JPS60214505A - Manufacture of metallic bonding type magnet - Google Patents

Manufacture of metallic bonding type magnet

Info

Publication number
JPS60214505A
JPS60214505A JP59072099A JP7209984A JPS60214505A JP S60214505 A JPS60214505 A JP S60214505A JP 59072099 A JP59072099 A JP 59072099A JP 7209984 A JP7209984 A JP 7209984A JP S60214505 A JPS60214505 A JP S60214505A
Authority
JP
Japan
Prior art keywords
magnetic
powder
alloy
magnetic field
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59072099A
Other languages
Japanese (ja)
Inventor
Itaru Okonogi
格 小此木
Seiji Miyazawa
宮沢 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP59072099A priority Critical patent/JPS60214505A/en
Publication of JPS60214505A publication Critical patent/JPS60214505A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To improve the magnetic performance and heat-resistance by a method wherein the rare earth intermetallic compound powder is mixed with the metallic alloy and is formed by pressurized extrusion within the magnetic field while heating in the mold. CONSTITUTION:The rare earth intermetallic compound powder such as SmCo5, Sm(Co 0.8 Cu 0.2)5, Ce(Co 0.8 Cu 0.8 Cu 0.2)5, etc. is treated with heat for magnetic hardening. After that, is powdered, next the alloy magnetic powder is mixed or plated with the metallic bonding material. These metal alloy are Pb, Sn, In, Bi, Cd, Al, Cu, Zn, solder, Woods' metal alloy, cupper alloy, various soldering alloy, etc. The melting point of the metallic bonding material is 200- 900 deg.C and desirably at about 250-600 deg.C. Then, the metallic bond type magnet 19 is provided by solidified under cooling and affording anisotropic property by means that the mixture 14 of the magnetic powder and the metallic bonding material is passed though the die 13 under 600 deg.C and under 30kOe of the magnetic field.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、希土類金属間化合物粉末を金属結合法により
製造する永久磁石の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a permanent magnet in which rare earth intermetallic compound powder is manufactured by a metal bonding method.

〔従来技術〕[Prior art]

従来、希土類金属化合物粉末を金属(メタル)結合法に
より、複合磁石材料をつくる方法は、特開昭48−66
524号が知られている。この従来法は希土類金属化合
物粉末と、Sn(スズ)。
Conventionally, a method for producing a composite magnetic material using a metal bonding method of rare earth metal compound powder was disclosed in Japanese Patent Laid-Open No. 48-66.
No. 524 is known. This conventional method uses rare earth metal compound powder and Sn (tin).

pb(鉛)、ハンダ合金粉末を混合、常温で磁場中圧縮
成形する方法により、予備成形物をつくる。該成形物を
、100℃〜400”Cの加熱炉中に投入しバインダー
の低融点金属を融解させ次に、冷却固化するか、加熱、
圧縮しながら、次に冷却する方法が採用されている。
A preform is made by mixing Pb (lead) and solder alloy powder and compression molding the mixture at room temperature in a magnetic field. The molded product is placed in a heating furnace at 100°C to 400”C to melt the low melting point metal of the binder, and then cooled and solidified, or heated,
A method is adopted in which the material is compressed and then cooled.

このようにしてつくられる金属結合型磁石は、次のよう
な欠点を有していた。
The metal-bonded magnet produced in this way had the following drawbacks.

(1)磁気特性が低い”・−(B H) max 、 
5 M G Oe以下である。
(1) Low magnetic properties”・-(B H) max,
5 M G Oe or less.

(2)量産効率が低く、工業材料としての実用的゛価値
にとぼしい。
(2) Mass production efficiency is low, and its practical value as an industrial material is low.

(8)耐熱性150℃と低い。(8) Heat resistance is low at 150°C.

〔目的〕〔the purpose〕

本発明は、このような問題点を解決するもので、その目
的とするところは、金属結合型希土類金属間化合物磁石
の、磁気性能を高め且つ、工業材料として実用できるコ
ストパフォーマンスの高い永久磁石を提供するところに
ある。
The present invention is intended to solve these problems, and its purpose is to improve the magnetic performance of metal-bonded rare earth intermetallic compound magnets and to create permanent magnets with high cost performance that can be put to practical use as industrial materials. It's there to provide.

〔概要〕〔overview〕

本発明は希土類金属間化合物を対象物とする。 The object of the present invention is rare earth intermetallic compounds.

例えばその組成合金は、一般式で表示すれば以下のよう
になる。S m Oo6 、 S m’(ooo、a 
Quo、2)5、0s(Ooo、a auo2)s な
どのいわゆる1−5系希土類金属間化合物合金である。
For example, the composition of the alloy can be expressed as the following general formula: S m Oo6, S m'(ooo, a
It is a so-called 1-5 rare earth intermetallic compound alloy such as Quo, 2)5,0s (Ooo, aauo2)s.

また、am(Oo Ou Fezr)y、s Smo、
a Yo、2(000u T6)?、2 、 Sm(O
o Ou He T1)7.2 Smo、s PrO,
2(Oo Ouu?e Zr)y、s などの2−17
系希土類金属間化合物合金である。該合金は、はとんど
Arガスアーク炉、またはArガス低周波熔解炉などに
より圧解され、合金をつくる。続いて、磁気硬化のため
の熱処理を行ってから粉末とする2−17系合金あるい
は、合金を即粉砕して粉末となす1−5系合金がある。
Also, am(Oo Ou Fezr)y,s Smo,
a Yo, 2 (000u T6)? ,2, Sm(O
o Ou He T1)7.2 Smo, s PrO,
2 (Oo Ouu?e Zr) y, s, etc. 2-17
It is a rare earth intermetallic compound alloy. The alloy is usually compressed in an Ar gas arc furnace or an Ar gas low frequency melting furnace to produce an alloy. Next, there are 2-17 alloys, which are made into powder after heat treatment for magnetic hardening, and 1-5 alloys, which are made into powder by immediately pulverizing the alloy.

ここで粉末につくる方法は、1−5系は、単磁区粒子径
3−5μ情にするため、ジェットミル法あるいは、ボー
ルミル法を用いる。
As for the method of preparing the powder, the 1-5 series uses a jet mill method or a ball mill method in order to obtain a single magnetic domain particle size of 3-5 μm.

2−17系は、粉末粒子径の大きさは選ばないので2μ
m〜500μ情の範囲である。
For the 2-17 series, the powder particle size is not selected, so it is 2μ.
The range is from m to 500μ.

次に合金磁石粉末は、金属結合材と混合又はメッキされ
る。金属・合金は次のようなものがある。Fb(鉛)t
Sn(スズ)、In(インジウム)uBi(ビスマス)
、Oa(カドミウム)。
The alloy magnet powder is then mixed or plated with a metal binder. Metals and alloys include the following: Fb (lead)t
Sn (tin), In (indium) uBi (bismuth)
, Oa (cadmium).

At(アルミニウム)、Ou(銅)IZn(亜鉛)、ハ
ンダ、ウッド合金、銅合金、各種ロウ付は合金などであ
る。
Examples include At (aluminum), Ou (copper), IZn (zinc), solder, wood alloy, copper alloy, and various brazing alloys.

磁石粉末と金属結合材の比率は、好ましくは、磁石粉末
、60容量%〜90容量%であれば、加熱しながらの押
し出し成形は可能である。なお金属結合材の融点は、2
00°C〜900°C9好ましくは250〜600℃付
近である。余り高くすぎると、磁場中熱間押出成形で、
成形圧力が高くなり、所望形状の磁石を製造しにくくな
るからである。一方、250℃以下になると、磁石の磁
気性能の耐熱性が悪くなるためである。
If the ratio of the magnet powder to the metal binder is preferably 60% to 90% by volume of the magnet powder, extrusion molding while heating is possible. The melting point of the metal binding material is 2
00°C to 900°C9, preferably around 250 to 600°C. If the temperature is too high, hot extrusion molding in a magnetic field will
This is because the molding pressure becomes high, making it difficult to manufacture a magnet with a desired shape. On the other hand, if the temperature falls below 250° C., the heat resistance of the magnetic performance of the magnet deteriorates.

加熱範囲は、ダイス部及び押出バレル(円筒部)までで
ある。ダイスには、外部より磁石粉末の配向磁場を加え
る。磁場強さは、混合物が通過するダイスノズル部で1
0KOa〜25KOaは必要である。磁場は、D、O,
パルス、交流などの組み合わせも、必要に応じて採用で
きる。
The heating range is up to the die part and the extrusion barrel (cylindrical part). An orienting magnetic field of magnet powder is applied to the die from the outside. The magnetic field strength is 1 at the die nozzle part through which the mixture passes.
0KOa to 25KOa is necessary. The magnetic fields are D, O,
Combinations of pulse, alternating current, etc. can also be adopted as needed.

〔比較例〕[Comparative example]

第1図は、従来法の金属結合型希土類金属間化合物磁石
の、磁場中プレス法の一例を示した。
FIG. 1 shows an example of a conventional method of pressing a metal-bonded rare earth intermetallic compound magnet in a magnetic field.

拳法は、上ラム1.にコイル4を取り付板2゜5を介し
て固定されている。同様プレス下部には、コイルを配置
しである。ポールピース4−αを介して、この空げき間
に、金型5,6,7.8がセットされる。上バンチ5.
下パンチ7は、強磁性のSUJ 2材でつくられこのギ
ャップ間8に磁石粉末と金属結合材の混合物を置く。該
金型を上下コイル間で励磁し、8に12KOe の直流
(D、0)磁場を加えながら、常温24℃で圧縮成形し
た。
Kempo is upper ram 1. The coil 4 is attached to and fixed via a mounting plate 2.5. Similarly, a coil is placed at the bottom of the press. The molds 5, 6, 7.8 are set in this gap via the pole piece 4-α. Upper bunch 5.
The lower punch 7 is made of ferromagnetic SUJ 2 material and a mixture of magnet powder and metal bonding material is placed between the gaps 8. The mold was energized between the upper and lower coils, and compression molding was performed at room temperature of 24° C. while applying a direct current (D, 0) magnetic field of 8 to 12 KOe.

磁石粉末は、SSm0o 組成の合金を用いたが、粒度
は3μtn〜8μ常で、平均粒度は4.6μ惧であった
。この粉末はジェットミル法により、Niガス界囲気中
でつくられた。金属結合材は、sm−pbハンダ合金粉
末を用いた。arA4Fa・粉末、s n−v−ouz
残部ノ・ンダ粉末を混合したものを比較例試料とし、前
記方法によって、成形した。試料の形状はφ15X10
t%で、軸方向に異方性がある。
As the magnet powder, an alloy having a composition of SSm0o was used, and the particle size was usually 3 μt to 8 μ, with an average particle size of 4.6 μ. This powder was produced in a Ni gas atmosphere by jet milling. As the metal bonding material, sm-pb solder alloy powder was used. arA4Fa・powder, s n-v-ouz
A comparative sample was prepared by mixing the remaining No. 2 powder and molded according to the method described above. The shape of the sample is φ15×10
t%, there is anisotropy in the axial direction.

圧縮成形の終了した試料は、250°Cに加熱されたオ
ーブン中に投入し加熱焼成した。
The sample after compression molding was placed in an oven heated to 250°C and baked.

このようにしてつくられた従来法試料の特性は以下の通
りであった。
The characteristics of the conventional sample prepared in this manner were as follows.

(磁気特性) (機械的性質) 抗圧力 −20ff//swf 抗折力 −8t/− 硬 サ − Hv210 〔実施例−1〕 第1表に示す組成合金を低圧縮溶解炉で、約21つくっ
た。
(Magnetic properties) (Mechanical properties) Coercive pressure -20ff//swf Transverse rupture force -8t/- Hardness - Hv210 [Example-1] Approximately 21% of the composition alloy shown in Table 1 was made in a low compression melting furnace. Ta.

第 1 表 次Gこ第1表に示す組成合金は、E−1は1−5系であ
るから、保磁力機構は、単磁区粒子の回転によるもので
あるからそのまま粉砕工程を行った粉砕は、磁性ボール
ミルボットにより行い約3−5μ濯の平均粒度分布をも
つ、磁石粉末をつくった。 l−2〜]In−6は、2
−17系であり、磁気硬化熱処理を行った。(第1表参
照)次に、各試料はショークラッシャーで粗粉砕を行い
、ボールミル中で微粉砕を行った。この時に得られた粉
末粒度は、3μ情〜150μ常の粒度範囲におさめた。
Table 1 The composition alloy shown in Table 1 is E-1, which is a 1-5 system, and the coercive force mechanism is due to the rotation of single-domain particles, so the pulverization process that is performed as is is A magnetic powder was produced with an average particle size distribution of about 3-5 microns. l-2~]In-6 is 2
-17 series, and was subjected to magnetic hardening heat treatment. (See Table 1) Next, each sample was coarsely crushed in a show crusher and finely crushed in a ball mill. The particle size of the powder obtained at this time was within the range of 3 μm to 150 μm.

該粉末は、第2表に示す条件で、それぞれ表面処理を行
った。先ず、金属結合材とのヌレ性を改良することを目
的に無電解銅メツ各試料Nαの粉末100fは、メッキ
浴中で約5分間無電解Ouメッキを行った。この時の粉
末表面のメッキ厚は1oooX〜5oooX程度であっ
た。次に該粉末は乾燥してからSn粉末と混合した。
The powders were each subjected to surface treatment under the conditions shown in Table 2. First, in order to improve the wettability with the metal binding material, 100 f of powder of electroless copper metal sample Nα was subjected to electroless O plating for about 5 minutes in a plating bath. The plating thickness on the powder surface at this time was about 1oooX to 5oooX. The powder was then dried and mixed with Sn powder.

Sn(スズ)粉末は粒度5〜20μ惰の粉末を207O
1%加え良く混合した。混合物は、それぞれ約20fを
第2図に示す、熱間磁場押出成形機に投入した。第2図
は本発明における、金属結合型磁石の一実施例における
熱間磁場押出成形装置である。10は加圧用パンチで、
耐熱鋼の5ffS310でつくられている。11はづレ
ル円筒容器で12のミクロムヒーターにより加熱される
が、耐熱性と、非磁性の必要性から10のパンチと同じ
材質が使われる。14は投入された試料で、加熱温度約
380℃になると混合粉末14における金属結合材とし
て加えられたSnは溶は始め磁石粉末と良く濡れる。こ
こで磁石粉末の表面は予め銅メッキ層があるので、混合
したSn粉末は、磁石粉末と良く濡れる。ダイス13は
磁場コイル16、ポールピース15に直流電流を加え、
ポールピース間に磁場を発生させた。ダイス13のギャ
ップ部17には、約12KOeの磁場を発生させた。1
0のパンチに約100051の圧力を加えることにより
磁場中押出成形され、20の支持台の中で自然空冷固化
され19の金属結合型希土類永久磁石をつくった。ダイ
ス13A−A’の平面図を第3図に示す。
Sn (tin) powder has a particle size of 5 to 20μ.
Added 1% and mixed well. Approximately 20 f of each mixture was charged into a hot magnetic extruder shown in FIG. FIG. 2 shows a hot magnetic field extrusion molding apparatus in one embodiment of the metal-bonded magnet according to the present invention. 10 is a pressurizing punch,
It is made of 5ffS310 heat-resistant steel. The cylindrical container 11 is heated by a micrometer heater 12, and the same material as the punch 10 is used because it needs to be heat resistant and non-magnetic. Reference numeral 14 denotes a sample that has been put in. When the heating temperature reaches about 380° C., the Sn added as a metal binder in the mixed powder 14 begins to melt and wets well with the magnet powder. Here, since the surface of the magnet powder has a copper plating layer in advance, the mixed Sn powder wets well with the magnet powder. The dice 13 applies direct current to the magnetic field coil 16 and pole piece 15,
A magnetic field was generated between the pole pieces. A magnetic field of approximately 12 KOe was generated in the gap portion 17 of the die 13. 1
The magnets were extruded in a magnetic field by applying a pressure of about 100,051 mm to a punch of 0, and then solidified by natural air cooling in a support stand of 20 to produce 19 metal-bonded rare earth permanent magnets. A plan view of the die 13A-A' is shown in FIG.

13−αはダイス側板で、強e&性材料の5UJ−2で
調質されHt650±30テある。13−6は非磁性の
ステライトであ−る。次に本発明法によってつくられた
試料の磁気特性9機械的性質を第2表に示す。
13-α is the die side plate, which has been tempered with 5UJ-2, a strong emissive material, and has a Ht of 650±30. 13-6 is non-magnetic stellite. Next, Table 2 shows the magnetic properties 9 and mechanical properties of the samples produced by the method of the present invention.

第 2 表 比較例に比べ、磁気特性1機械的性質ともに一段と高性
能化されていることがわかった。
It was found that both magnetic properties 1 and mechanical properties were further improved compared to the comparative example in Table 2.

〔実施例−2〕 比較例試料及び実施例1試料Ham−1試料を加工しφ
10X10t%(ろ−1)に機械加工した。該サンプル
は各々11個用意した。次に40K Oe’のパルス磁
場を加えフル着磁し、初期7ラツクスΦ0を、フラック
スメーターにて測定した。次に加熱温度に各30分保持
後、常温まで冷却してからフラックスΦTをはかりその
変化率を調べた。
[Example-2] Comparative example sample and Example 1 sample Ham-1 sample were processed to φ
Machined to 10X10t% (ro-1). Eleven samples were prepared for each. Next, a pulsed magnetic field of 40 K Oe' was applied to fully magnetize, and the initial 7 lux Φ0 was measured using a flux meter. Next, after maintaining the heating temperature for 30 minutes each, and cooling to room temperature, the flux ΦT was measured and its rate of change was investigated.

第4図は、減磁率を示すが比較例は、140℃をこえる
と、磁束Φの変化率(不可逆減磁)は増加傾向にあり、
その耐熱使用限界は140℃付近である。一方本発明法
は、180−200℃付近まで耐熱性のあることがわか
った。
Figure 4 shows the demagnetization rate. In the comparative example, when the temperature exceeds 140°C, the rate of change in magnetic flux Φ (irreversible demagnetization) tends to increase.
Its heat-resistant use limit is around 140°C. On the other hand, it was found that the method of the present invention has heat resistance up to around 180-200°C.

〔実施例−3〕 実施例1の試料N[Ll−2組成合金粉末を用いて熱間
磁場中押成形を行った。その時の製造条件を第3宍に示
す。
[Example-3] Sample N [Ll-2 composition alloy powder of Example 1 was used to perform extrusion in a hot magnetic field. The manufacturing conditions at that time are shown in the third page.

磁場押出装置は、第2図と同じ方法で行った。The magnetic field extrusion device was used in the same manner as shown in FIG.

得られた試料の緒特性を第4表に示す。Table 4 shows the properties of the obtained samples.

本実施例によれば、押出成形によってつくられた金属結
合型希土類金属間化合物磁石は、従来にないすぐれた特
性が得られた。
According to this example, the metal-bonded rare earth intermetallic compound magnet produced by extrusion had excellent characteristics that were not available in the past.

なかでも、機械的性質は、抗折力は106 / −と高
く且つ硬すもHv300前後であり、強靭性に富むもの
であった。
Among the mechanical properties, the transverse rupture strength was as high as 106/-, and the hardness was around Hv 300, indicating high toughness.

以上述べたように、本楯明法は、希土類金属間物粉末と
前記磁石粉末の表面処理として、金属合金と混合して、
型内で加熱しながら磁場中加圧押出成形によってつくら
れることによって、大変、磁気性能を高め耐熱性を18
0℃〜200℃まで向上させた量産性のある工業材料を
提供できる。
As mentioned above, in the present Tatemei method, as a surface treatment of the rare earth intermetallic powder and the magnet powder, mixing it with a metal alloy,
It is made by pressure extrusion molding in a magnetic field while heating in a mold, which greatly improves magnetic performance and heat resistance to 18%.
It is possible to provide industrial materials that can be mass-produced at temperatures of 0°C to 200°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法の磁場中加圧成形装置。 1・・・・・・プレス加圧ピストン 2.3・・・・・・コイル固定枠 4・・・・・・電磁石コイル 4−α・・・・・・電磁石ポールピース5・・・・・・
金型上パンチ 6・・・・・・金型ダイ ア・・・・・・金型下パンチ 8・・・・・・磁石粉末 9・・・・・・磁力線の流れ 第2図は本発明法における、縦型磁場中押出成形装置の
断面図である。 10・・・・・・加圧パンチ 11・・・・・・ダイ 12・・・・・・ヒーター 13・・・・・・成形ダイス 14・・・・・・磁石粉末 15・・・・・・電磁石ポールピース 16・・・・・・電磁石コイル 17・・・・・・ノズル 18・・・・・・磁場配向の方向 19・・・・・・押出成形された金属結合型磁石20・
・・・・・ダイス支持枠 21・・・・・・ダイス受は台 第6図は本発明におけ、る、第2図A−A’部断面図。 13−α・・・・・・ダイスの磁極部で、5UJ2材で
できている 13−b・・・・・・ダイスサイド部で非磁性ステライ
ト 第4図は、実施例2の°磁石の耐熱性を示すグラフで加
熱温度と試料の不可逆減磁率をあられす。 以 上 出願人 株式会社諏訪精工舎 代理人 弁理士 最上 務 第1−図 77h熟i崖(・。)
Figure 1 shows a conventional magnetic field pressure molding device. 1... Press pressure piston 2.3... Coil fixing frame 4... Electromagnetic coil 4-α... Electromagnetic pole piece 5...・
Mold upper punch 6...Mold diamond...Mold lower punch 8...Magnetic powder 9...Flow of magnetic lines of force Figure 2 shows the method of the present invention FIG. 2 is a sectional view of a vertical magnetic field extrusion molding apparatus in FIG. 10... Pressure punch 11... Die 12... Heater 13... Molding die 14... Magnet powder 15... - Electromagnet pole piece 16... Electromagnetic coil 17... Nozzle 18... Direction of magnetic field orientation 19... Extruded metal bonded magnet 20.
. . . Dice support frame 21 . . . Dice holder is a stand FIG. 6 is a sectional view taken along the line AA′ in FIG. 2 in the present invention. 13-α... The magnetic pole part of the die is made of 5UJ2 material. 13-b... The non-magnetic stellite is in the die side part. Figure 4 shows the heat resistance of the ° magnet of Example 2. The graph shows the heating temperature and irreversible demagnetization rate of the sample. Applicant Suwa Seikosha Co., Ltd. Agent Patent Attorney Mogami Tsutomu No. 1-Figure 77h Jukui Cliff (.)

Claims (1)

【特許請求の範囲】[Claims] 希土類金属間化合物磁石粉末と融点が200℃〜900
℃以下の金属からなる混合物を、温度600°C以下、
磁場は50KOe 以下のダイス中を通過させて異方性
を与えながら、冷却固化することを特徴とする金属結合
型磁石の製造方法。
Rare earth intermetallic compound magnet powder and melting point between 200℃ and 900℃
℃ or less, a mixture consisting of metals at a temperature of 600℃ or less,
A method for manufacturing a metal-bonded magnet, characterized in that the magnetic field is passed through a die of 50 KOe or less to provide anisotropy, and the magnet is cooled and solidified.
JP59072099A 1984-04-11 1984-04-11 Manufacture of metallic bonding type magnet Pending JPS60214505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59072099A JPS60214505A (en) 1984-04-11 1984-04-11 Manufacture of metallic bonding type magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072099A JPS60214505A (en) 1984-04-11 1984-04-11 Manufacture of metallic bonding type magnet

Publications (1)

Publication Number Publication Date
JPS60214505A true JPS60214505A (en) 1985-10-26

Family

ID=13479618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072099A Pending JPS60214505A (en) 1984-04-11 1984-04-11 Manufacture of metallic bonding type magnet

Country Status (1)

Country Link
JP (1) JPS60214505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003981A1 (en) * 1996-07-23 1998-01-29 Seiko Epson Corporation Method of manufacturing bonded magnets of rare earth metal, and bonded magnet of rare earth metal
JP2018041777A (en) * 2016-09-06 2018-03-15 株式会社豊田中央研究所 Metal bond magnet and method for manufacturing the same
CN109967754A (en) * 2019-05-09 2019-07-05 广东仁开科技有限公司 A kind of online water conservancy diversion open and close system of high temperature tin melt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003981A1 (en) * 1996-07-23 1998-01-29 Seiko Epson Corporation Method of manufacturing bonded magnets of rare earth metal, and bonded magnet of rare earth metal
JP2018041777A (en) * 2016-09-06 2018-03-15 株式会社豊田中央研究所 Metal bond magnet and method for manufacturing the same
CN109967754A (en) * 2019-05-09 2019-07-05 广东仁开科技有限公司 A kind of online water conservancy diversion open and close system of high temperature tin melt

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
GB1564969A (en) Permanent magnet alloy
JP6447380B2 (en) SmFeN-based metal bond magnet compact with high specific resistance
JPH0257662A (en) Rapidly cooled thin strip alloy for bond magnet
US4920009A (en) Method for producing laminated bodies comprising an RE-FE-B type magnetic layer and a metal backing layer
JPS60214505A (en) Manufacture of metallic bonding type magnet
CN112447350A (en) Rare earth permanent magnet and preparation method thereof
JPH06302417A (en) Permanent magnet and its manufacture
JP6620570B2 (en) Method for producing metal bonded magnet
JPH07211566A (en) Manufacture of anisotropic magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JP3037917B2 (en) Radial anisotropic bonded magnet
JPH01239901A (en) Rare-earth magnet and its manufacture
JPH0371601A (en) Manufacture of rare-earth magnet
JPH0562814A (en) Method of manufacturing rare-earth element-fe-b magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH05175029A (en) Manufacture of metal magnet
WO2017170129A1 (en) Permanent magnet manufacturing method
JPH04269806A (en) Oxidation-resistant r-fe-b-c bond magnet
JPS63115307A (en) Manufacture of rare-earth magnet
JP2003226947A (en) Complex soft magnetic sintered material with high strength, high density and high resistivity, and its manufacturing method
JPH03150818A (en) Manufacture of rare earth element magnet
JP2012186212A (en) Manufacturing method for magnetic member, and magnetic member
JPH04144207A (en) Rare earth bonded magnet
JPH01128404A (en) Manufacture of permanent magnet