JP2002343618A - Soft magnetic material and manufacturing method therefor - Google Patents

Soft magnetic material and manufacturing method therefor

Info

Publication number
JP2002343618A
JP2002343618A JP2001255580A JP2001255580A JP2002343618A JP 2002343618 A JP2002343618 A JP 2002343618A JP 2001255580 A JP2001255580 A JP 2001255580A JP 2001255580 A JP2001255580 A JP 2001255580A JP 2002343618 A JP2002343618 A JP 2002343618A
Authority
JP
Japan
Prior art keywords
iron
metal
aluminum
particles
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001255580A
Other languages
Japanese (ja)
Other versions
JP4683178B2 (en
Inventor
Takaaki Yasumura
隆明 安村
Motomichi Oto
基道 大戸
Ryuichi Oguro
龍一 小黒
Mitsuaki Ikeda
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001255580A priority Critical patent/JP4683178B2/en
Publication of JP2002343618A publication Critical patent/JP2002343618A/en
Application granted granted Critical
Publication of JP4683178B2 publication Critical patent/JP4683178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-resistance soft magnetic material having superior manufacture reproductivity. SOLUTION: This soft magnetic material contains magnetic particles 2, which are formed of metal particles 21, that are made of iron alloy containing at least one of silicon and aluminum and of which the average particle size is 10-400 μm, and an insulation oxide film 22 of 0.2-10 μm in thickness, that is made mainly of either of silicon and aluminum that tends to be oxidized as compared with iron covering the periphery of the metal particles, and a binder metal to joint the magnetic particles with each other, and it is made a molded body having a volume of metal particles at 80% of the whole body, and the binder metal is a copper alloy containing at least one among copper oxide, phosphorus, aluminum, zinc, and silicon that are easier to be oxidized than iron, and set at 1-5 wt.%. In addition, if thickness is defined as t and the width as w, the metal particle is of plate shape, having an aspect ratio (w/t) of 10 to 100 and width (w) of 10-4,000 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モータ、リアクト
ル、トランス、磁気ヘッド用ヨークなどの電気機器に適
用する材料に関し、とくに、低渦電流損失、高飽和磁束
密度および高周波において高透磁率を有する軟質磁性材
料とその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material applied to electric equipment such as a motor, a reactor, a transformer, a yoke for a magnetic head, and more particularly to a material having a low eddy current loss, a high saturation magnetic flux density and a high magnetic permeability at a high frequency. The present invention relates to a soft magnetic material and a manufacturing method thereof.

【0002】[0002]

【従来の技術】モータをはじめとする電気機器は近年高
周波領域で使用される事が多くなった。このような機器
に使用される磁性材料は優れた磁気特性を有する軟質磁
性材料が選定され使用される。ところが、交流使用では
鉄損( ヒステリシス損失と渦電流損失の和) が大きくて
エネルギーロスとなる。渦電流損失は周波数の2 乗に比
例して増加するために、交流損失を少なくする目的で、
例えば珪素鋼板を積層して使用する。それでも商用周波
数領域で鉄損の20% を渦電流損失が占める。また、1 kH
z 以上に成るとヒステリシス損失より渦電流損失が大き
くなると共にヒステリシス損失も大きくなる。従って、
高周波領域で使用される磁性材料は透磁率の低下で本来
の材料自身が持っている飽和磁束密度よりはるかに低い
磁束密度でしか使用する事ができなくなる。また、地球
環境問題からもエネルギーの節約が叫ばれており、モー
タでは効率の向上が不可欠となっている。このような問
題に対して、軟質磁性材料にアモルファスを適用する事
が検討されたが、渦電流損失の低減効果は有るものの製
品成形時の少しの応力で磁気特性が低下するために用途
がきわめて限定される。また、特公平6-82577 で見られ
るように酸化皮膜で覆われた鉄を圧縮成形して作製した
圧粉磁心、また、特開平9-102409に開示されている樹脂
を鉄粉表面に被覆した樹脂成形体などが検討された。圧
粉磁心は、粉体同志の結合剤が弱いために、製品成形体
が取り扱い時に欠けたり割れたりするために用途が限定
される事や、電気抵抗が低くならない範囲で磁気特性を
向上させる高温熱処理を長時間できないために磁気特性
も不十分であった。樹脂成形体は、樹脂を結合材として
使用している関係で、成形時に応力で劣化した鉄の磁気
特性を改善させるための熱処理を700 ℃以上でできない
ために、電気抵抗だけは大きいが、磁気特性は非常に低
かった。700 ℃以上で熱処理すれば樹脂皮膜が消失し電
気抵抗値が低下する。以上の問題点を解決するため、材
料と製造方法についての提案がされた(特開平11-23861
4 )。図5は、この方法により形成された軟質磁性材料
の断面の模式図である。図において、1は成形体、2は
磁性粒子、3は結合金属である。成形体1は、磁性粒子
2とこれらを結合する結合金属3からなる。磁性粒子2
は、平均粒径10〜400μmの鉄合金からなる金属粒子2
1と、その周囲を覆う鉄より酸化しやすい金属の酸化
膜、すなわち、絶縁酸化膜22( アルミナ等) からな
る。結合金属3は、絶縁酸化膜22を構成する元素と同
じ金属又はその合金であり、ここではアルミニウムであ
る。成形体1の製造工程の一例を図6に示す。すなわ
ち、つぎのとおりである。 (1) 金属粒子21(鉄合金粒子)の表面を酸化させる。 (2) 表面が酸化した金属粒子21を型に入れ成形する。 (3) 結合金属3であるアルミニウムを含浸する。成形体
を加熱した状態で鉄より酸化しやすい溶融アルミニウム
を成形体の空隙部に含浸する。 (4) 成形体を加熱処理する。金属粒子21の表面に生成
している鉄酸化物が、溶融アルミニウムとの接触反応に
よりアルミナに変わる。これにより、軟質磁性材料の成
形体が完成する。この絶縁酸化膜22( アルミナ)は、
薄くて電気絶縁性に優れており、700 ℃以上に加熱され
てもその特性が低下しないために、高抵抗軟質磁性材と
しては優れた材料となる。なお、結合金属3はアルミニ
ウムの他、マグネシウムでもよい。形成されたアルミナ
またはマグネシアで電気絶縁をとる事に特徴を持たして
いる。
2. Description of the Related Art In recent years, electric devices such as motors have been frequently used in a high frequency range. As a magnetic material used for such a device, a soft magnetic material having excellent magnetic properties is selected and used. However, in AC use, iron loss (sum of hysteresis loss and eddy current loss) is large, resulting in energy loss. Eddy current loss increases in proportion to the square of the frequency, so in order to reduce AC loss,
For example, a silicon steel sheet is laminated and used. Nevertheless, eddy current loss accounts for 20% of iron loss in the commercial frequency range. Also, 1 kHz
If it exceeds z, the eddy current loss becomes larger than the hysteresis loss and the hysteresis loss also becomes larger. Therefore,
A magnetic material used in a high frequency region can be used only at a magnetic flux density much lower than the original material itself's saturation magnetic flux density due to a decrease in magnetic permeability. Energy conservation is also being called out from global environmental issues, and it is essential to improve the efficiency of motors. In order to solve such problems, application of amorphous to soft magnetic material was studied. However, although there is an effect of reducing eddy current loss, magnetic properties are reduced by a small stress at the time of product molding. Limited. Further, as seen in Japanese Patent Publication No. 6-82577, a dust core made by compression molding iron covered with an oxide film, or a resin disclosed in JP-A-9-102409 was coated on the surface of the iron powder. Resin moldings were considered. Powder magnetic cores have weak binders, so their use is limited because the molded product is chipped or cracked during handling, and high temperature that improves magnetic properties within a range where electrical resistance does not decrease Since the heat treatment could not be performed for a long time, the magnetic properties were also insufficient. Since the resin molded body uses resin as a binder, heat treatment to improve the magnetic properties of iron deteriorated by stress at the time of molding cannot be performed at 700 ° C or more, so only electric resistance is large, but magnetic Properties were very low. If the heat treatment is performed at 700 ° C or higher, the resin film disappears and the electric resistance decreases. In order to solve the above problems, there has been proposed a material and a manufacturing method (JP-A-11-23861).
Four ). FIG. 5 is a schematic diagram of a cross section of a soft magnetic material formed by this method. In the figure, 1 is a compact, 2 is magnetic particles, and 3 is a binding metal. The molded body 1 is composed of magnetic particles 2 and a bonding metal 3 for bonding them. Magnetic particles 2
Are metal particles 2 made of an iron alloy having an average particle size of 10 to 400 μm.
1 and an oxide film of a metal which is more easily oxidized than iron covering the periphery thereof, that is, an insulating oxide film 22 (alumina or the like). Bonding metal 3 is the same metal as the element constituting insulating oxide film 22 or an alloy thereof, and is aluminum here. FIG. 6 shows an example of a manufacturing process of the molded body 1. That is, it is as follows. (1) The surfaces of the metal particles 21 (iron alloy particles) are oxidized. (2) The metal particles 21 whose surfaces are oxidized are put into a mold and molded. (3) Impregnating aluminum as the bonding metal 3. While the compact is being heated, the voids of the compact are impregnated with molten aluminum, which is more easily oxidized than iron. (4) Heat the molded body. Iron oxide generated on the surface of the metal particles 21 is changed to alumina by a contact reaction with molten aluminum. Thus, a molded body of the soft magnetic material is completed. This insulating oxide film 22 (alumina)
Since it is thin and has excellent electrical insulation properties, its characteristics do not deteriorate even when it is heated to 700 ° C. or more, so it is an excellent material as a high-resistance soft magnetic material. The bonding metal 3 may be magnesium in addition to aluminum. It is characterized by taking electrical insulation with the formed alumina or magnesia.

【0003】[0003]

【発明が解決しようとする課題】ところが、上述の特開
平11-238614 では、鉄酸化物と溶融アルミニウムまたは
溶融マグネシウムとの接触反応は極めて速く起こるため
に、その制御が難しい。鉄酸化物と溶融アルミニウムと
の反応はテルミット反応としても知られ、爆発的に反応
することでも知られている。反応の制御が難しいため
に、溶融金属の充填状態によって製造時の再現性に難が
有り、特性の優れた材料が安定して得られないという問
題が有った。また、鉄合金粒子は、粒子形状による反磁
界が大きくて初透磁率が小さいため、このような材料を
機器に使用した場合、小型化を達成するには不十分であ
った。そこで、本発明は製造再現性に優れ、初透磁率の
高い高抵抗軟質磁性材料とその製造方法を提供すること
を目的とする。
However, in the above-mentioned Japanese Patent Application Laid-Open No. 11-238614, since the contact reaction between the iron oxide and the molten aluminum or the molten magnesium occurs extremely rapidly, it is difficult to control the reaction. The reaction between iron oxide and molten aluminum is also known as thermite reaction and is known to react explosively. Since the control of the reaction is difficult, reproducibility during production is difficult depending on the state of filling of the molten metal, and there is a problem that a material having excellent characteristics cannot be stably obtained. In addition, since iron alloy particles have a large demagnetizing field due to the particle shape and a low initial magnetic permeability, when such a material is used for an apparatus, it is not enough to achieve miniaturization. Accordingly, an object of the present invention is to provide a high-resistance soft magnetic material having excellent production reproducibility and high initial magnetic permeability, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の軟質磁性材料は、珪素、アルミニウ
ムの少なくとも1つの元素を含む鉄合金からなり平均粒
径が10〜400 μmの金属粒子とこの金属粒子の周囲を覆
う鉄より酸化しやすい珪素、アルミニウムのいずれかを
主成分とした厚さ0.2 〜10μmの絶縁酸化膜とからなる
磁性粒子と、前記磁性粒子同志を結合させる結合金属と
を有し、かつ前記金属粒子の体積が全体の80%以上であ
る成形体からなるもので、前記結合金属を、鉄より酸化
しやすい酸化銅、りん、アルミニウム、亜鉛、珪素の少
なくとも一つを1 〜5wt%含有した銅合金としたものであ
る。請求項2記載の軟質磁性材料は、前記金属粒子を、
厚さt、幅wとした場合、アスペクト比(w/t)10
〜100、幅(w)10〜4000μmの板状としたも
のである。請求項1、2記載の軟質磁性材料によれば、
高温アニールによっても電気絶縁皮膜が破壊しないので
渦電流を生じにくく、しかも、鉄合金粒子の歪が小さい
ので高透磁率材料が得られる。請求項3記載の軟質磁性
材料の製造方法は、珪素、アルミニウムの少なくとも1
つの元素を含む鉄合金からなり平均粒径が10〜400 μm
の金属粒子とこの金属粒子の周囲を覆う鉄を主成分とす
る鉄酸化膜とからなる磁性粒子を成形して成形体とし、
前記成形体を加熱した状態で前記磁性粒子同志を結合さ
せる結合金属である溶融した銅合金を前記成形体の空隙
部に含浸し、引き続き加熱処理し、前記金属粒子中の珪
素、アルミニウムにより前記鉄酸化膜の酸素を還元し、
珪素またはアルミニウムを主成分とする絶縁酸化膜に変
えるようにしたものである。請求項4記載の軟質磁性材
料の製造方法は、珪素、アルミニウムの少なくとも1つ
の元素を含む鉄合金からなり平均粒径が10〜400 μmの
金属粒子を成形して成形体とし、前記成形体を300 ℃以
上に加熱して前記金属粒子の表面を酸化させ、鉄を主成
分とする鉄酸化膜を形成し、その後、前記成形体を加熱
した状態で前記磁性粒子同志を結合させる結合金属であ
る溶融した銅合金を前記成形体の空隙部に含浸し、引き
続き加熱処理し、前記金属粒子中の珪素、アルミニウム
の少なくとも1つにより前記鉄酸化膜の酸素を還元し、
珪素またはアルミニウムを主成分とする絶縁酸化膜に変
えるようにしたものである。請求項5記載の軟質磁性材
料の製造方法は、珪素、アルミニウムの少なくとも1つ
の元素を含む鉄合金からなり平均粒径が10〜400 μmの
金属粒子とこの金属粒子の周囲を覆う鉄を主成分とする
鉄酸化膜とからなる磁性粒子と、前記磁性粒子同志を結
合させる結合金属である銅合金の粒子とを配合して成形
体を形成し、前記成形体を加熱処理し、前記金属粒子中
の珪素、アルミニウム少なくとも1つにより前記鉄酸化
膜の酸素を還元し、珪素またはアルミニウムを主成分と
する絶縁酸化膜に変えるようにしたものである。請求項
6記載の軟質磁性材料の製造方法は、前記銅合金を、鉄
より酸化しやすい酸化銅、りん、アルミニウム、亜鉛、
珪素、マグネシウムのうち少なくとも一つを1 〜5wt%含
有するようにしたものである。請求項7記載の軟質磁性
材料の製造方法は、前記鉄合金からなる金属粒子を、厚
さをt、幅をwとした場合、アスペクト比(w/t)を
10〜100、幅(w)を10〜4000μmの板状と
したものである。請求項3〜7記載の軟質磁性材料の製
造方法によれば、絶縁酸化膜を徐々に形成できるので製
造安定性に優れ再現性が高い軟質磁性材料が得られる。
According to a first aspect of the present invention, there is provided a soft magnetic material comprising an iron alloy containing at least one element of silicon and aluminum and having an average particle size of 10 to 400 μm. A magnetic particle composed of metal particles and an insulating oxide film having a thickness of 0.2 to 10 μm and containing silicon or aluminum as a main component, which is more easily oxidized than iron covering the periphery of the metal particles; A metal having a volume of 80% or more of the total volume of the metal particles, wherein the binding metal is at least one of copper oxide, phosphorus, aluminum, zinc, and silicon, which is more easily oxidized than iron. One is a copper alloy containing 1 to 5 wt%. The soft magnetic material according to claim 2, wherein the metal particles
When the thickness is t and the width is w, the aspect ratio (w / t) is 10
-100, and a width (w) of 10-4000 μm. According to the soft magnetic material according to claims 1 and 2,
Since the electric insulating film is not broken even by high-temperature annealing, eddy current hardly occurs, and a high permeability material can be obtained because the distortion of the iron alloy particles is small. The method for producing a soft magnetic material according to claim 3, wherein at least one of silicon and aluminum is used.
Made of an iron alloy containing two elements with an average particle size of 10 to 400 μm
Magnetic particles comprising metal particles and an iron oxide film containing iron as a main component covering the periphery of the metal particles to form a molded body,
A molten copper alloy, which is a bonding metal that bonds the magnetic particles together while the molded body is being heated, is impregnated into the voids of the molded body, and subsequently heat-treated, and the iron is formed by silicon and aluminum in the metal particles. Reduces the oxygen in the oxide film,
This is changed to an insulating oxide film containing silicon or aluminum as a main component. A method for producing a soft magnetic material according to claim 4 is characterized in that a metal particle made of an iron alloy containing at least one element of silicon and aluminum and having an average particle diameter of 10 to 400 μm is formed into a compact, and the compact is formed. A bonding metal that oxidizes the surface of the metal particles by heating to 300 ° C. or higher to form an iron oxide film containing iron as a main component, and then bonds the magnetic particles together while the molded body is heated. The molten copper alloy is impregnated into the voids of the compact, and subsequently heat-treated to reduce oxygen in the iron oxide film by at least one of silicon and aluminum in the metal particles,
This is changed to an insulating oxide film containing silicon or aluminum as a main component. The method for producing a soft magnetic material according to claim 5, wherein the main component is a metal particle made of an iron alloy containing at least one element of silicon and aluminum and having an average particle diameter of 10 to 400 µm and iron surrounding the metal particle. Magnetic particles comprising an iron oxide film to be formed, and particles of a copper alloy which is a binding metal that binds the magnetic particles together to form a molded body, and heat-treats the molded body to form a metal body. The oxygen in the iron oxide film is reduced by at least one of silicon and aluminum to convert it into an insulating oxide film containing silicon or aluminum as a main component. The method for producing a soft magnetic material according to claim 6, wherein the copper alloy is more easily oxidized than iron, such as copper oxide, phosphorus, aluminum, zinc,
At least one of silicon and magnesium is contained in an amount of 1 to 5% by weight. The method for producing a soft magnetic material according to claim 7, wherein the metal particles made of the iron alloy have an aspect ratio (w / t) of 10 to 100 and a width (w) when the thickness is t and the width is w. In a plate shape of 10 to 4000 μm. According to the method for manufacturing a soft magnetic material according to claims 3 to 7, a soft magnetic material having excellent manufacturing stability and high reproducibility can be obtained because the insulating oxide film can be gradually formed.

【0005】[0005]

【発明の実施の形態】本発明は、製造時の反応速度をい
かに安定に制御性するかについて材料とその製造法を検
討した。その結果、反応速度の制御は、アルミニウムな
ど反応の速い結合金属を用いるのではなく、鉄合金の金
属粒子の中に鉄より酸化しやすい金属元素、アルミニウ
ムあるいは珪素などを予め添加してしておき、加熱処理
により徐々に鉄粒子の表面に拡散させて鉄酸化物と反応
させアルミニウムや珪素などの絶縁酸化膜に変える方法
を見出した。また、結合金属として、鉄酸化物と反応し
密着性のよい元素を添加した銅合金を用いている。本発
明の具体的特徴は、つぎのとおりである。 (1)結合金属 表面が酸化された鉄―アルミニウム合金粒子の成型体に
融けた銅合金を圧入し加熱保持すると、鉄の酸化物の酸
素が還元されてアルミニウム主体の酸化物に変わる。す
なわち、主にアルミナで覆われた鉄合金の磁性粒子と磁
性粒子間に結合金属としての銅合金が存在する磁性材料
が作製される。結合金属としての銅合金とアルミナの境
界も部分的に反応しているので結合力を強くしている。
銅に添加する合金成分は鉄の酸化物と濡れ性の良い元素
が望ましい。対象として酸化銅、りん、アルミニウム、
亜鉛、シリコン、マグネシウムがあげられる。しかし、
含有量が1%に満たないと反応し難いし、また、5%を超え
ると反応が速すぎて製造安定性が無くなる。 (2)絶縁酸化膜の膜厚 絶縁酸化膜の厚さは、固有抵抗値と飽和磁束密度から限
定される。絶縁酸化膜が薄すぎると絶縁性が保たれな
い。酸化膜の固有抵抗値として100μΩc m以上が望
ましい。固有抵抗値が100μΩcmということは、珪
素鋼板(20μΩcm)の5 倍の値であり、これにより損
失を5 分の1 にすることができる。絶縁酸化膜が厚すぎ
ると、材料全体として非磁性相の存在が多くなり飽和磁
束密度の低下につながる。磁性粒子の粒径が10μmの時
で膜厚が0.2 μm以下、粒径が400μmの時で膜厚が
10μm以下の場合には、飽和磁束密度が15,000G以下
と悪くなる。 (3)磁性粒子の平均粒径、材質、製法 磁性粒子の平均粒径は、10μm未満では透磁率が低下す
る。また、400μmより大きいと粒子内で発生する渦
電流で損失が大きくなる。鉄の酸化物では電気絶縁性が
不十分であるため、鉄より酸化しやすい金属でしかも電
気絶縁性に優れた絶縁酸化膜としては、鉄より酸化物生
成エネルギーの大きな金属元素がよく、この対象とし
て、アルミニウム、珪素などがある。従って、金属粒子
としての鉄合金の酸化物形成用の合金成分がアルミニウ
ム、珪素となる。一方、鉄合金粒子の体積を80%以上と
したのは、磁性材料の部分が少なくなると飽和磁束密度
が15,000G未満に成るためである。現在使用されている
磁性鋼、Fe-Si 、Fe-Al 、センダスト、Fe-25Co 、Fe-5
0Co 等の合金は、15,000Gである。Fe-25Co 、Fe-50Co
を鉄合金の金属粒子とした場合は、これらの合金に絶縁
酸化膜形成用の合金成分を更に添加した。金属粒子の製
造法は、種々の方法を適用できるが、 プラズマ法の中で
水プラズマ法がコスト的に有利である。 理由は粒子製造
と同時に表面が酸化されているので、酸化処理の工程が
省略できるからである。 (4)結合金属の含浸と加熱処理 結合金属を含浸する際は、溶けた金属を圧入した方が金
属が粒子間に入りやすいし、減圧した方がより好まし
い。また、粉末同士を圧縮して成形体を作製する場合、
強度を高めるうえで焼結が望ましい。加熱処理の目的
は、二つある。一つは、鉄酸化膜の還元と同時に新しい
絶縁酸化膜を形成することである。例えば、300 ℃以上
で鉄―アルミニウム合金中のアルミニウムと鉄酸化物と
を接触させると鉄酸化物が還元されアルミニウム酸化物
ができる。他の一つは、結合金属である銅合金中の合金
成分と鉄酸化物との反応である。いずれの反応も300 ℃
未満の低い温度でも良いが時間がかかるのでコスト的に
不利になる。真空雰囲気で実施した方が絶縁酸化膜は生
じ易い。鉄酸化物は、Fe2O3 、Fe3O4 、FeO 、およびこ
れらの複合物質であり、これらの鉄酸化物を還元するた
めに、還元条件によっては鉄酸化物が残る事もあるが、
特性的に影響無い程度なら問題ない。 (5)アスペクト比 初透磁率向上を検討した結果、磁性粒子(鉄合金)の形
状を選定すること、すなわち粒子の厚さに対する幅の比
を大きくとることにより、反磁界を小さくでき初透磁率
を向上させることがわかった。本発明の鉄合金粒子は、
アトマイズ法、カーボニル法、電解法、急冷法、打ち抜
き法などにより製造される。このうち、遠心アトマイズ
法による鉄合金粒子の製造方法を、図4に示す。添加元
素による鉄合金溶湯の粘性、雰囲気ガス、供給する鉄ま
たは鉄合金の量を調整することにより溶湯の粒子形状の
変化させることができる。溶湯の粒子形状により板状の
金属粒子(鉄合金)が作製される。また、粒状の粒子を
圧延でつぶすことでも目的の形状を得ることができる。
最も簡単な方法は、急冷法などで得られた板を打ち抜く
ことにより目的の形状を得る。作製される板状の鉄合金
粒子の長さ、厚さは発生する初透磁率、渦電流損失、飽
和磁化により限定される。板状の粒子のアスペクト比
(w/t)が10より小さいと、初透磁率が小さくな
る。一方、幅が4000μmより大きいと粒子内で発生
する渦電流で損失が大きくなる。幅10μm未満でも透
磁率が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a material and a method for producing the same were studied on how to stably control the reaction rate during production. As a result, the reaction rate is controlled not by using a fast-reacting binding metal such as aluminum, but by adding a metal element, aluminum or silicon, which is more easily oxidized than iron, to metal particles of an iron alloy in advance. The present inventors have found a method of gradually diffusing the surface of iron particles by heat treatment to react with iron oxide to change into an insulating oxide film such as aluminum and silicon. In addition, a copper alloy to which an element having good adhesion and reacting with iron oxide is added as a binding metal is used. The specific features of the present invention are as follows. (1) Bonding metal When a molten copper alloy is pressed into a molded body of iron-aluminum alloy particles whose surface has been oxidized and heated and held, oxygen of iron oxide is reduced and changed to aluminum-based oxide. That is, a magnetic material in which a copper alloy as a binding metal exists between magnetic particles of an iron alloy mainly covered with alumina and magnetic particles is produced. Since the boundary between the copper alloy as the bonding metal and alumina also partially reacts, the bonding force is increased.
The alloy component added to copper is preferably an element having good wettability with iron oxide. Copper oxide, phosphorus, aluminum,
Examples include zinc, silicon, and magnesium. But,
If the content is less than 1%, it is difficult to react, and if it exceeds 5%, the reaction is too fast and the production stability is lost. (2) Thickness of Insulating Oxide Film The thickness of the insulating oxide film is limited by the specific resistance value and the saturation magnetic flux density. If the insulating oxide film is too thin, insulating properties cannot be maintained. The specific resistance of the oxide film is desirably 100 μΩcm or more. The specific resistance value of 100 μΩcm is five times the value of a silicon steel plate (20 μΩcm), whereby the loss can be reduced to one fifth. If the insulating oxide film is too thick, the presence of a non-magnetic phase in the material as a whole increases, leading to a decrease in the saturation magnetic flux density. When the thickness of the magnetic particles is 10 μm and the film thickness is 0.2 μm or less, and when the particle size is 400 μm and the film thickness is 10 μm or less, the saturation magnetic flux density becomes poor at 15,000 G or less. (3) Average particle size, material, and manufacturing method of magnetic particles If the average particle size of the magnetic particles is less than 10 μm, the magnetic permeability decreases. On the other hand, if it is larger than 400 μm, the loss increases due to eddy current generated in the particles. Since iron oxide has insufficient electrical insulation, a metal element that is more easily oxidized than iron and an insulating oxide film that has excellent electrical insulation is preferably a metal element that has a higher oxide generation energy than iron. Examples include aluminum and silicon. Therefore, the alloy components for forming the oxide of the iron alloy as the metal particles are aluminum and silicon. On the other hand, the reason why the volume of the iron alloy particles is set to 80% or more is that the saturation magnetic flux density becomes less than 15,000 G when the portion of the magnetic material decreases. Currently used magnetic steels, Fe-Si, Fe-Al, Sendust, Fe-25Co, Fe-5
Alloys such as 0Co are 15,000G. Fe-25Co, Fe-50Co
Was made of iron alloy metal particles, an alloy component for forming an insulating oxide film was further added to these alloys. Various methods can be applied to the method for producing metal particles. Among the plasma methods, the water plasma method is advantageous in terms of cost. The reason is that the surface is oxidized simultaneously with the production of the particles, so that the step of the oxidation treatment can be omitted. (4) Impregnation of Bonding Metal and Heat Treatment When impregnating the binding metal, it is easier to press the melted metal in between the particles, and it is more preferable to reduce the pressure. Also, when compacting powders to produce a compact,
Sintering is desirable for increasing the strength. The purpose of the heat treatment is twofold. One is to form a new insulating oxide film simultaneously with the reduction of the iron oxide film. For example, when aluminum in an iron-aluminum alloy is brought into contact with iron oxide at 300 ° C. or more, iron oxide is reduced to aluminum oxide. The other is a reaction between an alloy component in a copper alloy as a bonding metal and iron oxide. 300 ° C for all reactions
A lower temperature of less than 10 mm is acceptable, but it takes time and is disadvantageous in cost. An insulating oxide film is more likely to be formed in a vacuum atmosphere. Iron oxides are Fe2O3, Fe3O4, FeO, and their composite substances.To reduce these iron oxides, iron oxides may remain depending on the reduction conditions,
There is no problem as long as there is no influence on the characteristics. (5) Aspect ratio As a result of studying the improvement of the initial magnetic permeability, the demagnetizing field can be reduced by selecting the shape of the magnetic particles (iron alloy), that is, by increasing the ratio of the width to the thickness of the particles. Was found to improve. The iron alloy particles of the present invention,
It is manufactured by an atomizing method, a carbonyl method, an electrolytic method, a quenching method, a punching method, or the like. FIG. 4 shows a method for producing iron alloy particles by the centrifugal atomization method. The particle shape of the molten iron alloy can be changed by adjusting the viscosity of the molten iron alloy, the atmospheric gas, and the amount of iron or iron alloy to be supplied, depending on the added element. Plate-like metal particles (iron alloy) are produced according to the particle shape of the molten metal. The desired shape can also be obtained by crushing the granular particles by rolling.
The simplest method is to obtain a target shape by punching a plate obtained by a quenching method or the like. The length and thickness of the plate-like iron alloy particles to be produced are limited by the generated initial permeability, eddy current loss, and saturation magnetization. When the aspect ratio (w / t) of the plate-like particles is smaller than 10, the initial magnetic permeability decreases. On the other hand, if the width is larger than 4000 μm, the loss increases due to the eddy current generated in the particles. Even if the width is less than 10 μm, the magnetic permeability decreases.

【0006】[0006]

【実施例】(第1実施例)本発明の第1実施例である軟
質磁性材料の断面の模式図を図1に示す。外観は従来例
と同じであり、成形体1は、磁性粒子2とこれらの粒子
を結合する結合金属3とからなっており、磁性粒子2
は、平均粒径10〜400 μmの金属粒子21(鉄合金)
と、その周囲を覆う鉄より酸化しやすい金属の酸化膜、
すなわち、絶縁酸化膜22からなる。金属粒子21は、
Fe-3%Si、Fe-7%Si、Fe-5%Al、Fe-25Co-3Al、Fe-50Co-5S
i、Fe-5Si-1Alを用いた。絶縁酸化膜22は、SiO2
およびAl2O3 で、膜厚は概ね1μmとした。結合金
属3は、Cu-3.5P、Cu-1.5Cu2O、Cu-5Al、Cu-3Si、Cu-3P
およびCu-3Znの銅合金である。金属粒子21と結合金属
3の配合は、金属粒子21の体積が80 % 以上含有する
ように、金属粒子21の量と結合金属3の量とを調整し
て行った。金属粒子21の酸化処理は、空気中で350 ℃
で8 時間加熱とした。成形体1は図2に示す三種類の方
法を用いて、縦5mm横10mm長さ60mmの直方体に成形圧力7
ton/cm2でプレス成形した。結合金属3の含浸は、加熱
後、図示しない圧入装置により溶融金属を圧入した。含
浸後の加熱処理は、含浸時の溶融温度および溶融温度よ
り低い温度の二つで行った。試料の種類と製造条件を表
1に示す。
(First Embodiment) FIG. 1 is a schematic view showing a cross section of a soft magnetic material according to a first embodiment of the present invention. The appearance is the same as that of the conventional example, and the molded body 1 is composed of the magnetic particles 2 and the bonding metal 3 for bonding these particles.
Means metal particles 21 (iron alloy) having an average particle size of 10 to 400 μm
And an oxide film of a metal that is more easily oxidized than iron that surrounds it,
That is, the insulating oxide film 22 is formed. The metal particles 21
Fe-3% Si, Fe-7% Si, Fe-5% Al, Fe-25Co-3Al, Fe-50Co-5S
i, Fe-5Si-1Al was used. The insulating oxide film 22 is made of SiO2
And Al2 O3, the film thickness was approximately 1 .mu.m. The bonding metal 3 is Cu-3.5P, Cu-1.5Cu2O, Cu-5Al, Cu-3Si, Cu-3P
And Cu-3Zn copper alloy. The mixing of the metal particles 21 and the binding metal 3 was performed by adjusting the amount of the metal particles 21 and the amount of the binding metal 3 so that the volume of the metal particles 21 was 80% or more. The oxidation treatment of the metal particles 21 is performed at 350 ° C. in air.
For 8 hours. The molded body 1 is formed into a rectangular parallelepiped having a length of 5 mm, a width of 10 mm and a length of 60 mm by using the three methods shown in FIG.
Press molding was performed at ton / cm2. For the impregnation of the bonding metal 3, after the heating, the molten metal was press-fitted by a press-fitting device (not shown). The heat treatment after the impregnation was performed at two temperatures: a melting temperature during the impregnation and a temperature lower than the melting temperature. Table 1 shows sample types and manufacturing conditions.

【0007】[0007]

【表1】 [Table 1]

【0008】図2(a)の方法は、金属粒子21(鉄合
金)を表面酸化した後、成形、結合金属の含浸、加熱処
理の工程とするもので、表1の試料No は、1、7、8
である。図2(b) は、成形後、表面酸化、結合金属の含
浸、加熱処理の工程とするもので、表1の試料Noは、2
〜6である。 図2(c)は、鉄合金粒子21の表面にFe
2O3 皮膜を形成した磁性粒子2と結合金属3の銅合金
粒子とを混合してプレスにより成形後、加熱処理して絶
縁酸化膜22へ変える処理をしたものである。加熱処理
は、温度750 ℃で真空中加熱した(試料No9)。なお、
比較例として、磁性粒子2にFe-5Alを用い、成形後酸化
処理を行い、結合金属3としてAlを含浸したものを加え
た。作製した成形体の絶縁皮膜の厚さと材質は、電子顕
微鏡とX 線マイクロアナライザで測定した。絶縁皮膜の
中には鉄酸化物が残っているものも有った。つぎに、作
製した試料の固有抵抗値と飽和磁束密度を測定し特性を
評価した。抵抗値の測定結果および評価を同じく表1の
右端欄に示す。本発明の試料(No1〜9)の抵抗値のば
らつきは、±70以下で極めて安定した特性が得られて
いる。これに対して比較例として用いた従来の試料は、
特性のばらつきが±200と大きく極めて不安定であっ
た。また、飽和磁束密度をBHトレーサで測定した結果で
は、本発明の試料は、全て15,000Gaussを超えており、
良好な特性が得られた。これに対して比較例では15,00
0Gauss以下と低い値であった。さらに、成形体に曲げを
加えて絶縁酸化膜と結合金属との密着性を調べたとこ
ろ、本発明の試料は比較例に比べ極めて優れていること
が分かった。このように、安定した特性が得られるため
に、損失の少ない電気機器を量産できる。
The method shown in FIG. 2 (a) is a process in which the metal particles 21 (iron alloy) are oxidized, and then subjected to molding, impregnation with a bonding metal, and heat treatment. 7, 8
It is. FIG. 2 (b) shows the process of surface oxidation, bonding metal impregnation, and heat treatment after molding.
~ 6. FIG. 2 (c) shows that Fe
The magnetic particles 2 on which the 2O3 film is formed and the copper alloy particles of the bonding metal 3 are mixed, formed by pressing, and then subjected to a heat treatment to change into the insulating oxide film 22. The heat treatment was performed in a vacuum at a temperature of 750 ° C. (sample No. 9). In addition,
As a comparative example, magnetic particles 2 were made of Fe-5Al, oxidized after forming, and impregnated with Al as the bonding metal 3. The thickness and material of the insulating film of the formed body were measured with an electron microscope and an X-ray microanalyzer. Iron oxide remained in some of the insulating films. Next, the specific resistance value and the saturation magnetic flux density of the manufactured sample were measured to evaluate the characteristics. The measurement results and evaluation of the resistance value are also shown in the right end column of Table 1. The samples of the present invention (Nos. 1 to 9) showed extremely stable characteristics with a variation in resistance of ± 70 or less. In contrast, the conventional sample used as a comparative example
The characteristic variation was as large as ± 200 and extremely unstable. In addition, according to the results of measuring the saturation magnetic flux density with a BH tracer, all the samples of the present invention exceeded 15,000 Gauss,
Good characteristics were obtained. In contrast, 15,000 in the comparative example
The value was as low as 0 Gauss or less. Further, the molded article was bent to examine the adhesion between the insulating oxide film and the bonding metal. As a result, it was found that the sample of the present invention was extremely superior to the comparative example. As described above, since stable characteristics are obtained, electric devices with small loss can be mass-produced.

【0009】(第2実施例)本発明の第2実施例である
軟質磁性材料の断面の模式図を図3に示す。本実施例
は、初透磁率を向上させるため、板状の金属粒子(鉄合
金粒子)21を用いたものである。鉄合金粒子のアスペ
クト比(幅w/厚さt)を10〜100とし、且つ幅w
が10〜4000μmとしたものである。鉄合金粒子の
表面には、第1実施例と同様に絶縁酸化膜22が生成さ
れ、結合金属3の銅合金で結合されている。鉄合金粒子
は、Fe-3Si、Fe-7Si、Fe-5Alを用い、板厚tを0.5〜
100μmの範囲、幅wを10〜4500μmの範囲と
した。絶縁酸化膜22は、SiO2 およびAl2O3 を
用い、膜厚は概ね1μmとした。結合金属3は、Cu-3.5
P、Cu-1.5Cu2O、Cu-3Al、Cu-3MgおよびCu- Al-11Siの
銅合金とした。製造方法は、第1実施例と同様に図2の
3種類の方法でおこなった。なお、比較例として、鉄合
金粒子のアスペクト比の小さいものおよび幅の大きいも
のも加えた。本発明に用いた試料を表2に示す。
(Second Embodiment) FIG. 3 shows a schematic diagram of a cross section of a soft magnetic material according to a second embodiment of the present invention. In the present embodiment, plate-shaped metal particles (iron alloy particles) 21 are used to improve the initial magnetic permeability. The iron alloy particles have an aspect ratio (width w / thickness t) of 10 to 100 and a width w
Is 10 to 4000 μm. An insulating oxide film 22 is formed on the surface of the iron alloy particles in the same manner as in the first embodiment, and is bonded by the copper alloy of the bonding metal 3. Iron alloy particles, Fe-3Si, Fe-7Si, Fe-5Al, using a plate thickness t of 0.5 to
The width was 100 μm, and the width w was 10 to 4500 μm. The insulating oxide film 22 was made of SiO2 and Al2 O3 and had a thickness of about 1 .mu.m. The bonding metal 3 is Cu-3.5
A copper alloy of P, Cu-1.5Cu2O, Cu-3Al, Cu-3Mg and Cu-Al-11Si was used. The manufacturing method was the same as in the first embodiment, using the three methods shown in FIG. As comparative examples, iron alloy particles having a small aspect ratio and particles having a large width were also added. Table 2 shows the samples used in the present invention.

【0010】[0010]

【表2】 [Table 2]

【0011】板状の金属粒子(鉄合金粒子)21は、図
4に示す遠心アトマイズ装置により作製した。ルツボ4
に鉄合金5を入れ、ヒータ6により1500℃付近まで
加熱し、鉄合金5を溶解する。溶解した鉄合金5をノズ
ル7から噴出させ、回転させたデイスク8に衝突させ
る。鉄合金粒子のアスペクト比は、デイスク8の回転速
度と鉄合金溶湯の粘度を調整して行った。この溶湯の粘
度は、溶融金属の温度、組成および雰囲気の酸素濃度に
より変化するが、本実施例では、容器9中の酸度濃度を
アルゴンおよび窒素で雰囲気調整して行った。軟磁性材
料の製造工程は第1実施例と同じく図2に示す三種類で
ある。図2(a)の方法は、表2の試料No1、図2(b) は
試料No2〜12である。 図2(c) の方法は、No13で
ある。絶縁酸化膜の厚さは電子顕微鏡とX線マイクロア
ナライザで測定した。つぎに、作製した試料の初透磁率
を測定した結果を、同じく表2の右端欄に示す。本発明
の実施例として用いた試料1〜13は、初透磁率が500
以上で良好な特性を示している。なお、飽和磁束密度も
15,000G以上と良好である。これに対して比較例とし
て用いた試料のうち、アスペクト比が小さいものは、初
透磁率が500以下と小さく、アスペクト比が大きいが、
幅が大きいものは、初透磁率は500以上であるが、粉末の
製造性が困難であった。
The plate-like metal particles (iron alloy particles) 21 were produced by a centrifugal atomizer shown in FIG. Crucible 4
The iron alloy 5 is put into the furnace and heated to about 1500 ° C. by the heater 6 to melt the iron alloy 5. The molten iron alloy 5 is ejected from the nozzle 7 and collides with the rotated disk 8. The aspect ratio of the iron alloy particles was determined by adjusting the rotation speed of the disk 8 and the viscosity of the molten iron alloy. Although the viscosity of the molten metal changes depending on the temperature, composition, and oxygen concentration of the atmosphere of the molten metal, in this embodiment, the acidity concentration in the container 9 was adjusted by argon and nitrogen to adjust the atmosphere. The manufacturing steps of the soft magnetic material are the three types shown in FIG. 2 as in the first embodiment. The method of FIG. 2A is for sample No. 1 in Table 2, and FIG. 2B is for sample Nos. 2 to 12. The method of FIG. The thickness of the insulating oxide film was measured with an electron microscope and an X-ray microanalyzer. Next, the result of measuring the initial magnetic permeability of the manufactured sample is also shown in the right end column of Table 2. Samples 1 to 13 used as examples of the present invention have an initial magnetic permeability of 500
The above shows good characteristics. The saturation magnetic flux density
As good as 15,000G or more. On the other hand, among the samples used as comparative examples, those having a small aspect ratio have a small initial permeability of 500 or less and a large aspect ratio.
Those having a large width had an initial magnetic permeability of 500 or more, but were difficult to produce powder.

【0012】[0012]

【発明の効果】以上述べたように、本発明によれば、周
囲が鉄より酸化しやすい厚さ0.2 〜10μmの絶縁酸化膜
2で覆われた平均粒径10〜400 μmの鉄合金粒子1であ
って、絶縁酸化膜を構成する金属元素は鉄合金を構成す
る合金元素の中の少なくとも一つからなり、絶縁酸化膜
で被覆された粒子同士が銅を主成分とする合金で結合さ
れている成形体で、かつ、鉄合金が成形体の80体積%以
上を占めた構成にしたので、抵抗値や飽和磁束密度の特
性のばらつきが少ない軟質磁性材料を得る効果がある。
また、鉄合金粒子を板状に、アスペクト比を特定したの
で、初透磁率高い軟質磁性材料が得られ、損失の少ない
電気機器が得られる。
As described above, according to the present invention, the iron alloy particles 1 having an average particle diameter of 10 to 400 .mu.m covered with an insulating oxide film 2 having a thickness of 0.2 to 10 .mu.m which is more easily oxidized than iron. The metal element forming the insulating oxide film is made of at least one of the alloying elements forming the iron alloy, and the particles covered with the insulating oxide film are combined with an alloy mainly containing copper. In this case, the iron alloy occupies 80% by volume or more of the molded body, so that there is an effect of obtaining a soft magnetic material with less variation in resistance value and saturation magnetic flux density characteristics.
Further, since the iron alloy particles are formed in a plate shape and the aspect ratio is specified, a soft magnetic material having a high initial magnetic permeability can be obtained, and an electric device with a small loss can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例である軟質磁性材料成形体
の断面を示す模式図である。
FIG. 1 is a schematic view showing a cross section of a soft magnetic material molded body according to a first embodiment of the present invention.

【図2】本発明の軟質磁性材料の製造工程を示すブロッ
ク図である。
FIG. 2 is a block diagram showing a manufacturing process of a soft magnetic material of the present invention.

【図3】本発明の第2実施例である軟質磁性材料成形体
の断面を示す模式図である。
FIG. 3 is a schematic view showing a cross section of a soft magnetic material molded body according to a second embodiment of the present invention.

【図4】本発明の第2実施例に用いた鉄合金粒子を作製
する装置を示す模式図である。
FIG. 4 is a schematic view showing an apparatus for producing iron alloy particles used in a second embodiment of the present invention.

【図5】従来の軟質磁性材料成形体の断面を示す模式図
である。
FIG. 5 is a schematic view showing a cross section of a conventional soft magnetic material molded body.

【図6】従来の軟質磁性材料の製造工程を示すブロック
図である。
FIG. 6 is a block diagram showing a manufacturing process of a conventional soft magnetic material.

【符号の説明】[Explanation of symbols]

1 成形体 2 磁性粒子 21 金属粒子(鉄合金粒子) 22 絶縁酸化膜 3 結合金属 4 ルツボ 5 鉄合金 6 ヒータ 7 ノズル 8 デイスク 9 容器 DESCRIPTION OF SYMBOLS 1 Molded body 2 Magnetic particle 21 Metal particle (iron alloy particle) 22 Insulating oxide film 3 Bonding metal 4 Crucible 5 Iron alloy 6 Heater 7 Nozzle 8 Disk 9 Container

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 303 C22C 38/16 38/16 H01F 1/14 A (72)発明者 池田 満昭 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 Fターム(参考) 4K018 AA10 AA25 AA26 AA29 BA15 BA16 BB01 BB04 BC18 CA11 FA08 FA36 KA43 KA44 5E041 AA04 CA02 CA04 CA05 NN01──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/00 303 C22C 38/16 38/16 H01F 1/14 A (72) Inventor Mitsuaki Ikeda Kitakyushu, Fukuoka Prefecture 2-1 Kurosaki Castle Stone, Yawata Nishi-ku Yasukawa Electric Co., Ltd. F-term (reference) 4K018 AA10 AA25 AA26 AA29 BA15 BA16 BB01 BB04 BC18 CA11 FA08 FA36 KA43 KA44 5E041 AA04 CA02 CA04 CA05 NN01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】珪素、アルミニウムの少なくとも1つの元
素を含む鉄合金からなり平均粒径が10〜400 μmの金属
粒子とこの金属粒子の周囲を覆う鉄より酸化しやすい珪
素、アルミニウムのいずれかを主成分とした厚さ0.2 〜
10μmの絶縁酸化膜とからなる磁性粒子と、前記磁性粒
子同志を結合させる結合金属とを有し、かつ前記金属粒
子の体積が全体の80%以上である成形体からなる軟質磁
性材料において、 前記結合金属は、鉄より酸化しやすい酸化銅、りん、ア
ルミニウム、亜鉛、珪素の少なくとも一つを1 〜5wt%含
有した銅合金であることを特徴とする軟質磁性材料。
(1) A metal particle comprising an iron alloy containing at least one element of silicon and aluminum and having an average particle diameter of 10 to 400 μm, and any one of silicon and aluminum which are more easily oxidized than iron covering the periphery of the metal particle. Thickness of the main component 0.2 ~
A soft magnetic material comprising a magnetic body comprising a 10 μm insulating oxide film and a binding metal for binding the magnetic particles together, and wherein the volume of the metal particle is 80% or more of the whole, A soft magnetic material characterized in that the binding metal is a copper alloy containing 1 to 5% by weight of at least one of copper oxide, phosphorus, aluminum, zinc and silicon, which is more easily oxidized than iron.
【請求項2】前記金属粒子は、厚さをt、幅をwとした
場合、アスペクト比(w/t)が10〜100、幅
(w)が10〜4000μmの板状であることを特徴と
する請求項1記載の軟質磁性材料。
2. The metal particles are in the form of a plate having an aspect ratio (w / t) of 10 to 100 and a width (w) of 10 to 4000 μm, where t is the thickness and w is the width. The soft magnetic material according to claim 1, wherein
【請求項3】珪素、アルミニウムの少なくとも1つの元
素を含む鉄合金からなり平均粒径が10〜400 μmの金属
粒子を300 ℃以上に加熱して前記金属粒子の表面を酸化
させ、鉄を主成分とする鉄酸化膜を形成して磁性粒子と
し、その後、前記磁性粒子を成形して成形体とし、前記
成形体を加熱した状態で前記磁性粒子同志を結合させる
結合金属である溶融した銅合金を前記成形体の空隙部に
含浸し、引き続き加熱処理し、前記金属粒子中の珪素、
アルミニウムにより前記鉄酸化膜の酸素を還元し、珪素
またはアルミニウムを主成分とする絶縁酸化膜に変える
ことを特徴とする軟質磁性材料の製造方法。
3. The method according to claim 1, wherein metal particles made of an iron alloy containing at least one element of silicon and aluminum and having an average particle size of 10 to 400 μm are heated to 300 ° C. or more to oxidize the surface of the metal particles and to mainly contain iron. Forming an iron oxide film as a component to form magnetic particles, and then forming the magnetic particles into a molded body, and a molten copper alloy that is a bonding metal that binds the magnetic particles together while the molded body is heated. Is impregnated into the voids of the compact, and subsequently heat-treated, silicon in the metal particles,
A method for manufacturing a soft magnetic material, comprising reducing oxygen in the iron oxide film with aluminum to convert it to an insulating oxide film containing silicon or aluminum as a main component.
【請求項4】珪素、アルミニウムの少なくとも1つの元
素を含む鉄合金からなり平均粒径が10〜400 μmの金属
粒子を成形して成形体とし、前記成形体を300 ℃以上に
加熱して前記金属粒子の表面を酸化させ、鉄を主成分と
する鉄酸化膜を形成して磁性粒子とし、その後、前記成
形体を加熱した状態で前記磁性粒子同志を結合させる結
合金属である溶融した銅合金を前記成形体の空隙部に含
浸し、引き続き加熱処理し、前記金属粒子中の珪素、ア
ルミニウム少なくとも1つにより前記鉄酸化膜の酸素を
還元し、珪素またはアルミニウムを主成分とする絶縁酸
化膜に変えることを特徴とする軟質磁性材料の製造方
法。
4. A compact is formed by molding metal particles made of an iron alloy containing at least one element of silicon and aluminum and having an average particle size of 10 to 400 μm. A surface of metal particles is oxidized to form an iron oxide film containing iron as a main component to form magnetic particles, and thereafter, a molten copper alloy that is a bonding metal that bonds the magnetic particles together while heating the compact. Is impregnated into the voids of the molded body, and subsequently heat-treated to reduce oxygen in the iron oxide film by at least one of silicon and aluminum in the metal particles to form an insulating oxide film containing silicon or aluminum as a main component. A method for producing a soft magnetic material, characterized by being changed.
【請求項5】珪素、アルミニウムの少なくとも1つの元
素を含む鉄合金からなり平均粒径が10〜400 μmの金属
粒子とこの金属粒子の周囲を覆う鉄を主成分とする鉄酸
化膜とからなる磁性粒子と、前記磁性粒子同志を結合さ
せる結合金属である銅合金の粒子とを配合してプレスで
成形して成形体とし、前記成形体を加熱処理し、前記金
属粒子中の珪素、アルミニウム少なくとも1つにより前
記鉄酸化膜の酸素を還元し、珪素またはアルミニウムを
主成分とする絶縁酸化膜に変えることを特徴とする軟質
磁性材料の製造方法。
5. An iron alloy containing at least one element of silicon and aluminum, comprising metal particles having an average particle size of 10 to 400 μm and an iron oxide film mainly composed of iron and surrounding the metal particles. Magnetic particles and particles of a copper alloy, which is a binding metal that binds the magnetic particles together, are formed by pressing and formed into a formed body, and the formed body is subjected to a heat treatment, and silicon, aluminum in the metal particles at least. A method of manufacturing a soft magnetic material, comprising reducing oxygen in the iron oxide film by one to convert it to an insulating oxide film containing silicon or aluminum as a main component.
【請求項6】前記銅合金は、鉄より酸化しやすい酸化
銅、りん、アルミニウム、亜鉛、珪素、マグネシウムの
うち少なくとも一つを1 〜5wt%含有したことを特徴とす
る請求項3から5のいずれか1項に記載の軟質磁性材料
の製造方法。
6. The copper alloy according to claim 3, wherein said copper alloy contains 1 to 5% by weight of at least one of copper oxide, phosphorus, aluminum, zinc, silicon and magnesium, which is more easily oxidized than iron. A method for producing a soft magnetic material according to any one of the preceding claims.
【請求項7】前記鉄合金からなる金属粒子は、厚さを
t、幅をwとした場合、アスペクト比(w/t)を10
〜100、幅(w)を10〜4000μmの板状とした
ことを特徴とする請求項3から6のいずれか1項に記載
の軟質磁性材料の製造方法。
7. The metal particles made of the iron alloy have an aspect ratio (w / t) of 10 when the thickness is t and the width is w.
The method for producing a soft magnetic material according to any one of claims 3 to 6, wherein the soft magnetic material has a plate shape having a width (w) of 10 to 4000 µm.
JP2001255580A 2001-03-12 2001-08-27 Soft magnetic material and manufacturing method thereof Expired - Fee Related JP4683178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001255580A JP4683178B2 (en) 2001-03-12 2001-08-27 Soft magnetic material and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-67920 2001-03-12
JP2001067920 2001-03-12
JP2001255580A JP4683178B2 (en) 2001-03-12 2001-08-27 Soft magnetic material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002343618A true JP2002343618A (en) 2002-11-29
JP4683178B2 JP4683178B2 (en) 2011-05-11

Family

ID=26611020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001255580A Expired - Fee Related JP4683178B2 (en) 2001-03-12 2001-08-27 Soft magnetic material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4683178B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060072A1 (en) * 2003-12-17 2005-06-30 Sumitomo Electric Industries, Ltd. Power magnetic core and stator core
JP2007287627A (en) * 2006-04-20 2007-11-01 Fdk Energy Co Ltd Alkaline dry cell
JP2008159704A (en) * 2006-12-21 2008-07-10 Fuji Electric Device Technology Co Ltd Method of manufacturing powder magnetic core
JP4906972B1 (en) * 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same
JP2012094692A (en) * 2010-10-27 2012-05-17 Daihatsu Motor Co Ltd Composite soft magnetic material
US8362866B2 (en) 2011-01-20 2013-01-29 Taiyo Yuden Co., Ltd. Coil component
WO2013031243A1 (en) * 2011-08-26 2013-03-07 太陽誘電株式会社 Magnetic material and coil component
US8427265B2 (en) 2011-04-27 2013-04-23 Taiyo Yuden Co., Ltd. Laminated inductor
US8525630B2 (en) 2011-08-10 2013-09-03 Taiyo Yuden Co., Ltd. Laminated inductor
US8610525B2 (en) 2011-08-05 2013-12-17 Taiyo Yuden Co., Ltd. Laminated inductor
US8704629B2 (en) 2010-04-30 2014-04-22 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
US8723634B2 (en) 2010-04-30 2014-05-13 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
JP2014175580A (en) * 2013-03-12 2014-09-22 Hitachi Metals Ltd Dust core, coil component using the same and method of producing dust core
US8866579B2 (en) 2011-11-17 2014-10-21 Taiyo Yuden Co., Ltd. Laminated inductor
US8896405B2 (en) 2011-10-28 2014-11-25 Taiyo Yuden Co., Ltd. Coil-type electronic component
US9007159B2 (en) 2011-12-15 2015-04-14 Taiyo Yuden Co., Ltd. Coil-type electronic component
JP2015088529A (en) * 2013-10-28 2015-05-07 株式会社豊田中央研究所 Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2016004813A (en) * 2014-06-13 2016-01-12 株式会社豊田中央研究所 Soft magnetic member, reactor, powder for dust core, and method for manufacturing dust core
US9287026B2 (en) 2011-04-27 2016-03-15 Taiyo Yuden Co., Ltd. Magnetic material and coil component
US9293244B2 (en) 2011-07-19 2016-03-22 Taiyo Yuden Co., Ltd. Magnetic material and coil component using the same
US20160086705A1 (en) * 2014-09-18 2016-03-24 Kabushiki Kaisha Toshiba Magnetic material and device
US9318251B2 (en) 2006-08-09 2016-04-19 Coilcraft, Incorporated Method of manufacturing an electronic component
US9349517B2 (en) 2011-01-20 2016-05-24 Taiyo Yuden Co., Ltd. Coil component
JPWO2015140978A1 (en) * 2014-03-20 2017-04-06 株式会社東芝 Magnetic materials and devices
EP2969315A4 (en) * 2013-03-15 2017-04-19 Persimmon Technologies Corporation System and method for making a structured magnetic material with integrated particle insulation
US9704627B2 (en) 2012-01-18 2017-07-11 Hitachi Metals, Ltd. Metal powder core comprising copper powder, coil component, and fabrication method for metal powder core
US9892834B2 (en) 2011-07-05 2018-02-13 Taiyo Yuden Co., Ltd. Magnetic material and coil component employing same
KR20190074535A (en) * 2017-12-20 2019-06-28 창원대학교 산학협력단 A three dimensional printing method using metal powder
JP2020119932A (en) * 2019-01-21 2020-08-06 山陽特殊製鋼株式会社 Flame retardant powder for magnetic member
CN112309666A (en) * 2019-07-31 2021-02-02 Tdk株式会社 Soft magnetic metal powder and electronic component
CN113628857A (en) * 2016-02-01 2021-11-09 株式会社村田制作所 Coil component and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159332A (en) * 1988-12-12 1990-06-19 Kobe Steel Ltd Magnetic cu alloy and its manufacture
JPH04346204A (en) * 1991-05-23 1992-12-02 Matsushita Electric Ind Co Ltd Compound material and manufacture thereof
JPH056830A (en) * 1991-06-27 1993-01-14 Furukawa Electric Co Ltd:The Manufacture of dust core
JPH0578795A (en) * 1991-06-25 1993-03-30 Riken Corp Copper infiltrated iron-based sintered alloy and its production
JPH11238614A (en) * 1998-02-20 1999-08-31 Yaskawa Electric Corp Soft magnetic material and manufacture thereof and electrical equipment using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159332A (en) * 1988-12-12 1990-06-19 Kobe Steel Ltd Magnetic cu alloy and its manufacture
JPH04346204A (en) * 1991-05-23 1992-12-02 Matsushita Electric Ind Co Ltd Compound material and manufacture thereof
JPH0578795A (en) * 1991-06-25 1993-03-30 Riken Corp Copper infiltrated iron-based sintered alloy and its production
JPH056830A (en) * 1991-06-27 1993-01-14 Furukawa Electric Co Ltd:The Manufacture of dust core
JPH11238614A (en) * 1998-02-20 1999-08-31 Yaskawa Electric Corp Soft magnetic material and manufacture thereof and electrical equipment using the same

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579723B2 (en) 2003-12-17 2009-08-25 Sumitomo Electric Industries, Ltd. Power magnetic core and stator core
WO2005060072A1 (en) * 2003-12-17 2005-06-30 Sumitomo Electric Industries, Ltd. Power magnetic core and stator core
JP2007287627A (en) * 2006-04-20 2007-11-01 Fdk Energy Co Ltd Alkaline dry cell
US9318251B2 (en) 2006-08-09 2016-04-19 Coilcraft, Incorporated Method of manufacturing an electronic component
US11869696B2 (en) 2006-08-09 2024-01-09 Coilcraft, Incorporated Electronic component
US10319507B2 (en) 2006-08-09 2019-06-11 Coilcraft, Incorporated Method of manufacturing an electronic component
JP2008159704A (en) * 2006-12-21 2008-07-10 Fuji Electric Device Technology Co Ltd Method of manufacturing powder magnetic core
US8723634B2 (en) 2010-04-30 2014-05-13 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
US8813346B2 (en) 2010-04-30 2014-08-26 Taiyo Yuden Co., Ltd. Method for manufacturing a coil-type electronic component
US8749339B2 (en) 2010-04-30 2014-06-10 Taiyo Yuden Co., Ltd. Coil-type electronic component and process for producing same
US8704629B2 (en) 2010-04-30 2014-04-22 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
JP2012094692A (en) * 2010-10-27 2012-05-17 Daihatsu Motor Co Ltd Composite soft magnetic material
US8362866B2 (en) 2011-01-20 2013-01-29 Taiyo Yuden Co., Ltd. Coil component
US9349517B2 (en) 2011-01-20 2016-05-24 Taiyo Yuden Co., Ltd. Coil component
US9685267B2 (en) 2011-01-20 2017-06-20 Taiyo Yuden Co., Ltd. Coil component
WO2012147224A1 (en) * 2011-04-27 2012-11-01 太陽誘電株式会社 Magnetic material and coil component using same
CN103493155A (en) * 2011-04-27 2014-01-01 太阳诱电株式会社 Magnetic material and coil component using same
US8427265B2 (en) 2011-04-27 2013-04-23 Taiyo Yuden Co., Ltd. Laminated inductor
CN103493155B (en) * 2011-04-27 2016-11-09 太阳诱电株式会社 Magnetic material and use its coil component
US9472341B2 (en) 2011-04-27 2016-10-18 Taiyo Yuden Co., Ltd. Method for manufacturing magnetic grain compact
US8416051B2 (en) 2011-04-27 2013-04-09 Taiyo Yuden Co., Ltd. Magnetic material and coil component using the same
US9287033B2 (en) 2011-04-27 2016-03-15 Taiyo Yuden Co., Ltd. Magnetic material and coil component using same
US9030285B2 (en) 2011-04-27 2015-05-12 Taiyo Yuden Co., Ltd. Magnetic material and coil component using same
JP4906972B1 (en) * 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same
US9287026B2 (en) 2011-04-27 2016-03-15 Taiyo Yuden Co., Ltd. Magnetic material and coil component
JP5883437B2 (en) * 2011-04-27 2016-03-15 太陽誘電株式会社 Magnetic material and coil component using the same
US9892834B2 (en) 2011-07-05 2018-02-13 Taiyo Yuden Co., Ltd. Magnetic material and coil component employing same
US9293244B2 (en) 2011-07-19 2016-03-22 Taiyo Yuden Co., Ltd. Magnetic material and coil component using the same
US9165705B2 (en) 2011-08-05 2015-10-20 Taiyo Yuden Co., Ltd. Laminated inductor
US8610525B2 (en) 2011-08-05 2013-12-17 Taiyo Yuden Co., Ltd. Laminated inductor
US8525630B2 (en) 2011-08-10 2013-09-03 Taiyo Yuden Co., Ltd. Laminated inductor
TWI501262B (en) * 2011-08-26 2015-09-21 Taiyo Yuden Kk Magnetic materials and coil parts
US11972885B2 (en) 2011-08-26 2024-04-30 Taiyo Yuden Co., Ltd Magnetic material and coil component
WO2013031243A1 (en) * 2011-08-26 2013-03-07 太陽誘電株式会社 Magnetic material and coil component
US8896405B2 (en) 2011-10-28 2014-11-25 Taiyo Yuden Co., Ltd. Coil-type electronic component
US8866579B2 (en) 2011-11-17 2014-10-21 Taiyo Yuden Co., Ltd. Laminated inductor
US9007159B2 (en) 2011-12-15 2015-04-14 Taiyo Yuden Co., Ltd. Coil-type electronic component
JP2018050053A (en) * 2012-01-18 2018-03-29 日立金属株式会社 Method for manufacturing powder-compact magnetic core, and powder-compact magnetic core
US10312004B2 (en) 2012-01-18 2019-06-04 Hitachi Metals, Ltd. Metal powder core comprising copper powder, coil component, and fabrication method for metal powder core
US9704627B2 (en) 2012-01-18 2017-07-11 Hitachi Metals, Ltd. Metal powder core comprising copper powder, coil component, and fabrication method for metal powder core
EP2806433B1 (en) * 2012-01-18 2018-01-31 Hitachi Metals, Ltd. Metal powder core, coil component, and fabrication method for metal powder core
JP2014175580A (en) * 2013-03-12 2014-09-22 Hitachi Metals Ltd Dust core, coil component using the same and method of producing dust core
EP2969315A4 (en) * 2013-03-15 2017-04-19 Persimmon Technologies Corporation System and method for making a structured magnetic material with integrated particle insulation
EP4279630A3 (en) * 2013-03-15 2024-03-13 Persimmon Technologies, Corporation. Method for making a structured magnetic material with integrated particle insulation
EP3792944A1 (en) * 2013-03-15 2021-03-17 Persimmon Technologies Corporation Method for making a structured magnetic material with integrated particle insulation
JP2015088529A (en) * 2013-10-28 2015-05-07 株式会社豊田中央研究所 Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JPWO2015140978A1 (en) * 2014-03-20 2017-04-06 株式会社東芝 Magnetic materials and devices
JP2016004813A (en) * 2014-06-13 2016-01-12 株式会社豊田中央研究所 Soft magnetic member, reactor, powder for dust core, and method for manufacturing dust core
US9997289B2 (en) * 2014-09-18 2018-06-12 Kabushiki Kaisha Toshiba Magnetic material and device
US20160086705A1 (en) * 2014-09-18 2016-03-24 Kabushiki Kaisha Toshiba Magnetic material and device
JP2016063068A (en) * 2014-09-18 2016-04-25 株式会社東芝 Magnetic material and device
CN105448446A (en) * 2014-09-18 2016-03-30 株式会社东芝 Magnetic material and device
CN113628857A (en) * 2016-02-01 2021-11-09 株式会社村田制作所 Coil component and method for manufacturing same
CN113628857B (en) * 2016-02-01 2024-03-08 株式会社村田制作所 Coil component and method for manufacturing same
KR102009146B1 (en) 2017-12-20 2019-08-09 창원대학교 산학협력단 A three dimensional printing method using metal powder
KR20190074535A (en) * 2017-12-20 2019-06-28 창원대학교 산학협력단 A three dimensional printing method using metal powder
JP7257150B2 (en) 2019-01-21 2023-04-13 山陽特殊製鋼株式会社 Flame-retardant powder for magnetic components
JP2020119932A (en) * 2019-01-21 2020-08-06 山陽特殊製鋼株式会社 Flame retardant powder for magnetic member
CN112309666A (en) * 2019-07-31 2021-02-02 Tdk株式会社 Soft magnetic metal powder and electronic component
CN112309666B (en) * 2019-07-31 2024-03-19 Tdk株式会社 Soft magnetic metal powder and electronic component

Also Published As

Publication number Publication date
JP4683178B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP4683178B2 (en) Soft magnetic material and manufacturing method thereof
CA2613862C (en) Method for manufacturing of insulated soft magnetic metal powder formed body
CN1914697B (en) Dust core and method for producing same
JP5145923B2 (en) Composite magnetic material
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
KR101521968B1 (en) Magnetic material and coil component using the same
CN100514513C (en) Soft magnetic material, powder magnetic core and process for producing the same
JP2001011563A (en) Manufacture of composite magnetic material
WO2010082486A1 (en) Process for producing composite magnetic material, dust core formed from same, and process for producing dust core
JP3624681B2 (en) Composite magnetic material and method for producing the same
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
JP2004288983A (en) Dust core and method for manufacturing same
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP2007231330A (en) Methods for manufacturing metal powder for dust core and the dust core
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
JP2002121601A (en) Soft magnetic metal powder particle and treating method thereof, and soft magnetic compact and its manufacturing method
JP2000232014A (en) Manufacture of composite magnetic material
JP2001085211A (en) Soft magnetic particle, soft magnetic molded body, and their manufacture
JPH11238614A (en) Soft magnetic material and manufacture thereof and electrical equipment using the same
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP2010016290A (en) Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees