JPH0562814A - Method of manufacturing rare-earth element-fe-b magnet - Google Patents

Method of manufacturing rare-earth element-fe-b magnet

Info

Publication number
JPH0562814A
JPH0562814A JP3174275A JP17427591A JPH0562814A JP H0562814 A JPH0562814 A JP H0562814A JP 3174275 A JP3174275 A JP 3174275A JP 17427591 A JP17427591 A JP 17427591A JP H0562814 A JPH0562814 A JP H0562814A
Authority
JP
Japan
Prior art keywords
alloy
hot
magnet
earth element
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3174275A
Other languages
Japanese (ja)
Inventor
Tsuguaki Oki
継秋 大木
Tsukasa Yuri
司 由利
Atsushi Hanaki
敦司 花木
Eiji Iwamura
栄治 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3174275A priority Critical patent/JPH0562814A/en
Publication of JPH0562814A publication Critical patent/JPH0562814A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a method of manufacturing with excellent producibility a rare-earth-Fe-B magnet with excellent magnetic characteristics and with no drawback unlike the prior art. CONSTITUTION:Molten alloy 1 containing at least rare-earth element, Fe and B as essential components is dropped in a non-oxidation atmosphere. To the dropping molten alloy 1 high-pressurized inert gas is jetted and the alloy is atomized, and atomized rare-earth-Fe-B alloy powder in a half-fusion condition is uniformly accumulated on a collector 4 provided in the lower part of an atomizer to form a preform body 5, which is sealed within a metallic cupsule and performed hot working, so that a main axis of crystal magnetic anisotropy is arranged in the process direction and magnetically made anisotropic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は配向性の優れた合金組織
を有する希土類元素−Fe−B系磁石の製造方法に関
し、詳細には希土類元素含有合金粉末からプリフォーム
体を形成し、該プリフォーム体を金属カプセルに封入し
て熱間加工することにより、磁気特性の優れた希土類元
素−Fe−B系磁石を製造する方法に関するものであ
る。尚本発明における熱間加工とは、熱間加工,熱間鍛
造および熱間静水圧押出しのいずれかをも含む趣旨であ
るが、以下熱間圧延を主体にして説明を進める。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth element-Fe-B magnet having an alloy structure with excellent orientation, and more specifically, a preform body is formed from a rare earth element-containing alloy powder. The present invention relates to a method for producing a rare earth element-Fe-B based magnet having excellent magnetic properties by encapsulating a reform body in a metal capsule and hot working. Note that the hot working in the present invention includes any of hot working, hot forging, and hot isostatic pressing, but the description will be made mainly on hot rolling below.

【0002】[0002]

【従来の技術】フェライト磁石およびアルニコ磁石に次
ぐ第3の永久磁石として、希土類磁石が注目を集めてい
る。中でも近年特に期待されているのは、希土類元素−
Fe−B系(以下RE−Fe−B系と略称することがあ
る)、例えばNd−Fe−BやPr−Fe−B等の永久
磁石であり、最近に至ってCuやAgを第4番目の構成
元素とすることや、それ以外に更に他の微量添加元素を
加えることも検討されている。
2. Description of the Related Art Rare earth magnets have been attracting attention as a third permanent magnet after ferrite magnets and alnico magnets. Among these, the rare earth element-
It is a permanent magnet of Fe-B system (hereinafter sometimes abbreviated as RE-Fe-B system), for example, Nd-Fe-B, Pr-Fe-B, etc., and Cu and Ag are the fourth permanent magnets recently. It is also being studied to use it as a constituent element and to add other trace elements in addition to it.

【0003】RE−Fe−B系磁石の製造方法として
は、3通りの方法が知られている。第1の方法は粉末冶
金的な方法(焼結法)である。この方法ではまず希土類
元素,電解鉄およびフェロボロン等を溶解し、得られた
希土類元素−Fe−B系溶融合金を水冷銅鋳型で鍛造し
て合金鋳塊を得る。次いで、該合金鋳塊を3〜10μm の
微細粉末に粉砕し、得られた合金粉末を磁場中で成形
し、Arガス雰囲気中で焼結する。
There are three known methods for manufacturing RE-Fe-B magnets. The first method is a powder metallurgical method (sintering method). In this method, first, rare earth elements, electrolytic iron, ferroboron, etc. are melted, and the obtained rare earth element-Fe-B system molten alloy is forged with a water-cooled copper mold to obtain an alloy ingot. Next, the alloy ingot is pulverized into a fine powder of 3 to 10 μm, the obtained alloy powder is molded in a magnetic field, and sintered in an Ar gas atmosphere.

【0004】第2の方法は、希土類元素−Fe−B系溶
融合金を急冷凝固させて薄片を作り、該薄片にホットプ
レスを施し、更にダイアップセットにより加圧して加圧
方向に結晶の磁気異方性の主軸を揃えて異方性磁石を製
造する方法である。
In the second method, a rare earth element-Fe-B system molten alloy is rapidly cooled and solidified to form a thin piece, which is hot-pressed and further pressed by a die-up set to magnetize the crystal in the pressing direction. This is a method of manufacturing an anisotropic magnet by aligning the principal axes of anisotropy.

【0005】第3の方法は、希土類元素−Fe−B系合
金に熱間圧延を施し、圧延方向に結晶磁気異方性の主軸
を揃えて異方性磁石を作成する方法である。またこの方
法において、合金鋳塊を金属カプセルに封入して熱間圧
延することも知られている。
The third method is a method in which a rare earth element-Fe-B alloy is hot-rolled and the principal axis of crystal magnetic anisotropy is aligned in the rolling direction to produce an anisotropic magnet. In this method, it is also known that the alloy ingot is enclosed in a metal capsule and hot-rolled.

【0006】[0006]

【発明が解決しようとする課題】しかしながら粉末冶金
的方法では、希土類元素−Fe−B系合金が活性である
ので粉末が容易に酸化され、また不純物が混入する恐れ
がある。その結果、焼結体中の酸素濃度や不純物濃度が
上昇し、磁気特性が劣化するという問題がある。また焼
結工程に先立って合金の粉末化処理が必要であり、生産
性の点からしても難がある。
However, in the powder metallurgical method, since the rare earth element-Fe-B alloy is active, the powder may be easily oxidized and impurities may be mixed. As a result, there is a problem that the oxygen concentration and the impurity concentration in the sintered body increase and the magnetic characteristics deteriorate. Further, powdering treatment of the alloy is required prior to the sintering step, which is difficult in terms of productivity.

【0007】一方急冷薄片にホットプレスおよびダイア
ップセット加工を施す方法は、磁場プレスや急冷凝固装
置等の高価な装置を必要とするばかりでなく、生産性が
劣るので工業的手段としては適さないという欠点があ
る。また合金鋳塊を熱間加工する方法は、大量生産向き
の方法といえるが、微細な柱状晶を有する合金鋳塊を作
成しなければならないという欠点がある。
On the other hand, the method of hot-pressing and die-upsetting the rapidly-quenched flakes requires not only expensive equipment such as a magnetic field press and a rapid solidification apparatus, but also has poor productivity, and is not suitable as an industrial means. There is a drawback. The method of hot working the alloy ingot can be said to be suitable for mass production, but it has a drawback that an alloy ingot having fine columnar crystals must be prepared.

【0008】本発明はこの様な事情に着目されてなされ
たものであって、その目的は、従来技術の様な不都合を
発生させることなく、磁気特性の良好なRE−Fe−B
系磁石を生産性良く製造する方法を提供することにあ
る。
The present invention has been made in view of such circumstances, and its purpose is to provide RE-Fe-B excellent in magnetic characteristics without causing the inconvenience of the prior art.
An object of the present invention is to provide a method for manufacturing a system magnet with high productivity.

【0009】[0009]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、少なくとも希土類元素,Fe系およびBを必
須成分として含有する合金溶湯を非酸化性雰囲気中に落
下させ、該落下中の溶湯に高圧の不活性ガスを吹き付け
てアトマイズし、アトマイズされた半溶融状態の希土類
元素−Fe−B系合金粉末を、アトマイザーの下部に設
けたコレクター上に均一に堆積させてプリフォーム体を
形成し、該プリフォーム体を金属カプセル内に封入して
熱間加工を施し、結晶の磁気異方性の主軸を加工方向に
配向させて磁気的に異方化する点に要旨を有する希土類
元素−Fe−B系磁石の製造方法である。
Means for Solving the Problems According to the present invention capable of achieving the above object, a molten alloy containing at least a rare earth element, an Fe system and B as essential components is dropped into a non-oxidizing atmosphere, and during the dropping. Atomized by spraying a high-pressure inert gas onto the molten metal, and the atomized semi-molten rare earth element-Fe-B alloy powder is uniformly deposited on the collector provided at the bottom of the atomizer to form a preform body. A rare earth element having the gist of forming a preform, encapsulating the preform in a metal capsule, and performing hot working to orient the principal axis of the magnetic anisotropy of the crystal in the working direction to make it magnetically anisotropic. It is a manufacturing method of a -Fe-B system magnet.

【0010】また熱間加工時の温度は700 〜1050℃とす
るのがよく、熱間加工完了後に800〜1050℃で熱処理を
施し、その後更に400 〜600 ℃で熱処理することも有効
であり、これらの要件を付加することによって磁気特性
を更に向上させることができる。
It is also effective that the temperature during hot working is 700 to 1050 ° C., it is also effective to perform heat treatment at 800 to 1050 ° C. after completion of hot working, and then heat treatment at 400 to 600 ° C. The magnetic characteristics can be further improved by adding these requirements.

【0011】[0011]

【作用】本発明者らは、金属カプセルを用いて熱間加工
する工程を基本的に含み、従来技術の項で示した様な問
題を発生させることなく、磁気特性の優れたRE−Fe
−B系磁石を製造する為の要件について様々な角度から
検討した。その結果、R−Fe−B系合金溶湯をアトマ
イズして得られた半溶融状態の粉末からプリフォーム体
を形成し、該プリフォーム体を金属カプセルに封入して
熱間加工を施せば、上記目的が見事に達成されることを
見出し、本発明を完成した。即ち本発明によれば、アト
マイズされた半溶融状態の粉末をコレクター上に堆積さ
せてプリフォーム体を作製し、これを金属カプセルに封
入して熱間加工を施すものであるので、溶製合金の粉砕
工程を省略することができると共に、酸化物の付着や不
純物混入が防がれ清浄なプリフォーム体を形成すること
ができ、原料面からの磁気特性の劣化を防止することが
できる。また磁場プレスや急冷凝固装置等の高価な設備
を必要とすることもない。更に、アトマイズされた粉末
は粒径が250 μm 以下のものが得られるので、プリフォ
ーム体の結晶粒径を10μm 以下の微細なものとすること
かでき、これによって良好な保磁力(iHc)が確保で
きる。
The present inventors basically include a step of hot working using a metal capsule, and do not cause the problems described in the section of the prior art, and have excellent magnetic properties.
-We examined the requirements for manufacturing B-based magnets from various angles. As a result, a preform body is formed from powder in a semi-molten state obtained by atomizing the molten R-Fe-B alloy, and the preform body is encapsulated in a metal capsule and subjected to hot working. The present invention has been completed by finding that the object can be achieved successfully. That is, according to the present invention, atomized powder in a semi-molten state is deposited on a collector to prepare a preform body, which is encapsulated in a metal capsule and subjected to hot working. It is possible to omit the crushing step, and it is possible to form a clean preform by preventing adhesion of oxides and mixing of impurities, and it is possible to prevent deterioration of magnetic properties from the raw material side. Further, there is no need for expensive equipment such as a magnetic field press and a rapid solidification device. Further, since the atomized powder has a particle size of 250 μm or less, the crystal grain size of the preform can be made as fine as 10 μm or less, which results in a good coercive force (iHc). Can be secured.

【0012】本発明のRE−Fe−B系磁石を構成する
合金組成について説明する。まず希土類元素としては、
La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,T
b,Dy,Ho,Er,Tm,YbおよびLuといった
ランタン系列希土類元素が汎用されるが、必要であれば
アクチニウム系列元素を利用することもでき、これらの
中から選択される1種または2種以上を組合わせて用い
る。これらのうち特に好適なものはPr,Ce,Nd等
である。
The alloy composition of the RE-Fe-B magnet of the present invention will be described. First of all, as rare earth elements,
La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, T
Lanthanum series rare earth elements such as b, Dy, Ho, Er, Tm, Yb and Lu are generally used, but if necessary, actinium series elements can be used, and one or two kinds selected from these can be used. The above is used in combination. Of these, particularly preferable are Pr, Ce, Nd and the like.

【0013】本発明に係るRE−Fe−B系磁石におけ
る各元素の組成比については格別の限定を受けないが、
一般的には下記の基準に従って選定することが推奨され
る。
The composition ratio of each element in the RE-Fe-B system magnet according to the present invention is not particularly limited,
Generally, it is recommended to select according to the following criteria.

【0014】希土類元素は8〜25原子%が適当であり、
8原子%未満では上記3元系永久磁石における主相RE
2−Fe14−B(原子比,例えばPr2−Fe14−B)を
形成することができず、α鉄と同一構造の立方晶組織と
なってiHcの低下等を招き、良好な磁気的特性は得ら
れない。また熱間加工性が低下し、熱間加工時に割れが
生じ易くなる。一方上限については25原子%を超えると
非磁性相の量が多過ぎて良好な磁気的特性が発揮するこ
とができなくなる。
The rare earth element is suitably 8 to 25 atomic%,
If it is less than 8 atomic%, the main phase RE in the above ternary permanent magnet
2- Fe 14 -B (atomic ratio, for example, Pr 2 -Fe 14 -B) cannot be formed, resulting in a cubic crystal structure having the same structure as α iron, leading to a decrease in iHc, and good magnetic properties. Characteristics cannot be obtained. Further, the hot workability is deteriorated, and cracks are likely to occur during hot working. On the other hand, with respect to the upper limit, if it exceeds 25 atom%, the amount of the non-magnetic phase becomes too large and good magnetic properties cannot be exhibited.

【0015】Bは2〜10原子%程度が好ましく、2%未
満では主相体積率の不定が生じ、磁束密度(Br)の低
下を招く。他方上限については、磁気特性を担わないR
1−Fe14−B4相の出現によるiHcの低下を防止す
るという観点から10原子%を目安とすればよい。
B is preferably in the range of about 2 to 10 atomic%, and if it is less than 2%, the volume ratio of the main phase becomes indefinite and the magnetic flux density (Br) is lowered. On the other hand, regarding the upper limit, R that does not bear magnetic characteristics
From the viewpoint of preventing a decrease in iHc due to the appearance of the E 1 —Fe 14 —B 4 phase, 10 atomic% may be set as a standard.

【0016】上記必須成分の他、残部は基本的にはFe
および不可避不純物からなり、Feは磁性相形成にとっ
ての必須元素であるが、その一部をCo,Al,Cu,
Ga,Ag,Nb,V等で置換してもよい。Coは磁性
の温度特性改善効果があり、AlはiHcの低下を抑制
する効果があり、Cu,GaはiHcを上昇させる効果
があり、Ag,Nb,V等は組織を微細化する効果があ
る。
In addition to the above essential components, the balance is basically Fe.
Fe is an essential element for forming a magnetic phase, and a part of Co, Al, Cu,
You may substitute by Ga, Ag, Nb, V, etc. Co has an effect of improving magnetic temperature characteristics, Al has an effect of suppressing a decrease in iHc, Cu and Ga have an effect of increasing iHc, and Ag, Nb, V and the like have an effect of refining the structure. ..

【0017】本発明では、上記の様な組成のRE−Fe
−B系合金溶湯をアトマイズし、アトマイズされた半溶
融状態のRE−Fe−B系合金粉末をコレクター上に堆
積させてプリフォーム体を作成するものであるが、プリ
フォーム体の形状については限定するものではなく、例
えば平板状や円筒状等のものが作成できる。各種形状の
プリフォーム体の作成手順を図面に従って説明する。
In the present invention, RE-Fe having the above composition is used.
-The B-type alloy melt is atomized and the atomized semi-molten RE-Fe-B-type alloy powder is deposited on the collector to form a preform body, but the shape of the preform body is limited. For example, a flat plate shape or a cylindrical shape can be prepared. The procedure for creating preforms of various shapes will be described with reference to the drawings.

【0018】図1は平板状のプリフォームを作成する為
の装置構成を示す概略説明図であり、図中1は合金溶
湯,2は合金溶湯槽,3は不活性雰囲気を形成するチャ
ンバー,4は板状のコレクター,5はプリフォーム体の
夫々を示す。
FIG. 1 is a schematic explanatory view showing an apparatus structure for producing a flat plate-like preform. In the figure, 1 is a molten alloy, 2 is a molten alloy tank, 3 is a chamber for forming an inert atmosphere, 4 Is a plate-shaped collector, and 5 is a preform body.

【0019】合金溶湯1は合金溶湯槽2から落下され、
落下途中でArガス等の不活性ガスが高圧で吹き付けら
れ(図示せず)、前記溶湯はアトマイズされて半溶融状
態の微小滴となって、アトマイザーの下部に設けられ水
平方向に移動するコレクター4上に均一に堆積して、平
板状のプリフォーム体5が形成される。
The molten alloy 1 is dropped from the molten alloy tank 2,
During the fall, an inert gas such as Ar gas is blown at a high pressure (not shown), and the molten metal is atomized into semi-molten fine droplets, which is provided in the lower part of the atomizer and moves horizontally. The flat preform body 5 is formed by uniformly depositing the preform body 5 on top.

【0020】図2は円筒状のプリフォーム体を作成する
為の装置構成を示す概略説明図であり、この装置の基本
的構成は図1に示した構成と同様であり、対応する部分
には同一の参照符号が付してある。図2に示した装置で
は、円筒状のコレクター4aが合金溶湯槽の下部にその
軸心方向を水平方向に向けて設けられており、このコレ
クター4aは軸心を中心として回転しつつ軸心方向に移
動される。この様な装置を用いてコレクター4a上にR
E−Fe−B系合金粉末を均一に堆積させれば、円筒状
のプリフォーム体5aが得られる。
FIG. 2 is a schematic explanatory view showing the construction of an apparatus for producing a cylindrical preform body. The basic construction of this apparatus is the same as that shown in FIG. The same reference numerals are attached. In the apparatus shown in FIG. 2, a cylindrical collector 4a is provided in the lower part of the molten alloy bath with its axial direction oriented in the horizontal direction. The collector 4a rotates about the axial center while it is in the axial direction. Be moved to. R is placed on the collector 4a by using such a device.
By depositing the E-Fe-B based alloy powder uniformly, a cylindrical preform body 5a is obtained.

【0021】上記の様なプリフォーム体は金属カプセル
に収納されるが、本発明での熱間加工は比較的高温で行
なわれることに鑑み、金属カプセルとしてはプリフォー
ム体より高融点の材料、例えば融点1500℃以上の軟鋼、
構造用鋼、更にはステンレス鋼が使用される。
The preform as described above is housed in a metal capsule, but in view of the fact that the hot working in the present invention is performed at a relatively high temperature, the metal capsule has a higher melting point than the preform, For example, mild steel with a melting point of 1500 ° C or higher,
Structural steel and even stainless steel are used.

【0022】図3は、平板状のプリフォーム体5を金属
カプセル6内に封入して、形成された熱間加工用ビレッ
ト7の形態を示す説明図である。この様な形態のビレッ
ト7を用いて、熱間圧延または熱間鍛造すれば、結晶の
磁気異方性の主軸を加工方向に配向させて磁気的に異方
化することができる。
FIG. 3 is an explanatory view showing a form of a hot working billet 7 formed by enclosing the flat plate-shaped preform body 5 in a metal capsule 6. When the billet 7 having such a form is used for hot rolling or hot forging, the principal axis of the magnetic anisotropy of the crystal can be oriented in the processing direction to make it magnetically anisotropic.

【0023】図4は円筒状のプリフォーム体5aを金属
カプセル6内に脱気封入して形成された熱間加工用ビレ
ット7aの形態を示す断面説明図である。尚図中8は脱
気孔を示している。この様な形態のビレット7aを用い
て熱間押し出しを施せば、結晶の磁気異方性を円筒のラ
ジアル方向に向けて配向させて磁気的に異方化すること
ができる。
FIG. 4 is a sectional explanatory view showing a form of a hot working billet 7a formed by degassing and enclosing a cylindrical preform body 5a in a metal capsule 6. In the figure, 8 indicates a deaeration hole. If hot extrusion is performed using the billet 7a having such a form, the magnetic anisotropy of the crystal can be oriented in the radial direction of the cylinder to be magnetically anisotropic.

【0024】上記各ビレットは熱間加工されるが、この
熱間加工温度は、熱間圧延,熱間鍛造または熱間押出し
のいずれの加工法を採用するにしても、700〜1050℃程
度とするのが好ましい。700 ℃未満では熱間加工時に磁
石材の割れが発生し易くなり、結晶の配向も悪くなる。
一方熱間加工温度が高いほど結晶の配向は良好となる
が、1050℃を超えると結晶粒の粗大化が起こり、磁気特
性が劣化する。
Each of the above billets is hot-worked, and the hot-working temperature is about 700 to 1050 ° C. regardless of which hot rolling, hot forging or hot extrusion method is adopted. Preferably. If the temperature is less than 700 ° C, cracking of the magnet material is likely to occur during hot working, and the crystal orientation will be poor.
On the other hand, the higher the hot working temperature, the better the crystal orientation, but if the temperature exceeds 1050 ° C, the crystal grains become coarse and the magnetic properties deteriorate.

【0025】高配向性を達成するには、熱間加工時の加
工率をできるだけ高くする必要があり、例えば熱間圧延
では圧下率30%以上、熱間押出しでは押出し比5.0 以上
とすべきである。また熱間加工後の冷却条件は各加工法
に応じて適宜設定すればよいが、例えば熱間圧延後は冷
却速度50℃/min 以下とするのが好ましく、冷却速度が
あまり高いと良好な磁気特性が得られず、また金属カプ
セルと磁石材の熱膨張の違いによって割れが発生するこ
とがある。また熱間押出し後の冷却は、1000〜500 ℃の
間を50℃/min 以上の冷却速度で行なうのがよく、50℃
/min 未満では良好な磁気特性が得られない。
In order to achieve high orientation, it is necessary to increase the working ratio during hot working as much as possible. For example, the reduction ratio should be 30% or more in hot rolling and the extrusion ratio 5.0 or more in hot extrusion. is there. The cooling conditions after hot working may be appropriately set according to each working method. For example, after hot rolling, it is preferable to set the cooling rate to 50 ° C / min or less. The characteristics may not be obtained, and cracks may occur due to the difference in thermal expansion between the metal capsule and the magnet material. Cooling after hot extrusion should be carried out at a cooling rate of 50 ° C / min or higher between 1000 and 500 ° C.
If it is less than / min, good magnetic properties cannot be obtained.

【0026】本発明では上述の如く、熱間加工が完了し
た後に、800 〜1050℃で熱処理し、更に400 〜600 ℃で
熱処理することが好ましい実施態様として挙げられる。
これは上記2段の熱処理によって組織の微細化が達成さ
れ、磁石の特性が一層向上するからである。
In the present invention, as described above, after the hot working is completed, heat treatment at 800 to 1050 ° C. and further heat treatment at 400 to 600 ° C. are preferable embodiments.
This is because the microstructure is achieved by the two-step heat treatment and the characteristics of the magnet are further improved.

【0027】[0027]

【実施例】実施例1 表1に示す組成のPr−Fe−B系合金を溶製し、溶融
合金を落下させ、落下途中で高純度高圧のArガスを吹
き付けて半溶融状態の粉末とし、該粉末をアトマイザー
下部に設けられた平板状のコレクター上に堆積させ、熱
間圧延用のプリフォーム体とした。
Example 1 A Pr—Fe—B alloy having the composition shown in Table 1 was melted, the molten alloy was dropped, and a high-purity and high-pressure Ar gas was blown during the fall to obtain a semi-molten powder. The powder was deposited on a flat plate-shaped collector provided under the atomizer to obtain a preform for hot rolling.

【0028】[0028]

【表1】 [Table 1]

【0029】上記プリフォーム体を鋼製カプセルに封入
し、熱間圧延用ビレット(前記図3参照)を作製した。
このビレットを圧延圧下率76%、圧延温度1000℃で熱間
圧延を施した後、1050℃(1段目)および475 ℃(2段
目)の2段階の熱処理を施して磁石材を得た。この様に
して得られた磁石の磁気特性を調査したところ、表2に
示す結果が得られた。尚表2中(BH)max は、残留磁
束密度と保磁力の積で示される最大エネルギー積であ
る。表2から明らかな様に、本発明によって得られた磁
石材は優れた磁気特性を示していることがわかる。
The preform was encapsulated in a steel capsule to prepare a billet for hot rolling (see FIG. 3).
This billet was hot-rolled at a rolling reduction of 76% and a rolling temperature of 1000 ° C., and then heat-treated in two stages of 1050 ° C. (first stage) and 475 ° C. (second stage) to obtain a magnet material. .. When the magnetic properties of the magnet thus obtained were investigated, the results shown in Table 2 were obtained. In Table 2, (BH) max is the maximum energy product shown by the product of the residual magnetic flux density and the coercive force. As is clear from Table 2, the magnet material obtained according to the present invention exhibits excellent magnetic characteristics.

【0030】[0030]

【表2】 [Table 2]

【0031】実施例2 前記表1に示した組成のPr−Fe−B系合金を溶製
し、円筒状のコレクターを用いる以外は実施例1と同様
にして熱間押出し用プリフォーム体を作成した。
Example 2 A hot-extrusion preform body was prepared in the same manner as in Example 1 except that a Pr-Fe-B alloy having the composition shown in Table 1 was melted and a cylindrical collector was used. did.

【0032】上記プリフォーム体を鋼製カプセルに充填
し、脱気封止して押出し用ビレット(前記図4参照)を
作製した。このビレットを押出し比10、押出し温度1000
℃で熱間押出し加工を施した後、冷却速度300 ℃/min
で冷却して得られた試料に1050℃(1段目)および480
℃(2段目)の2段階の熱処理を施して磁石材を得た。
この様にして得られた磁石の磁気特性を調査したとこ
ろ、表3に示す結果が得られた。表3から明らかな様
に、本発明によって得られた磁石材は、優れた磁気特性
を示していることがわかる。
A steel capsule was filled with the above-mentioned preform and degassed and sealed to prepare an extrusion billet (see FIG. 4). This billet has an extrusion ratio of 10 and an extrusion temperature of 1000.
After hot extrusion at ℃, cooling rate 300 ℃ / min
The sample obtained by cooling at 1050 ℃ (1st step) and 480 ℃
A two-step heat treatment at ° C (second step) was performed to obtain a magnet material.
When the magnetic properties of the magnet thus obtained were investigated, the results shown in Table 3 were obtained. As is clear from Table 3, the magnet material obtained according to the present invention exhibits excellent magnetic properties.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】以上述べた如く本発明によれば、磁場プ
レスや急冷凝固装置等の高価な設備を必要とすることな
く、磁気特性の良好な磁石を容易に製造することができ
る様になり、本発明は工業的生産方法として好適であ
る。また溶製合金の粉砕工程も不要であり、酸化物の付
着や不純物の混入がなく、これらに起因した磁気特性の
劣化を有効に防止することができる。
As described above, according to the present invention, it becomes possible to easily manufacture a magnet having good magnetic characteristics without requiring expensive equipment such as a magnetic field press and a rapid solidification machine. The present invention is suitable as an industrial production method. Further, the step of crushing the ingot is not required, and there is no adherence of oxides or mixing of impurities, and it is possible to effectively prevent the deterioration of magnetic characteristics due to these.

【図面の簡単な説明】[Brief description of drawings]

【図1】平板状のプリフォーム体を作成する為の装置構
成を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing an apparatus configuration for producing a flat plate-shaped preform body.

【図2】円筒状のプリフォーム体を作成する為の装置構
成を示す概略説明図である。
FIG. 2 is a schematic explanatory view showing an apparatus configuration for producing a cylindrical preform body.

【図3】平板状のプリフォーム体5を金属カプセル6内
に封入して形成された熱間加工用ビレット7の形態を示
す説明図である。
FIG. 3 is an explanatory view showing a form of a hot working billet 7 formed by enclosing a flat plate-shaped preform body 5 in a metal capsule 6.

【図4】円筒状のプリフォーム体5aを金属カプセル6
内に脱気封入して形成された熱間加工用ビレット7aの
形態を示す断面説明図である。
FIG. 4 shows a cylindrical preform body 5a with a metal capsule 6
It is a section explanatory view showing the form of the billet 7a for hot workings formed by degassing and enclosing it inside.

【符号の説明】 1 合金溶湯 2 合金溶湯槽 3 チャンバー 4,4a コレクター 5,5a プリフォーム体 6 金属カプセル 7 熱間加工用ビレット[Explanation of symbols] 1 molten alloy 2 molten alloy tank 3 chamber 4,4a collector 5,5a preform body 6 metal capsule 7 hot working billet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも希土類元素,FeおよびBを
必須成分として含有する合金溶湯を非酸化性雰囲気中に
落下させ、該落下中の溶湯に高圧の不活性ガスを吹き付
けてアトマイズし、アトマイズされた半溶融状態の希土
類元素−Fe−B系合金粉末を、アトマイザーの下部に
設けたコレクター上に均一に堆積させてプリフォーム体
を形成し、該プリフォーム体を金属カプセル内に封入し
て熱間加工を施し、結晶の磁気異方性の主軸を加工方向
に配向させて磁気的に異方化することを特徴とする希土
類元素−Fe−B系磁石の製造方法。
1. A molten alloy containing at least rare earth elements, Fe and B as essential components is dropped into a non-oxidizing atmosphere, and a high-pressure inert gas is blown to the molten metal to atomize the molten alloy. A semi-molten rare earth element-Fe-B alloy powder is uniformly deposited on a collector provided at the bottom of the atomizer to form a preform body, and the preform body is enclosed in a metal capsule and hot-worked. A method for producing a rare earth element-Fe-B magnet, which is characterized by performing processing and orienting a principal axis of magnetic anisotropy of a crystal in a processing direction to magnetically make it anisotropic.
【請求項2】 熱間加工を700 〜1050℃で行なうと共
に、熱間加工が完了した後、800 〜1050℃で熱処理を施
し、その後更に400 〜600 ℃で熱処理する請求項1に記
載の製造方法。
2. The production according to claim 1, wherein the hot working is performed at 700 to 1050 ° C., and after the hot working is completed, the heat treatment is performed at 800 to 1050 ° C., and then the heat treatment is further performed at 400 to 600 ° C. Method.
JP3174275A 1991-05-22 1991-05-22 Method of manufacturing rare-earth element-fe-b magnet Withdrawn JPH0562814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174275A JPH0562814A (en) 1991-05-22 1991-05-22 Method of manufacturing rare-earth element-fe-b magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174275A JPH0562814A (en) 1991-05-22 1991-05-22 Method of manufacturing rare-earth element-fe-b magnet

Publications (1)

Publication Number Publication Date
JPH0562814A true JPH0562814A (en) 1993-03-12

Family

ID=15975814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174275A Withdrawn JPH0562814A (en) 1991-05-22 1991-05-22 Method of manufacturing rare-earth element-fe-b magnet

Country Status (1)

Country Link
JP (1) JPH0562814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010860A1 (en) * 2005-07-15 2007-01-25 Neomax Co., Ltd. Rare earth sintered magnet and method for production thereof
JP2007154241A (en) * 2005-12-02 2007-06-21 Neomax Co Ltd Rare-earth sintered magnet and producing method thereof
JP2007220885A (en) * 2006-02-16 2007-08-30 Hitachi Metals Ltd Rare earth sintered magnet, and its manufacturing method
JP2008041875A (en) * 2006-08-04 2008-02-21 Hitachi Metals Ltd Rare earth sintered magnet, and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010860A1 (en) * 2005-07-15 2007-01-25 Neomax Co., Ltd. Rare earth sintered magnet and method for production thereof
US9551052B2 (en) 2005-07-15 2017-01-24 Hitachi Metals, Ltd. Rare earth sintered magnet and method for production thereof
JP2007154241A (en) * 2005-12-02 2007-06-21 Neomax Co Ltd Rare-earth sintered magnet and producing method thereof
JP2007220885A (en) * 2006-02-16 2007-08-30 Hitachi Metals Ltd Rare earth sintered magnet, and its manufacturing method
JP2008041875A (en) * 2006-08-04 2008-02-21 Hitachi Metals Ltd Rare earth sintered magnet, and its manufacturing method

Similar Documents

Publication Publication Date Title
US11482377B2 (en) Rare earth permanent magnets and their preparation
US10160037B2 (en) Rare earth magnet and its preparation
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
EP0557103B1 (en) Master alloy for magnet production and its production, as well as magnet production
EP1970924A1 (en) Rare earth permanent magnets and their preparation
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
CN106298138A (en) The manufacture method of rare-earth permanent magnet
CN105448444A (en) Method for preparing rare-earth permanent magnetic material with improved performance and rare-earth permanent magnetic material
CN100394521C (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
JPH0562814A (en) Method of manufacturing rare-earth element-fe-b magnet
KR101683439B1 (en) Permanent Magnet Powder containing Rare Earth Element and a Method thereof
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
CN113571278B (en) Magnetic powder, method for forming magnetic powder, rare earth sintered permanent magnet and method for producing the same
JPS63289905A (en) Manufacture of rare earth-fe-b magnet
JPH0745412A (en) R-fe-b permanent magnet material
JP3053344B2 (en) Rare earth magnet manufacturing method
JP2007266037A (en) Manufacturing method of rare-earth permanent magnet
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JP2005213544A (en) Compacting method in magnetic field and method for producing rare-earth sintered magnet
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JP3101800B2 (en) Manufacturing method of anisotropic sintered permanent magnet
JP2005206909A (en) Compacting method in magnetic field, and method for producing rare earth sintered magnet
JPS6230845A (en) Production of anisotropic permanent magnet material
JPH01119001A (en) Manufacture of permanent magnetic powder containing rare earth element
JPH09320825A (en) Manufacture of rare earth magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806