JPH02159332A - Magnetic cu alloy and its manufacture - Google Patents

Magnetic cu alloy and its manufacture

Info

Publication number
JPH02159332A
JPH02159332A JP63314237A JP31423788A JPH02159332A JP H02159332 A JPH02159332 A JP H02159332A JP 63314237 A JP63314237 A JP 63314237A JP 31423788 A JP31423788 A JP 31423788A JP H02159332 A JPH02159332 A JP H02159332A
Authority
JP
Japan
Prior art keywords
alloy
magnetic
pressure
ferromagnetic
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63314237A
Other languages
Japanese (ja)
Inventor
Kenichi Aota
健一 青田
Mutsumi Abe
睦 安倍
Takashi Motoda
元田 高司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63314237A priority Critical patent/JPH02159332A/en
Publication of JPH02159332A publication Critical patent/JPH02159332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the electric conductivity and magnetic characteristics in the Cu alloy by subjecting a mixed body of Cu or a Cu alloy contg. a fine body of ferromagnetic metals to hardening under specific conditions. CONSTITUTION:By volume, 10 to 85% powder of a ferromagnetic body of Fe, Ni, Co or their alloys or the like and Cu or a Cu alloy are mixed. The mixed body is subjected to hardening at 600 to 800 deg.C under >=10kg/mm<2> pressure. Or, the mixed body is subjected to compacting at a room temp. under >=50kg/mm<2> pressure and is thereafter subjected to heat treatment at 600 to 800 deg.C. Since the Cu alloy has high electric conductivity and has ferromagnetism, it can be used as an electromagnetic wave shield material, a solid rotor of an induction motor including a linear motor or the like.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電磁波シールド材やりニアモータを含む誘導
モータのソリッドロータ等に利用される磁性Cu合金及
びその製造方法に関し、電磁気特性特に電気伝導度が高
く且つ強磁性を備えた磁性Cu合金及びその製造方法に
関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a magnetic Cu alloy used in electromagnetic shielding materials and solid rotors of induction motors including near motors, and a method for producing the same. The present invention relates to a magnetic Cu alloy having high ferromagnetism and a method for producing the same.

[従来の技術] オフィスオートメーションやファクトリ−オートメーシ
ョンの発展に伴なって磁気ディスク記憶装置を備えた電
気機器を使用することが多くなっており、磁気ディスク
記憶装置の記録を保持する上から磁気シールド構造の重
要性が高まりつつあると共に、また他の電気機器に対す
る電磁波ノイズを防ぐことが法律的にも義務づけられて
いる。
[Prior Art] With the development of office automation and factory automation, electrical equipment equipped with magnetic disk storage devices is increasingly being used, and a magnetic shield structure is required to retain records on the magnetic disk storage device. is becoming increasingly important, and it is also legally mandated to prevent electromagnetic noise from affecting other electrical equipment.

そのような例としては例えば磁気ディスク記憶装置の磁
気ヘッド駆動用精密モータを挙げることができ、電磁気
シールド構造を施す必要のあることは勿論であるが、そ
のシールド性能の一層の向上が求められている。
An example of such a motor is a precision motor used to drive the magnetic head of a magnetic disk storage device, which of course requires an electromagnetic shielding structure, but there is also a need to further improve its shielding performance. There is.

一方従来の誘導モータには鋼板積層型ロータが汎用され
ているが、該ロータでは高精度の速度変換が難しく、制
御の必要な助力モータ用としては低速側トルクの高いソ
リッドロータが見直されており、ロータ素材として強磁
性で電気伝導度の高い材料が望まれている。
On the other hand, steel plate laminated rotors are commonly used in conventional induction motors, but it is difficult to convert speed with high precision with these rotors, and solid rotors with high low-speed torque are being reconsidered for use in assist motors that require control. , a material that is ferromagnetic and has high electrical conductivity is desired as a rotor material.

この様に電磁波シールド材や誘導モータのロータ素材と
して、電気伝導度及び磁気性能の優れた磁性材料が求め
られているが、現在利用されている磁性A1合金は性能
的に未だ十分なものではなく改善の余地が残されている
。即ち磁性A1合金はAI粉に鉄粉等の強磁性体粉末を
分散・成形したものであり、電磁波シールド材としての
シールド性能(反射効率等)並びに誘導モータ用ロータ
材としての電磁特性を高めるには電気伝導度及び磁気性
能を向上させる必要がある。この点AIは電気伝導度の
比較的高い金属とは言えるが、最近の要求特性はより高
い電気伝導度を望んでいる。
As described above, magnetic materials with excellent electrical conductivity and magnetic performance are required as electromagnetic shielding materials and rotor materials for induction motors, but the currently used magnetic A1 alloy is not yet sufficient in terms of performance. There is still room for improvement. In other words, magnetic A1 alloy is made by dispersing and molding ferromagnetic powder such as iron powder into AI powder, and it is used to improve shielding performance (reflection efficiency, etc.) as an electromagnetic wave shielding material and electromagnetic properties as a rotor material for induction motors. need to improve electrical conductivity and magnetic performance. In this respect, AI can be said to be a metal with relatively high electrical conductivity, but recent demands for higher electrical conductivity are desired.

しかるに磁性A1合金においてA1固有の物性値を上回
ることは不可能であるので、ここに磁性A1合金の電気
伝導度は頭うちの状態になっている。またA1に鉄粉等
を分散して熱間加圧成形する場合において、約500℃
を超える温度で加熱するとA1と鉄粉が反応してFeA
 Is等の金属間化合物が生成し、成形体の磁気特性が
著しく低下するという問題があり、熱間加圧成形はそれ
以下の温度で行なわれている。しかるに500℃以下の
温度で成形する場合には相当に高い圧力を付加しなけれ
ばならず、成形体内に加工歪が残り、これが強磁性体本
来の性能を十分に発揮し得ない原因となっている。
However, since it is impossible for the magnetic A1 alloy to exceed the physical property values inherent to A1, the electrical conductivity of the magnetic A1 alloy has reached a plateau. In addition, when dispersing iron powder etc. in A1 and hot pressing, the temperature is approximately 500℃.
When heated at a temperature exceeding
There is a problem in that intermetallic compounds such as Is are generated and the magnetic properties of the compact are significantly reduced, so hot pressing is carried out at a temperature lower than this. However, when molding is carried out at a temperature below 500°C, it is necessary to apply considerably high pressure, which leaves processing strain inside the molded product, which causes the ferromagnetic material to be unable to fully demonstrate its original performance. There is.

[発明が解決しようとする課題] 本発明はこうした事情に着目してなされたものであって
、従来の磁性A1合金では達成し得なかった様な物性値
即ち電気伝導度並びに磁気特性を備えた合金並びにその
製造方法を提供することを目的としている。
[Problems to be Solved by the Invention] The present invention has been made in view of these circumstances, and has physical properties such as electrical conductivity and magnetic properties that could not be achieved with conventional magnetic A1 alloys. The purpose of this invention is to provide an alloy and a method for manufacturing the same.

[課題を解決するための手段] しかして上記目的を達成し得た本発明の磁性合金とは、
強磁性金属の微小体を体積率で10〜85%含み、該強
磁性金属がCu又はCu合金と金属間化合物を形成する
ことなく、金属結合によって一体化されている点に要旨
があり、またその磁性合金を製造する本発明方法は、強
磁性金属の微小体を体積率でio〜85%含み、残部が
Cu又はCu合金である混合体を、600〜800℃の
温度で、10 kg/am2以上の圧力を加えて固化成
形するか又は室温下で50 kg/mm’以上の圧力で
圧粉成形した後、600〜800℃で熱処理する点に要
旨を有するものである。
[Means for Solving the Problems] The magnetic alloy of the present invention that achieves the above object is as follows:
The gist is that it contains 10 to 85% by volume of fine particles of ferromagnetic metal, and that the ferromagnetic metal is integrated with Cu or Cu alloy by metallic bonding without forming an intermetallic compound, and In the method of the present invention for producing the magnetic alloy, a mixture containing io ~ 85% by volume of ferromagnetic metal particles and the remainder being Cu or a Cu alloy is heated at a temperature of 600 to 800°C at a rate of 10 kg/ The gist is that the material is solidified and molded by applying a pressure of am2 or more, or compacted at a pressure of 50 kg/mm' or more at room temperature, and then heat-treated at 600 to 800°C.

[作用] 本発明に係る磁性合金は、AIより電気伝導度の高いC
u又はCu合金をベース金属として採用するものである
。即ち電気伝導度の高い磁性合金としては従来軽量性、
成形加工性、経済性等の観点からA1をベース金属とす
ることが当該分野の常識となっており、AIに比べて比
重が大きく且つ成形加工性(冷間加工性)及び経済性に
劣るCuの採用は全く考えられないことであった。しか
るにCuはA1に比べて強磁性体殊にFeと金属間化合
物を形成し難いという特性があり、成形条件等を工夫す
ることによって磁気性能に悪影響を与える金属間化合物
の生成並びに加工歪の発生を防止して、磁性性能に優れ
た磁性合金が得られることを見出し、さらに電気伝導度
がAIより優れるというCu又はCu合金の特性を利用
すれば電磁波シールド材や誘導モータ用ロータ素材等の
用途に適した磁性合金が得られることを知見し、これに
よフて本発明を完成したものである。
[Function] The magnetic alloy according to the present invention is made of C, which has higher electrical conductivity than AI.
U or Cu alloy is used as the base metal. In other words, as a magnetic alloy with high electrical conductivity, it has traditionally been lightweight;
It is common knowledge in the field to use A1 as the base metal from the viewpoint of formability and economic efficiency, and Cu has a higher specific gravity and is inferior in formability (cold workability) and economy than AI. The adoption of this was completely unthinkable. However, compared to A1, Cu has the characteristic that it is difficult to form intermetallic compounds with ferromagnetic materials, especially Fe, and by modifying the molding conditions, etc., it is possible to form intermetallic compounds that adversely affect magnetic performance and cause processing distortion. It was discovered that it is possible to obtain a magnetic alloy with excellent magnetic performance by preventing this, and furthermore, by utilizing the characteristic of Cu or Cu alloy that electrical conductivity is superior to AI, it can be used for applications such as electromagnetic shielding materials and rotor materials for induction motors. The inventors have discovered that a magnetic alloy suitable for this purpose can be obtained, and have thus completed the present invention.

本発明の磁性Cu合金において、強磁性体としてはFe
、Ni、Co、又それらの合金等が例示され、強磁性体
は体積率にして10〜85%含有させる必要がある0強
磁性体の含有量が体積率で10%未満の場合には有効な
磁気特性を得ることができず、−力強磁性体の含有量が
体積率で85%を超えると固化成形条件を調整しても健
全な固化状態を得ることができない、又ベース金属とし
てはCu及びCu合金が例示され、このうちCu合金に
ついては基本的にAIの電気伝導度を上回り、且つ満足
し得る成形加工性を備えておればその種類社特に制限さ
れないが、好ましいCu合金としてはCu−Cd、Cu
−Ag、Cu−Zr合金等を挙げることができる。また
本発明においては、異方性のない磁気性能を得る上で上
記強磁性体とCu又はCu合金が均質な状態で一体化さ
れていることが必要であり、この意味から強磁性金属の
微小体がマトリックスであるCu又はCu合金中に分散
されていることが要求される。そして上記した様に強磁
性体とCu又はCu合金は、金属間化合物を形成するこ
となく金属結合によフて一体化されていることが不可欠
であり、金属間化合物の生成が磁気特性の低下につなが
ることは前記した通りであるが、こうした磁性Cu合金
を得るには下記に詳細する本発明条件の採用が必要とさ
れる。
In the magnetic Cu alloy of the present invention, the ferromagnetic material is Fe.
, Ni, Co, and their alloys, etc., and the ferromagnetic material must be contained in a volume percentage of 10 to 85%.0 Effective when the content of the ferromagnetic material is less than 10% in volume percentage. -If the content of the ferromagnetic material exceeds 85% by volume, a healthy solidified state cannot be obtained even if the solidification molding conditions are adjusted, and as a base metal. Cu and Cu alloys are exemplified, and among these, Cu alloys are not particularly limited as long as they have electrical conductivity that basically exceeds that of AI and have satisfactory formability, but preferred Cu alloys include: Cu-Cd, Cu
-Ag, Cu-Zr alloy, etc. In addition, in the present invention, in order to obtain magnetic performance without anisotropy, it is necessary that the ferromagnetic material and Cu or Cu alloy are integrated in a homogeneous state. The material is required to be dispersed in the matrix of Cu or Cu alloy. As mentioned above, it is essential that the ferromagnetic material and Cu or Cu alloy are integrated by metallic bonding without forming intermetallic compounds, and the formation of intermetallic compounds may cause a decrease in magnetic properties. As mentioned above, in order to obtain such a magnetic Cu alloy, it is necessary to adopt the conditions of the present invention detailed below.

即ち上記した本発明磁性Cu合金を製造するに当たって
は次に述べる2つの方法があり、その1つは、強磁性金
属微小体を体積率で10〜85%含み、残部がCu又は
Cu合金である混合体を、600〜800℃の温度で1
0 kg/mm2以上の圧力を加えて熱間加圧成形する
方法であり、この方法において加熱温度が600℃未満
では健全な固化状態を得ることが困難であり、しかも加
圧成形に際して過大な圧力を加える必要があるので、前
述のごとく成形体中に加工歪が残留し、磁気特性が劣化
する。尚加工歪の発生しない程度の低い成形圧力では成
形不十分となる。一方加熱温度が800℃を超えるとC
uと強磁性体の相互拡散固溶が進行して金属間化合物が
生成し、成形体の電気伝導度及び磁気特性が劣化する。
That is, in producing the magnetic Cu alloy of the present invention described above, there are two methods described below, one of which is to contain 10 to 85% by volume of ferromagnetic metal microspheres, and the remainder is Cu or Cu alloy. The mixture was heated at a temperature of 600 to 800°C for 1
This is a method of hot pressing by applying a pressure of 0 kg/mm2 or more, and in this method, it is difficult to obtain a healthy solidified state if the heating temperature is less than 600°C, and in addition, excessive pressure is applied during pressure molding. Therefore, as mentioned above, processing strain remains in the molded product and the magnetic properties deteriorate. It should be noted that if the molding pressure is low enough not to cause processing distortion, the molding will be insufficient. On the other hand, if the heating temperature exceeds 800℃, C
Interdiffusion solid solution between u and the ferromagnetic material progresses to form an intermetallic compound, which deteriorates the electrical conductivity and magnetic properties of the compact.

また成形圧力が10 kg/gi”未満では熱間加圧成
形といえども加圧力が不足し、健全な固化状態を得るこ
とができない。
Further, if the molding pressure is less than 10 kg/gi'', the pressing force is insufficient even in hot pressing, and a healthy solidified state cannot be obtained.

本発明磁性Cu合金を製造するもう1つの方法は、前記
組成の混合原料を冷間加圧成形した後、熱処理して金属
間の拡散をはかり金属結合による一体化を達成するもの
であり、まず室温で50kg/av”以上の圧力を加え
て圧粉成形を行なった後、得られた成形体を600〜8
00℃の温度で熱処理するものである。この方法は冷間
成形を採用するので高い寸法精度を得ることができると
いう特長があり、小型複雑形状の製品の成形に有利であ
るが、冷開成形段階では加工歪が残存すると共に、原料
微小体間の結合が十分とはいえないので、成形後の熱処
理によって微小体同士の界面で原子の拡散を生じせしめ
て、加工歪を解消し且つ微小体同士の結合状態を向上さ
せる必要があり前述の熱処理を付加的に行う、冷間成形
圧力が50kg/++a’未満では良好な冷間成形状態
を得ることかできず、その後熱処理を十分に行なっても
微小体同士を十分に結合させることができない。又熱処
理温度が600℃未満の場合は、拡散不足によって良好
な微小体結合状態を得ることができないばかりでなく、
加工歪が残留して磁気特性が劣化する。一方熱処理温度
が800℃を超えるとCuと強磁性体相互間の拡散固溶
が進んで金属間化合物が生成するので、電気伝導度及び
磁気特性等の劣化を招く。
Another method for manufacturing the magnetic Cu alloy of the present invention is to cold press a mixed raw material having the above composition, and then heat treat it to achieve diffusion between the metals and achieve integration through metal bonding. After performing powder compaction by applying a pressure of 50 kg/av" or more at room temperature, the obtained molded product is
The heat treatment is performed at a temperature of 00°C. This method has the advantage of being able to obtain high dimensional accuracy because it uses cold forming, and is advantageous for forming products with small and complex shapes. Since the bonding between the bodies is not sufficient, it is necessary to cause atomic diffusion at the interface between the microscopic bodies through heat treatment after molding to eliminate processing distortion and improve the bonding state between the microscopic bodies. If the cold forming pressure is less than 50 kg/++a', it is not possible to obtain a good cold forming condition, and even if sufficient heat treatment is performed thereafter, the microscopic objects cannot be sufficiently bonded to each other. Can not. Furthermore, if the heat treatment temperature is less than 600°C, not only will it be impossible to obtain a good microscopic bonding state due to insufficient diffusion, but also
Processing strain remains and magnetic properties deteriorate. On the other hand, if the heat treatment temperature exceeds 800° C., the diffusion solid solution between Cu and the ferromagnetic material progresses to form an intermetallic compound, resulting in deterioration of electrical conductivity, magnetic properties, etc.

尚本発明において強磁性体微小体としては粉末、フレー
ク、ファイバー等の形態が例示され、その大きさについ
ては特に限定を設けるものではないが、例えば粒径が2
0〜200μ■程度のものが推奨され、又Cu若しくは
Cu合金の微小体としては形態1寸法を特に限定しない
が粉末で粒径は200μ醜以下程度のものが推奨される
In the present invention, the ferromagnetic microscopic bodies are exemplified in the form of powder, flakes, fibers, etc., and there is no particular limitation on the size, but for example, if the particle size is 2.
A particle size of about 0 to 200 μm is recommended, and the size of the Cu or Cu alloy microscopic object is not particularly limited, but it is recommended that it be a powder with a particle size of about 200 μm or less.

[実施例] 第1表に示す様に、各種の強磁性体微小体とCu粉末を
混合した。熱間成形の場合(・N001〜28)には該
混合物から直径70II+m、長さ150ohmのCI
P成形体を予備成形するか若しくは内寸が直径70+a
m、長さ180mmで厚さ[■の底つき容器に上記混合
物を充填した後押出プレスした成形体を使用し、夫々の
温度及び圧力でホットプレスした。また冷間成形の場合
(実施例29〜42)には、上記混合物を直径45mm
の鍛造型内に充填し、所定圧力で冷間プレスした後、夫
々熱処理を施した。
[Example] As shown in Table 1, various ferromagnetic microscopic bodies and Cu powder were mixed. In the case of hot forming (・N001-28), a CI with a diameter of 70II+m and a length of 150ohm is made from the mixture.
Preform the P molded body or the inner dimension is 70+a in diameter.
The mixture was filled into a bottomed container with a length of 180 mm and a thickness of [■], and then extrusion pressed to form a molded body, and hot pressed at the respective temperatures and pressures. In addition, in the case of cold forming (Examples 29 to 42), the above mixture was molded into a mold with a diameter of 45 mm.
They were filled into a forging die, cold pressed at a predetermined pressure, and then heat treated.

No、  1〜4の成形体について100エルステツド
の磁場における磁束密度(Bl。。二単位gauss 
)を測定した。その結果を第1図に示す。
No., magnetic flux density (Bl..2 units gauss
) was measured. The results are shown in FIG.

強磁性体の体積率が6%になるまでは顕著な磁気特性の
発現は得られないが、6%を超えると徐々に磁気特性が
発現され、10%以上では明確な磁気性能の上昇が認め
られた。 No、  5〜9に示される様に強磁性体の
体積率をさらに高めると磁気性能を一層改善し得ること
が分かる。しかしながらNo、9.10にみられる様に
体積率が90%以上になると成形体強度が低下し、95
%では測定試験片を製作することができなかった0以上
の実験結果から非磁性体であるCuをマトリックスとし
た磁性Cu合金においては強磁性体の体積率を10〜8
5%にするのが有効と考えられる。
Remarkable magnetic properties are not developed until the volume fraction of the ferromagnetic material reaches 6%, but when it exceeds 6%, magnetic properties are gradually developed, and above 10%, a clear increase in magnetic performance is observed. It was done. As shown in Nos. 5 to 9, it can be seen that magnetic performance can be further improved by further increasing the volume fraction of the ferromagnetic material. However, as seen in No. 9.10, when the volume fraction exceeds 90%, the strength of the molded product decreases,
%, it was not possible to produce a measurement test piece.From the experimental results of 0 or more, in a magnetic Cu alloy with a matrix of non-magnetic Cu, the volume fraction of ferromagnetic material was set to 10 to 8.
It is considered effective to set it to 5%.

次にNo、 11〜18の成形体に関する実験結果を第
2図に示す、成形温度が600℃までは成形体強度が低
く、良好な成形体を得ることができない。低温側では粉
末界面付近の原子の拡散による動きが小さい為に結合度
が低下するものと考えられる。そして強度の低い領域で
は電気抵抗値も高くなっている。またNo、  1〜2
1の実験結果から判断すると、成形圧力は5 kg/m
m’では不足であり、十分な強度を得る上で必要な成形
圧力はNo。
Next, FIG. 2 shows the experimental results for molded products No. 11 to 18. When the molding temperature is lower than 600° C., the strength of the molded product is low and it is not possible to obtain a good molded product. It is thought that on the low temperature side, the degree of bonding decreases because the movement of atoms near the powder interface due to diffusion is small. In the region of low strength, the electrical resistance value is also high. Also No, 1~2
Judging from the experimental results in 1, the molding pressure is 5 kg/m
m' is insufficient, and the molding pressure required to obtain sufficient strength is No.

20.21の実験データから10 kg/am2以上で
あると考えられる。
From the experimental data of 20.21, it is thought to be 10 kg/am2 or more.

No、29〜33の実験結果から判断すると、冷間成形
の場合には成形圧力を高くする必要があり50 kg/
mi2以上の圧力で加圧成形しなければならない。また
No。35〜39の実験結果から冷間成形後の熱処理温
度は550℃では不十分であり(No、36では強度が
13 kg/1m’、 B tooが4800gaus
s ) 、熱処理温度が600〜800℃であるNo、
34.35,37.38の強度(20kg/am”)及
びB+oo  (5100gauss )に比べると、
その値は明らかに劣っている。又熱処理温度が830℃
であるNo、39は強度面では問題はないが、磁気性能
の改善に寄与するFeと電気伝導度の改善に寄与するC
uが相互に固溶して損耗するので磁気性能CB+。。)
の低下及び電気抵抗の上昇(即ち電気伝導度の低下)が
大きい。
Judging from the experimental results of Nos. 29 to 33, it is necessary to increase the molding pressure in the case of cold forming, and the molding pressure is 50 kg/
It must be pressure molded at a pressure of mi2 or higher. No again. From the experimental results of No. 35 to No. 39, a heat treatment temperature of 550°C after cold forming is insufficient (No. No. 36 has a strength of 13 kg/1 m' and a B too of 4800 gaus).
s), No. whose heat treatment temperature is 600 to 800°C,
Compared to the strength of 34.35, 37.38 (20 kg/am”) and B+oo (5100 gauss),
Its value is clearly inferior. Also, the heat treatment temperature is 830℃
No. 39 has no problem in terms of strength, but it contains Fe, which contributes to improving magnetic performance, and C, which contributes to improving electrical conductivity.
Magnetic performance CB+ because u are dissolved in solid solution with each other and are worn out. . )
and the increase in electrical resistance (that is, the decrease in electrical conductivity) are large.

上記結果から冷間成形の場合には成形圧力を50kg/
mi2以上とし、且つ熱処理温度を800〜800℃に
設定する必要がある。
From the above results, in the case of cold forming, the forming pressure should be 50 kg/
mi2 or higher, and the heat treatment temperature must be set at 800 to 800°C.

本発明に係る磁性Cu合金は、No、27とNo。The magnetic Cu alloys according to the present invention are No. 27 and No. 27.

13〜17あるいはNo、28とNo、22あるいはN
o、42とNo、40を比較すると分かるように同じ強
磁性体を使用した場合にはAIをマトリックスとした場
合より磁気性能、電気伝導度及び強度の全ての面で優れ
た性能を得ることができる。
13-17 or No, 28 and No, 22 or N
As can be seen by comparing No. 42 and No. 40, when the same ferromagnetic material is used, better performance can be obtained in all aspects of magnetic performance, electrical conductivity, and strength than when AI is used as a matrix. can.

[発明の効果] 本発明は以上の様に構成されており、従来の磁性A1合
金に比べて磁気性能、1!気伝導度及び強度の全ての面
で優れた磁性合金を得ることができる。かくしてリニア
そ一夕を含めた銹導モータの分野や電磁気シールドの分
野において高性能を発揮する磁性Cu合金の提供に成功
した。
[Effects of the Invention] The present invention is configured as described above, and has a magnetic performance of 1! compared to the conventional magnetic A1 alloy. A magnetic alloy excellent in all aspects of air conductivity and strength can be obtained. In this way, we have succeeded in providing a magnetic Cu alloy that exhibits high performance in the field of induction motors, including linear motors, and in the field of electromagnetic shielding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は強磁性体体積率と磁気性能の関係を示すグラフ
、第2図は熱間成形温度と諸特性の関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between ferromagnetic material volume fraction and magnetic performance, and FIG. 2 is a graph showing the relationship between hot forming temperature and various properties.

Claims (3)

【特許請求の範囲】[Claims] (1)強磁性金属の微小体を体積率で10〜85%含み
、該強磁性金属がCu又はCu合金と金属間化合物を形
成することなく、金属結合によって一体化されているこ
とを特徴とする磁性Cu合金。
(1) It is characterized by containing 10 to 85% by volume of fine particles of ferromagnetic metal, and the ferromagnetic metal is integrated with Cu or Cu alloy by metallic bonding without forming an intermetallic compound. Magnetic Cu alloy.
(2)強磁性金属の微小体を体積率で10〜85%含み
、残部がCu又はCu合金である混合体を、600〜8
00℃の温度で、10kg/mm^2以上の圧力を加え
て固化成形することを特徴とする磁性Cu合金の製造方
法。
(2) A mixture containing ferromagnetic metal particles of 10 to 85% by volume and the remainder being Cu or Cu alloy is 600 to 85% by volume.
A method for manufacturing a magnetic Cu alloy, characterized by solidifying and forming it at a temperature of 00°C and applying a pressure of 10 kg/mm^2 or more.
(3)強磁性金属の微小体を体積率で10〜85%含み
、残部がCu又はCu合金である混合体を、室温下で5
0kg/mm^2以上の圧力で圧粉成形した後、600
〜800℃で熱処理することを特徴とする磁性Cu合金
の製造方法。
(3) A mixture containing 10 to 85% by volume of ferromagnetic metal particles, with the remainder being Cu or Cu alloy, was heated at room temperature for 5
After compacting at a pressure of 0 kg/mm^2 or more, 600
A method for producing a magnetic Cu alloy, characterized by heat treatment at ~800°C.
JP63314237A 1988-12-12 1988-12-12 Magnetic cu alloy and its manufacture Pending JPH02159332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63314237A JPH02159332A (en) 1988-12-12 1988-12-12 Magnetic cu alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63314237A JPH02159332A (en) 1988-12-12 1988-12-12 Magnetic cu alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPH02159332A true JPH02159332A (en) 1990-06-19

Family

ID=18050937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63314237A Pending JPH02159332A (en) 1988-12-12 1988-12-12 Magnetic cu alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPH02159332A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155102A (en) * 1989-11-13 1991-07-03 Mitsubishi Electric Corp Highly conductive magnetic material
JP2002343618A (en) * 2001-03-12 2002-11-29 Yaskawa Electric Corp Soft magnetic material and manufacturing method therefor
KR101499490B1 (en) * 2014-02-13 2015-03-06 김진우 Method of manufacturing Cu alloy having high strength and electromagnetic wave shielding property
CN110229972A (en) * 2019-06-12 2019-09-13 陕西斯瑞新材料股份有限公司 A kind of Copper-iron alloy material electromagnetic shielding line and its manufacturing method
CN113667852A (en) * 2021-09-03 2021-11-19 合肥工业大学 Powder metallurgy preparation method of high-thermal-conductivity Cu-Invar bimetal-based composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155102A (en) * 1989-11-13 1991-07-03 Mitsubishi Electric Corp Highly conductive magnetic material
JP2002343618A (en) * 2001-03-12 2002-11-29 Yaskawa Electric Corp Soft magnetic material and manufacturing method therefor
KR101499490B1 (en) * 2014-02-13 2015-03-06 김진우 Method of manufacturing Cu alloy having high strength and electromagnetic wave shielding property
CN110229972A (en) * 2019-06-12 2019-09-13 陕西斯瑞新材料股份有限公司 A kind of Copper-iron alloy material electromagnetic shielding line and its manufacturing method
CN113667852A (en) * 2021-09-03 2021-11-19 合肥工业大学 Powder metallurgy preparation method of high-thermal-conductivity Cu-Invar bimetal-based composite material
CN113667852B (en) * 2021-09-03 2022-05-31 合肥工业大学 Powder metallurgy preparation method of high-thermal-conductivity Cu-Invar bimetal-based composite material

Similar Documents

Publication Publication Date Title
US6136265A (en) Powder metallurgy method and articles formed thereby
US4943319A (en) Process for producing highly functional composite material and composite material obtained thereby
US4508567A (en) Press-molding process for preparing a powder compact
CN104837581B (en) Iron powder for dust core
JPH02159332A (en) Magnetic cu alloy and its manufacture
US5002727A (en) composite magnetic compacts and their forming methods
JP3863990B2 (en) Method for producing amorphous soft magnetic alloy powder compact
JPH04210448A (en) Functionally gradient material using zn-22al superplastic powder and method for forming the same
CN104124032A (en) Soft magnetic core and manufacturing method of the same
US4952331A (en) Composite magnetic compacts and their forming methods
JPH056323B2 (en)
JPS6220845A (en) Composite magnetic material consisting of zn-22al superplastic alloy powder and magnetic powder and compacting method thereof
KR19980033787A (en) Method for manufacturing iron-silicon sintered soft magnetic alloy
JPS6046170B2 (en) Copper alloy used for liquid phase sintering of iron powder
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JP2001267113A (en) Method of manufacturing soft magnetic material
JPH0349961B2 (en)
JPH03290906A (en) Warm-worked magnet and its manufacture
JP2575041B2 (en) Molded body of amorphous alloy powder and molding method
JPH01239901A (en) Rare-earth magnet and its manufacture
JPH02101710A (en) Permanent magnet and manufacture thereof
JPS5810846B2 (en) Jikitetsu Shinno Seizouhou
JPH0533013A (en) Production of highly accurate aluminum alloy sliding parts
JPS60214505A (en) Manufacture of metallic bonding type magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof