に絶縁皮膜となる最終酸化膜32
である。磁性粉末1は鉄の金属粒子2の表面に初期酸化
膜31としてFe2 3 が生成したものを用い、結合金
属6としてアルミニウムを用いた。成形体4として、縦
5mm、横10mm、長さ60mmの直方体にプレス成
形したものである。つぎに、表1に示すように磁性粉末
1の組成を種々変えて試料を作製した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic view showing the concept of the manufacturing process for manufacturing the soft magnetic material of the present invention. In the figure, 1 is a magnetic powder, 2 is a metal particle, 3 is a metal oxide covering the surface of the metal particle 2, 4 is a molded product obtained by molding the magnetic powder 1 into a desired shape, and 5 is a gap between the magnetic powders 1. , 6 are voids 5
Is a bonding metal that is impregnated with the magnetic powder to bond one magnetic powder to another. Reference numeral 7 denotes a container for impregnating the compact 4 and the bonding metal 6 under pressure, and 8 denotes a piston. There are two types of metal oxides 3,
One is an initial oxide film 31 that may be formed from the oxide film of the metal particles 2 from the beginning and the other may be generated by an oxidation treatment. The final oxide film 32 which is formed and finally becomes an insulating film
It is. The magnetic powder 1 was prepared by forming Fe 2 O 3 on the surface of iron metal particles 2 as the initial oxide film 31, and aluminum was used as the bonding metal 6. The molded body 4 is press-formed into a rectangular parallelepiped having a length of 5 mm, a width of 10 mm, and a length of 60 mm. Next, as shown in Table 1, samples were prepared by changing the composition of the magnetic powder 1 variously.

【0006】[0006]

【表1】 [Table 1]

【0007】成形体4の形状は図2に示す外径30m
m、内径20mm、高さ5mmのリング状のものおよび
図1に示す縦5mm、横10mm、長さ60mmの直方
体にプレス成形したものを用いた。リング状試料は磁気
測定を行い透磁率と飽和磁束密度を測定するために、直
方体試料は抵抗値と衝撃試験を行うために使用した。成
形圧力は7ton/cm2 とした。No16の試料に付
いては粒子の表面に初期酸化膜31が付いていないの
で、成形体4を空気中で350℃で8時間加熱して初期
酸化膜31を形成した。その後他の成形体4と共に表1
に示した温度に加熱後、溶融した結合金属6を図1に示
したような装置で加圧含浸した。成形体4の組織の模式
図を図3に示す。初期酸化膜31と結合金属6とが反応
してできた最終酸化膜32である絶縁皮膜が認められ
る。最終酸化膜32は膜厚や材質などを電子顕微鏡とX
線マイクロアナライザで測定したが、絶縁皮膜の中には
鉄酸化物が残っているものも有った。加圧・含浸した
後、その含浸温度で初期酸化膜31の還元と同時に生成
した最終酸化膜32を形成をした試料(No.1、7〜
16) および含浸温度より低い温度で生成した最終酸化
膜32を試料を形成した。比較例として初期酸化膜31
だけがあり、結合金属のない試料を加えた。次に、鉄の
金属粒子2の残留応力を除去する熱処理を実施した。な
お、含浸温度を750℃以上にしてその温度に保持すれ
ば改めてこの処理は必要ない。形成した試料はいずれも
80体積%以上に成るように調整している。透磁率、飽
和磁束密度、抵抗値の各測定結果および衝撃試験の結果
を表2に示す。
The shape of the molded body 4 is 30 m in outer diameter shown in FIG.
m, an inner diameter of 20 mm, and a height of 5 mm were used, and a rectangular parallelepiped having a length of 5 mm, a width of 10 mm, and a length of 60 mm shown in FIG. 1 was used. The ring-shaped sample was used for performing magnetic measurement to measure the magnetic permeability and the saturation magnetic flux density, and the rectangular parallelepiped sample was used for performing a resistance value and an impact test. The molding pressure was 7 ton / cm 2 . For the sample of No. 16, the initial oxide film 31 was not attached to the surface of the particles. Therefore, the compact 4 was heated in air at 350 ° C. for 8 hours to form the initial oxide film 31. After that, Table 1 together with the other moldings 4
After heating to the temperature shown in FIG. 1, the molten bonding metal 6 was impregnated with pressure by an apparatus as shown in FIG. FIG. 3 shows a schematic diagram of the structure of the molded body 4. An insulating film, which is a final oxide film 32 formed by the reaction between the initial oxide film 31 and the bonding metal 6, is observed. The final oxide film 32 has a film thickness and material etc.
As a result of measurement with a wire microanalyzer, some of the insulating films still contained iron oxide. After pressurizing and impregnating, samples (No. 1, 7 to 7) in which the final oxide film 32 formed simultaneously with the reduction of the initial oxide film 31 at the impregnation temperature were formed.
16) and a final oxide film 32 formed at a temperature lower than the impregnation temperature was formed as a sample. Initial oxide film 31 as a comparative example
Only but no bound metal was added. Next, heat treatment for removing the residual stress of the iron metal particles 2 was performed. This treatment is not necessary if the impregnation temperature is set to 750 ° C. or more and maintained at that temperature. The formed samples are all adjusted to be 80% by volume or more. Table 2 shows the measurement results of the magnetic permeability, the saturation magnetic flux density, and the resistance value, and the results of the impact test.

【0008】[0008]

【表2】 [Table 2]

【0009】本実施例のうち、数値限定の範囲外のN
o.7、No.10、No.13の試料および比較例の
ものを除いては、全ての特性を満たしており、満足でき
るものである。No.14、15は結合金属6の熱膨張
係数が鉄とほぼ同じであるため歪の影響が少なく透磁率
が高くなっている。No.2は鉄−シリコン合金が歪の
影響を受け難いために透磁率が高い。比較例として用い
た初期に鉄酸化皮膜の無い試料は、衝撃試験で容易に折
れる。No.7の試料は磁性粉末1の粒径が小さいので
透磁率が低い。No.10の試料は金属酸化物の厚さが
薄いので抵抗が低い。No.13の試料は磁性粉末1の
最終酸化膜32の厚さが厚すぎるために飽和磁束密度が
低い。次に本発明の方法で電気機器に用いられる成形体
を形成した。外径45mmのモータ用ステータ、500
mm角のトランス用ヨークおよび磁気ヘッドの例をそれ
ぞれ図4〜6の斜視図に示す。いずれの電気機器も欠け
割れもなく優れた成形体が得られた。なお、成形時に磁
界を印加すれば、一定方向に磁気特性が優れた異方性材
料を得ることができる。このように、交流電圧で使用さ
れる電気機器の損失を低減でき、また、成形を一括で出
来るので、例えば珪素鋼板を積層する手間が省け、複雑
形状にも適するなど大幅なコストの低減が期待できる。
In this embodiment, N out of the numerical range is limited.
o. 7, no. 10, No. Except for the 13 samples and the comparative example, all the properties were satisfied and satisfied. No. In Nos. 14 and 15, since the thermal expansion coefficient of the bonding metal 6 is almost the same as that of iron, the influence of strain is small and the magnetic permeability is high. No. No. 2 has a high magnetic permeability because the iron-silicon alloy is hardly affected by strain. The sample having no iron oxide film at the beginning used as a comparative example is easily broken in the impact test. No. Sample No. 7 has a low magnetic permeability because the particle size of the magnetic powder 1 is small. No. The sample No. 10 has a low resistance because the thickness of the metal oxide is small. No. The sample No. 13 has a low saturation magnetic flux density because the final oxide film 32 of the magnetic powder 1 is too thick. Next, a molded article used for electric equipment was formed by the method of the present invention. Motor stator with outer diameter of 45mm, 500
Examples of a transformer yoke and a magnetic head of a square mm are shown in perspective views of FIGS. All of the electric devices obtained excellent molded articles without chipping and cracking. If a magnetic field is applied during molding, an anisotropic material having excellent magnetic properties in a certain direction can be obtained. In this way, the loss of electrical equipment used with AC voltage can be reduced, and the molding can be performed in a lump, which saves the labor of laminating silicon steel sheets and is expected to drastically reduce costs such as being suitable for complicated shapes. it can.

【0010】[0010]

【発明の効果】以上述べたように、本発明によれば、鉄
より酸化しやすい元素を主成分とした金属酸化物で周囲
を覆われた鉄又は鉄合金からなる金属粒子と磁性粉末同
志を結合する結合金属とを加圧含浸させる方法を用いた
ので、機械的強度、磁気特性、高電気抵抗に優れた軟質
磁性材料が得られた。このために、交流電圧で使用され
る電気機器の損失を低減できる効果が有る。また、成形
を一括で出来るので、例えば珪素鋼板を積層する手間が
省け、複雑形状にも適するなど大幅なコストの低減が期
待できる。
As described above, according to the present invention, metal particles composed of iron or an iron alloy whose periphery is covered with a metal oxide mainly containing an element more easily oxidized than iron are combined with magnetic powder. Since a method of impregnating with a bonding metal to be bonded was used under pressure, a soft magnetic material excellent in mechanical strength, magnetic properties and high electric resistance was obtained. For this reason, there is an effect that the loss of the electric equipment used with the AC voltage can be reduced. Further, since the forming can be performed at a time, for example, labor for laminating silicon steel plates can be omitted, and a great cost reduction can be expected, such as being suitable for complicated shapes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の軟質磁性材料を製造する製造工程を示
す模式図である。
FIG. 1 is a schematic view showing a manufacturing process for manufacturing a soft magnetic material of the present invention.

【図2】本発明の成形体の構造を示す斜視図である。FIG. 2 is a perspective view showing a structure of a molded article of the present invention.

【図3】図2の組織構造を示す拡大模式図である。FIG. 3 is an enlarged schematic diagram showing the tissue structure of FIG. 2;

【図4】本発明で形成したモータステータの斜視図であ
る。
FIG. 4 is a perspective view of a motor stator formed by the present invention.

【図5】本発明で形成したトランスコアの斜視図であ
る。
FIG. 5 is a perspective view of a transformer core formed by the present invention.

【図6】本発明で形成した磁気ヘッドの斜視図である。FIG. 6 is a perspective view of a magnetic head formed according to the present invention.

【符号の説明】 1:磁性粉末 2:金属粒子 3:金属酸化物 31:初期酸化膜 32:最終酸化膜 4:成形体 5:空隙 6:結合金属 7:容器 8:ピストン[Description of Signs] 1: Magnetic powder 2: Metal particles 3: Metal oxide 31: Initial oxide film 32: Final oxide film 4: Molded body 5: Void 6: Bonding metal 7: Container 8: Piston

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】平均粒径10〜400μmの鉄又は鉄合金
からなる金属粒子とこの金属粒子の周囲を覆う鉄より酸
化しやすい元素を主成分とした金属酸化物とからなる磁
性粉末と、前記磁性粉末同志を結合させ、かつ前記金属
酸化物の成分を含有する結合金属とを有することを特徴
とする軟質磁性材料。
1. A magnetic powder comprising metal particles made of iron or an iron alloy having an average particle size of 10 to 400 μm, and a metal oxide covering the periphery of the metal particles and mainly containing an element more easily oxidized than iron, A soft magnetic material, comprising: a magnetic metal; and a bonding metal containing the metal oxide component.
【請求項2】前記金属酸化物の厚さが0.02〜10μ
mで、かつ前記磁性粉末の体積が全体の80%以上であ
る請求項1記載の軟質磁性材料。
2. The metal oxide has a thickness of 0.02 to 10 μm.
2. The soft magnetic material according to claim 1, wherein m and the volume of the magnetic powder is 80% or more of the whole.
【請求項3】前記金属粒子が珪素、アルミニウムのうち
少なくとも一つを含み、かつその重量比が8%以下であ
る請求項1または2記載の軟質磁性材料。
3. The soft magnetic material according to claim 1, wherein the metal particles contain at least one of silicon and aluminum, and the weight ratio is 8% or less.
【請求項4】前記金属粒子がセンダストまたはFe−C
o系合金である請求項1から3のいずれか1項に記載の
軟質磁性材料。
4. The method according to claim 1, wherein said metal particles are sendust or Fe--C.
The soft magnetic material according to any one of claims 1 to 3, which is an o-based alloy.
【請求項5】前記金属酸化物がアルミニウム酸化物、シ
リコン酸化物、マグネシウム酸化物のいずれかである請
求項1から4のいずれか1項に記載の軟質磁性材料。
5. The soft magnetic material according to claim 1, wherein the metal oxide is any one of aluminum oxide, silicon oxide, and magnesium oxide.
【請求項6】前記金属酸化物の一部が鉄酸化物である請
求項1から5のいずれか1項に記載の軟質磁性材料。
6. The soft magnetic material according to claim 1, wherein a part of the metal oxide is an iron oxide.
【請求項7】前記結合金属がアルミニウム、マグネシウ
ム、またはそれらの合金である請求項1から6のいずれ
か1項に記載の軟質磁性材料。
7. The soft magnetic material according to claim 1, wherein the binding metal is aluminum, magnesium, or an alloy thereof.
【請求項8】前記結合金属が珪素を体積比で40〜70
%含むアルミニウム合金である請求項1から7のいずれ
か1項に記載の軟質磁性材料。
8. The bonding metal according to claim 1, wherein the volume ratio of silicon is 40 to 70.
The soft magnetic material according to any one of claims 1 to 7, wherein the soft magnetic material is an aluminum alloy containing 0.1% by weight.
【請求項9】表面に金属酸化物を有する平均粒径10〜
400μmの鉄又は鉄合金の金属粒子からなる磁性粉末
で成形体を成形し、前記成形体を加熱した状態で前記成
形体の空隙部に結合金属である溶融したアルミニウム、
マグネシウムおよびそれらの合金の少なくとも一種類を
含浸させ、軟質磁性の結合体を得るたことを特徴とする
軟質磁性材料の製造方法。
9. An average particle diameter having a metal oxide on the surface of 10 to 10.
A molded body is formed from a magnetic powder composed of 400 μm iron or iron alloy metal particles, and molten aluminum that is a bonding metal in a void portion of the molded body while the molded body is heated;
A method for producing a soft magnetic material, comprising: impregnating at least one of magnesium and an alloy thereof to obtain a soft magnetic composite.
【請求項10】平均粒径10〜400μmの鉄又は鉄合
金の金属粒子からなる磁性粉末で成形体を成形し、前記
成形体を300℃以上に加熱して前記金属粒子の表面を
酸化させて金属酸化物を生成し、前記成形体を加熱した
状態で前記成形体の空隙部に結合金属である溶融したア
ルミニウム、マグネシウムおよびそれらの合金の少なく
とも一種類を含浸させ、軟質磁性の結合体を得ることを
特徴とする軟質磁性材料の製造方法。
10. A molded body is formed from a magnetic powder composed of iron or iron alloy metal particles having an average particle diameter of 10 to 400 μm, and the molded body is heated to 300 ° C. or more to oxidize the surface of the metal particle. A metal oxide is generated and, while the compact is heated, at least one of a binder metal such as molten aluminum, magnesium and an alloy thereof is impregnated into a void portion of the compact to obtain a soft magnetic binder. A method for producing a soft magnetic material, comprising:
【請求項11】前記結合金属を含浸した後、700℃以
上で熱処理を行い前記金属粒子の残留応力を除去する請
求項9または10に記載の軟質磁性材料の製造方法。
11. The method for producing a soft magnetic material according to claim 9, wherein after the impregnation with the bonding metal, heat treatment is performed at 700 ° C. or higher to remove residual stress of the metal particles.
【請求項12】前記結合金属を含浸した後、300℃以
上の一定温度に保持する熱処理を行い、前記金属粒子の
表面に形成されていた鉄の金属酸化物を前記結合金属で
還元し、前記金属酸化物を前記金属粒子の周囲に形成す
る請求項9から11のいずれか1項に記載の軟質磁性材
料の製造方法。
12. After the impregnation with the binding metal, a heat treatment is performed at a constant temperature of 300 ° C. or higher to reduce the metal oxide of iron formed on the surface of the metal particles with the binding metal. The method for producing a soft magnetic material according to any one of claims 9 to 11, wherein a metal oxide is formed around the metal particles.
【請求項13】前記結合金属を前記磁性粉末に含浸する
時に前記成形体内部を減圧する請求項9から12のいず
れか1項に記載の軟質磁性材料の製造方法。
13. The method for producing a soft magnetic material according to claim 9, wherein the pressure inside the compact is reduced when the magnetic powder is impregnated with the binding metal.
【請求項14】複数のスロットを有する鉄心コアと、前
記スロット内に設けられる複数のコイルとを備えた電動
機の固定子において、平均粒径10〜400μmの鉄又
は鉄合金からなる金属粒子とこの金属粒子の周囲を覆う
鉄より酸化しやすい元素を主成分とした金属酸化物とか
らなる磁性粉末と、前記磁性粉末同志を結合させ、かつ
前記金属酸化物の成分を含有する結合金属とを有した軟
質磁性材料を固定子の鉄心コアとしたことを特徴とする
電動機の固定子。
14. A motor stator comprising: an iron core having a plurality of slots; and a plurality of coils provided in the slots, wherein metal particles made of iron or an iron alloy having an average particle size of 10 to 400 μm are provided. A magnetic powder composed of a metal oxide whose main component is an element more easily oxidized than iron covering the periphery of the metal particles; and a binding metal that binds the magnetic powders together and contains a component of the metal oxide. A stator for an electric motor, wherein the soft magnetic material is used as an iron core of the stator.
【請求項15】複数のスロットを有する鉄心コアと、前
記スロット内に設けられる複数の導体とを備えた電動機
の回転子において、平均粒径10〜400μmの鉄又は
鉄合金からなる金属粒子とこの金属粒子の周囲を覆う鉄
より酸化しやすい元素を主成分とした金属酸化物とから
なる磁性粉末と、前記磁性粉末同志を結合させ、かつ前
記金属酸化物の成分を含有する結合金属とを有した軟質
磁性材料を回転子の鉄心コアとしたことを特徴とする電
動機の回転子。
15. A rotor for an electric motor having an iron core having a plurality of slots and a plurality of conductors provided in the slots, wherein metal particles made of iron or an iron alloy having an average particle size of 10 to 400 μm are provided. A magnetic powder composed of a metal oxide whose main component is an element more easily oxidized than iron covering the periphery of the metal particles; and a binding metal that binds the magnetic powders together and contains a component of the metal oxide. A rotor for an electric motor, wherein the soft magnetic material is used as an iron core of the rotor.
【請求項16】鉄心コアと、前記鉄心コアに巻回された
コイルとを備えたトランスにおいて、平均粒径10〜4
00μmの鉄又は鉄合金からなる金属粒子とこの金属粒
子の周囲を覆う鉄より酸化しやすい元素を主成分とした
金属酸化物とからなる磁性粉末と、前記磁性粉末同志を
結合させ、かつ前記金属酸化物の成分を含有する結合金
属とを有した軟質磁性材料を鉄心コアとしたことを特徴
とするトランス。
16. A transformer having an iron core and a coil wound around the iron core, wherein the average particle diameter is 10 to 4%.
A magnetic powder composed of metal particles made of iron or an iron alloy of 00 μm and a metal oxide mainly composed of an element that is more easily oxidized than iron that surrounds the metal particles; A transformer characterized in that a soft magnetic material having a binding metal containing an oxide component is used as an iron core.
【請求項17】鉄心コアと巻線とを備えたリアクトルに
おいて、平均粒径10〜400μmの鉄又は鉄合金から
なる金属粒子とこの金属粒子の周囲を覆う鉄より酸化し
やすい元素を主成分とした金属酸化物とからなる磁性粉
末と、前記磁性粉末同志を結合させ、かつ前記金属酸化
物の成分を含有する結合金属とを有した軟質磁性材料を
鉄心コアとしたことを特徴とするリアクトル。
17. A reactor comprising an iron core and a winding, wherein the main component is a metal particle made of iron or an iron alloy having an average particle diameter of 10 to 400 μm and an element covering the periphery of the metal particle, which is more easily oxidized than iron. A reactor, wherein a soft magnetic material having a magnetic powder composed of a metal oxide thus obtained and said magnetic powders bonded together and having a bonding metal containing a component of said metal oxide is used as an iron core.
【請求項18】鉄心コアと巻線とを備えたサイリスタバ
ルブにおいて、平均粒径10〜400μmの鉄又は鉄合
金からなる金属粒子とこの金属粒子の周囲を覆う鉄より
酸化しやすい元素を主成分とした金属酸化物とからなる
磁性粉末と、前記磁性粉末同志を結合させ、かつ前記金
属酸化物の成分を含有する結合金属とを有した軟質磁性
材料を鉄心コアとしたことを特徴とするサイリスタバル
ブ。
18. A thyristor valve having an iron core and a winding, wherein a metal particle made of iron or an iron alloy having an average particle diameter of 10 to 400 μm and an element which is more easily oxidized than iron surrounding the metal particle. A thyristor characterized in that a soft magnetic material comprising a magnetic powder composed of a metal oxide made as described above, and a binding metal containing a component of the metal oxide, which binds the magnetic powders together, is used as a core. valve.
【請求項19】鉄心コアと巻線とを備えた磁気ヘッドに
おいて、平均粒径10〜400μmの鉄又は鉄合金から
なる金属粒子とこの金属粒子の周囲を覆う鉄より酸化し
やすい元素を主成分とした金属酸化物とからなる磁性粉
末と、前記磁性粉末同志を結合させ、かつ前記金属酸化
物の成分を含有する結合金属とを有した軟質磁性材料を
鉄心コアとしたことを特徴とする磁気ヘッド。
19. A magnetic head comprising an iron core and a winding, wherein a metal particle made of iron or an iron alloy having an average particle diameter of 10 to 400 μm and an element which is more easily oxidized than iron surrounding the metal particle. A magnetic powder comprising: a magnetic powder composed of a metal oxide; and a magnetic core comprising a soft magnetic material having the magnetic powder bonded to each other, and having a bonding metal containing a component of the metal oxide. head.
JP5575898A 1998-02-20 1998-02-20 Soft magnetic material and manufacture thereof and electrical equipment using the same Pending JPH11238614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5575898A JPH11238614A (en) 1998-02-20 1998-02-20 Soft magnetic material and manufacture thereof and electrical equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5575898A JPH11238614A (en) 1998-02-20 1998-02-20 Soft magnetic material and manufacture thereof and electrical equipment using the same

Publications (1)

Publication Number Publication Date
JPH11238614A true JPH11238614A (en) 1999-08-31

Family

ID=13007756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5575898A Pending JPH11238614A (en) 1998-02-20 1998-02-20 Soft magnetic material and manufacture thereof and electrical equipment using the same

Country Status (1)

Country Link
JP (1) JPH11238614A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343618A (en) * 2001-03-12 2002-11-29 Yaskawa Electric Corp Soft magnetic material and manufacturing method therefor
WO2006035911A1 (en) * 2004-09-30 2006-04-06 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust core and method for producing soft magnetic material
JP2008159704A (en) * 2006-12-21 2008-07-10 Fuji Electric Device Technology Co Ltd Method of manufacturing powder magnetic core
US7579723B2 (en) 2003-12-17 2009-08-25 Sumitomo Electric Industries, Ltd. Power magnetic core and stator core
US7758706B2 (en) 2004-09-21 2010-07-20 Sumitomo Electric Industries, Ltd. Method for producing dust core compact and dust core compact
JP2011017057A (en) * 2009-07-09 2011-01-27 Hitachi Metals Ltd Composite sintered compact of aluminum oxide and iron and method for producing the same
CN103296813A (en) * 2012-02-28 2013-09-11 哈米尔顿森德斯特兰德公司 Rotor end band
JP2019521630A (en) * 2016-04-11 2019-07-25 パーシモン テクノロジーズ コーポレイションPersimmon Technologies, Corp. Material with directional microstructure
WO2021033567A1 (en) * 2019-08-20 2021-02-25 日立金属株式会社 Magnetic wedge, rotating electrical machine, and method for manufacturing magnetic wedge

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343618A (en) * 2001-03-12 2002-11-29 Yaskawa Electric Corp Soft magnetic material and manufacturing method therefor
US7579723B2 (en) 2003-12-17 2009-08-25 Sumitomo Electric Industries, Ltd. Power magnetic core and stator core
US7758706B2 (en) 2004-09-21 2010-07-20 Sumitomo Electric Industries, Ltd. Method for producing dust core compact and dust core compact
US7767034B2 (en) 2004-09-30 2010-08-03 Sumitomo Electric Industries, Ltd. Soft magnetic material, powder magnetic core and method of manufacturing soft magnetic material
CN100442403C (en) * 2004-09-30 2008-12-10 住友电气工业株式会社 Soft magnetic material, dust core and method of producing soft magnetic material
WO2006035911A1 (en) * 2004-09-30 2006-04-06 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust core and method for producing soft magnetic material
US8323725B2 (en) 2004-09-30 2012-12-04 Sumitomo Electric Industries, Ltd. Soft magnetic material, powder magnetic core and method of manufacturing soft magnetic material
JP2008159704A (en) * 2006-12-21 2008-07-10 Fuji Electric Device Technology Co Ltd Method of manufacturing powder magnetic core
JP2011017057A (en) * 2009-07-09 2011-01-27 Hitachi Metals Ltd Composite sintered compact of aluminum oxide and iron and method for producing the same
CN103296813A (en) * 2012-02-28 2013-09-11 哈米尔顿森德斯特兰德公司 Rotor end band
US9923434B2 (en) 2012-02-28 2018-03-20 Hamilton Sundstrand Corporation Rotor end band
JP2019521630A (en) * 2016-04-11 2019-07-25 パーシモン テクノロジーズ コーポレイションPersimmon Technologies, Corp. Material with directional microstructure
WO2021033567A1 (en) * 2019-08-20 2021-02-25 日立金属株式会社 Magnetic wedge, rotating electrical machine, and method for manufacturing magnetic wedge
JP6880472B1 (en) * 2019-08-20 2021-06-02 日立金属株式会社 How to make magnetic wedges, rotary electric machines, and magnetic wedges
KR20220034870A (en) * 2019-08-20 2022-03-18 히다찌긴조꾸가부시끼가이사 Magnetic wedge, rotating electric and magnetic wedge manufacturing method

Similar Documents

Publication Publication Date Title
JP5032711B1 (en) Magnetic material and coil component using the same
EP2680281B1 (en) Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
JP4683178B2 (en) Soft magnetic material and manufacturing method thereof
EP0872856B1 (en) Magnetic core and method of manufacturing the same
US7498080B2 (en) Ferromagnetic powder for dust core
EP1521276B1 (en) Manufacturing method of composite sintered magnetic material
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
JP2009088502A (en) Method of manufacturing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element
JP5522173B2 (en) Composite magnetic body and method for producing the same
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
JP2001011563A (en) Manufacture of composite magnetic material
JP2010153638A (en) Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
JP2007214425A (en) Powder magnetic core and inductor using it
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JPH11238614A (en) Soft magnetic material and manufacture thereof and electrical equipment using the same
JP4115612B2 (en) Composite magnetic material and method for producing the same
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
US5993729A (en) Treatment of iron powder compacts, especially for magnetic applications
EP1887585A1 (en) Low magnetostriction body and dust core using same
JP2009164402A (en) Manufacturing method of dust core
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP2006089791A (en) Method for manufacturing composite soft-magnetic sintered material having high density, high strength, high specific resistance and high magnetic flux density
JPH10208923A (en) Composite magnetic material and production thereof
WO2024034009A1 (en) Method for manufacturing magnetic wedge, magnetic wedge, stator for rotating electric machine, and rotating electric machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060710