JP3053344B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method

Info

Publication number
JP3053344B2
JP3053344B2 JP6314186A JP31418694A JP3053344B2 JP 3053344 B2 JP3053344 B2 JP 3053344B2 JP 6314186 A JP6314186 A JP 6314186A JP 31418694 A JP31418694 A JP 31418694A JP 3053344 B2 JP3053344 B2 JP 3053344B2
Authority
JP
Japan
Prior art keywords
rare earth
alloy
fine
earth magnet
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6314186A
Other languages
Japanese (ja)
Other versions
JPH08148318A (en
Inventor
的生 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6314186A priority Critical patent/JP3053344B2/en
Publication of JPH08148318A publication Critical patent/JPH08148318A/en
Application granted granted Critical
Publication of JP3053344B2 publication Critical patent/JP3053344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0574Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by liquid dynamic compaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は希土類永久磁石、特には
Nd系焼結磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth permanent magnet, in particular, a sintered Nd-based magnet.

【0002】[0002]

【従来の技術】希土類焼結磁石はその高い磁気特性の為
に、フェライト等に比べて非常に高価であるにも関わら
ず近年高い需要を示している。その中でも特にNd系磁
石はSm系磁石に比べて磁気特性が高く、価格も安いこ
とから希土類磁石の主流となりつつある。
2. Description of the Related Art Rare-earth sintered magnets have recently been in high demand due to their high magnetic properties, despite being very expensive compared to ferrite and the like. Among them, Nd-based magnets are particularly becoming the mainstream of rare-earth magnets because of their higher magnetic properties and lower cost than Sm-based magnets.

【0003】Nd系焼結磁石は粉末冶金法を用いて製造
され、以下のような工程を経る。すなわち、所定の組成
となるよう溶解して合金を作成し、その合金を粉砕して
1〜20μmの微粉末を得、微粉を磁場中にて成形し、焼
結及び熱処理を施すことによって磁石となる。
[0003] Nd-based sintered magnets are manufactured by powder metallurgy and undergo the following steps. That is, an alloy is prepared by melting to have a predetermined composition, the alloy is pulverized to obtain a fine powder of 1 to 20 μm, the fine powder is molded in a magnetic field, and sintering and heat treatment are performed. Become.

【0004】微粉末を得るために用いられる手法として
は、ボールミル、アトライターミル、振動ミル、ジェッ
トミルなどがあるが、ボールミル、アトライターミル、
振動ミルは希土類磁石合金との反応性がないか、又は反
応性が少ない有機溶剤を用いてスラリー状にして粉砕す
るのが通常である。そのため、作業工程が煩雑となる、
着火や金属との反応による有機溶剤の変質による爆発の
危険を伴う等のデメリットが多く、希土類磁石用合金の
微粉砕方法としてはあまり適した方法であるとは言えな
い。
[0004] Techniques used for obtaining fine powder include a ball mill, an attritor mill, a vibration mill and a jet mill.
The vibration mill generally has no reactivity with the rare earth magnet alloy or is slurried and pulverized using an organic solvent having low reactivity. Therefore, the work process becomes complicated,
There are many disadvantages such as the danger of explosion due to ignition and reaction of the organic solvent due to the reaction with the metal, and it cannot be said that this method is very suitable as a method for pulverizing alloys for rare earth magnets.

【0005】それに対して、超音速のガス気流を用いて
粉砕を行うジェットミルは、使用するガスを不活性ガス
に変更することにより、希土類磁石を製造する上で問題
となる微粉末の酸化についてもそれを最小限に抑えるこ
とができるために希土類磁石用合金の微粉砕方法として
適した方法であり、希土類磁石、特にSm系磁石の製造
に積極的に使用されてきた。
On the other hand, a jet mill that performs pulverization using a supersonic gas stream changes the gas to be used to an inert gas, thereby reducing oxidation of fine powder which is a problem in producing rare earth magnets. This method is also suitable as a method for finely pulverizing alloys for rare earth magnets because it can be minimized, and has been actively used in the production of rare earth magnets, especially Sm-based magnets.

【0006】ところが、ジェットミルをNd系磁石の製
造に適用して微粉砕を行った場合、Sm系磁石に比べて
単位時間当たりの粉砕量すなわち粉砕能力が悪いために
生産効率が著しく低下するという問題があった。
However, when a jet mill is applied to the production of an Nd-based magnet and then finely pulverized, the production efficiency is significantly reduced because the pulverization amount per unit time, that is, the pulverizing ability, is lower than that of an Sm-based magnet. There was a problem.

【0007】[0007]

【発明が解決しようとする課題】Nd系磁石用合金をジ
ェットミルにて微粉砕を行う際に、粉砕能力が悪いため
に微粉砕工程の生産効率が著しく低下し、結果として全
工程にわたり高い生産効率を得られないという問題があ
った。本発明では、Nd系焼結磁石の製造に関わる問題
点を鑑み、新規な製造方法を確立することにより効率良
く、実用上十分な保磁力を有し高い残留磁化を有する高
性能Nd系磁石を提供しようとするものである。
When the alloy for Nd-based magnets is finely pulverized by a jet mill, the production efficiency of the fine pulverization step is remarkably reduced due to poor pulverizing ability. There was a problem that efficiency could not be obtained. In the present invention, in view of the problems related to the production of Nd-based sintered magnets, a high-performance Nd-based magnet having high coercivity, high residual magnetization and high remanence is realized by establishing a new production method. It is something to offer.

【0008】[0008]

【課題を解決するための手段】本発明者らは、かかる課
題を解決するために、Sm系磁石とNd系磁石の粉砕能
力に差があることを鑑み、溶解工程を経て製造されたN
d系磁石用合金の金属組織が後工程である粉砕工程に影
響を及ぼすのではないかと考え溶解工程及び溶解後の金
属組織に着目して鋭意検討を行なった結果、溶解後の合
金中の結晶粒子内部に直径1μm以下の微細な希土類元
素酸化物が分散して析出している合金を用いてジェット
ミルにて微粉砕を行なった場合粉砕能力が向上し、Nd
系磁石を高い生産効率のもとで製造することが可能にな
り本発明を完成させた。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors consider that there is a difference in the crushing ability between the Sm-based magnet and the Nd-based magnet, and thus the Nm manufactured through the melting step.
We thought that the metallographic structure of the alloy for d-based magnets might affect the pulverization process, which is the subsequent process, and focused on the melting process and the metallographic structure after melting, and as a result, the crystals in the alloy after melting When fine pulverization is performed with a jet mill using an alloy in which fine rare earth element oxides having a diameter of 1 μm or less are dispersed and precipitated inside the particles, the pulverization ability is improved, and Nd
The present invention has been completed by making it possible to manufacture a system magnet with high production efficiency.

【0009】本発明の要旨は、式 Rx(Fe1-aCoa)yBzT
b(式中RはYを含む希土類元素のうちの少なくとも一
種、TはFe,Co以外の遷移金属を表し、重量百分率
でxは11〜16%、yは70〜85%、zは4〜9%、bは0
〜4%であり、aは0≦a≦0.2である)からなる希土
類磁石の製造方法において、溶湯の温度を合金の融点よ
り50℃以上200 ℃以下の高い温度にして、原料金属を坩
堝中で溶解し、鋳造後の合金中の結晶粒子内部に直径1
μm以下の微細な希土類元素酸化物が含まれている合金
を超音速のガス気流を用いてジェットミルにより微粉砕
し、焼結することを特徴とする希土類磁石の製造方法で
ある。
The gist of the present invention is that the formula R x (Fe 1-a Co a ) y B z T
b (where R is at least one of the rare earth elements including Y, T represents a transition metal other than Fe and Co , x is 11 to 16%, y is 70 to 85%, and z is 4 to 9%, b is 0
44%, and a is 0 ≦ a ≦ 0.2). In the method for producing a rare earth magnet, the temperature of the molten metal is set to a temperature higher than the melting point of the alloy by 50 ° C. to 200 ° C. And a diameter of 1 within the crystal grains in the alloy after casting.
Alloys containing fine rare earth oxides less than μm
Pulverized by jet mill using supersonic gas flow
And sintering the rare earth magnet.

【0010】以下、本発明を詳細に説明する。本発明が
適用される希土類永久磁石合金の組成式は Rx(Fe1-aC
oa)yBzTbで表され、ここにRはYを含むLa、Ce、P
r、Nd、Sm、Eu、Gd、Tb、Dy、Ho、E
r、Tm、Yb及びLuから選択される1種または2種
以上の希土類元素であり、TはAl、Si、Ti、V、
Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、M
o、Sn、Hf、Ta、Wのうちから選択される。
Hereinafter, the present invention will be described in detail. The composition formula of the rare earth permanent magnet alloy to which the present invention is applied is R x (Fe 1-a C
o a ) y B z T b , where R is La, Ce, P containing Y
r, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
one or more rare earth elements selected from r, Tm, Yb and Lu, and T is Al, Si, Ti, V,
Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, M
o, Sn, Hf, Ta, and W are selected.

【0011】重量百分率xは11〜16%、yは70〜85%、
zは4〜9%、bは0〜4%であり、又、aは0≦a≦
0.2 である。この組成においてRの量xが11%未満では
α−Feの析出があり保磁力が著しく減少するために好
ましくなく、16%を越えると残留磁化が低くなるために
好ましくない。
The weight percentage x is 11-16%, y is 70-85%,
z is 4 to 9%, b is 0 to 4%, and a is 0 ≦ a ≦
0.2. In this composition, if the amount x of R is less than 11%, α-Fe precipitates and the coercive force is remarkably reduced, which is not preferable. If it exceeds 16%, the residual magnetization is undesirably low.

【0012】Bの量zは4%未満では Nd2Fe17相の析出
により保磁力が著しく減少するので好ましくなく、9%
を越えると非磁性相である NdFe4B4相の量が増え残留磁
化が減少するために好ましくない。
If the amount z of B is less than 4%, the coercive force is remarkably reduced due to the precipitation of the Nd 2 Fe 17 phase, which is not preferable.
Exceeding the range is not preferable because the amount of the nonmagnetic phase NdFe 4 B 4 increases and the residual magnetization decreases.

【0013】aはFeとCoの比を表すものであり、F
eをCoで置換することによって残留磁化を上昇させる
ことができるがaの量が 0.2を越えると保磁力が著しく
減少するために好ましくない。又、yが70%未満では残
留磁化が低くなり、85%を越えると保磁力が減少するの
で好ましくない。
A represents the ratio of Fe to Co, and F
The residual magnetization can be increased by substituting e with Co. However, if the amount of a exceeds 0.2, the coercive force is remarkably reduced, which is not preferable. If y is less than 70%, the residual magnetization becomes low, and if y exceeds 85%, the coercive force decreases, which is not preferable.

【0014】添加元素Tは保磁力を上昇させるために用
いられるが、bが4%を越えると保磁力を上昇させる効
果が弱まり、残留磁化の減少が著しいので好ましくな
い。
The additional element T is used for increasing the coercive force. However, if b exceeds 4%, the effect of increasing the coercive force is weakened, and the residual magnetization is significantly reduced, which is not preferable.

【0015】次に本発明の製造方法を述べる。Nd系磁
石は通常溶解、粗粉砕、微粉砕、成形、焼結、時効の工
程を経て製造され、溶解工程では溶湯とアルミナ等で出
来た坩堝との反応を防ぐために溶湯の温度をその合金の
融点より〜50℃高い温度で溶解を行ない鋳型に鋳込ん
で合金を作成するのが一般的であったが、溶湯の温度を
その合金の融点よりも50℃〜200℃程度高くして溶
湯とアルミナ等で出来た坩堝との反応を促進させ溶湯中
に酸素を導入させて鋳込んだ場合、図1に示すように合
金中の結晶粒子の内部に直径1μm以下の微細な希土類
元素酸化物が分散して析出した合金組織を持ち、当該合
金を超音速のガス気流を用いてジェットミルにて微粉砕
を行なった場合には、粉砕能力が著しく向上し、結果と
して高い生産効率のもとでNd系磁石の製造が可能とな
ることを見いだした。なお、この微粒子は、エネルギー
分散型X線分析装置のついた高解像度電子顕微鏡によっ
て分析した結果、希土類元素酸化物であることが確認さ
れた。
Next, the manufacturing method of the present invention will be described. Nd-based magnets are usually manufactured through the steps of melting, coarse pulverization, fine pulverization, molding, sintering, and aging. In the melting step, the temperature of the molten metal is adjusted to prevent the reaction between the molten metal and a crucible made of alumina or the like. It was common to melt at a temperature higher than the melting point by 50 ° C. and cast it into a mold to form an alloy. However, the temperature of the molten metal was raised by about 50 ° C. to 200 ° C. higher than the melting point of the alloy, and When casting by introducing oxygen into the molten metal by accelerating the reaction with a crucible made of alumina or the like, fine rare earth element oxides having a diameter of 1 μm or less are contained inside the crystal grains in the alloy as shown in FIG. When the alloy has a dispersed and precipitated alloy structure, and the alloy is finely pulverized with a jet mill using a supersonic gas stream , the pulverizing ability is remarkably improved, resulting in high production efficiency. That Nd-based magnets can be manufactured Was Idashi. The fine particles were analyzed by a high-resolution electron microscope equipped with an energy dispersive X-ray analyzer, and as a result, it was confirmed that they were a rare earth element oxide.

【0016】ここで、溶湯の温度が50℃未満の場合には
合金中の結晶粒子の内部に直径 1μm以下の微細な希土
類酸化物が分散して析出した合金組織がほとんど形成さ
れないために粉砕能力が向上しないので好ましくなく、
200℃を超える場合には溶湯が高温のために蒸発現象が
激しく最終的に得られる合金の組成が秤量時の組成と著
しく異なってしまい組成制御が困難となるため好ましく
ないので、50〜 200℃、好ましくは 100℃〜 150℃の範
囲である。上記のようにNd系磁石を製造することによ
り、微粉砕時における粉砕能力が著しく向上し、結果と
してNd系磁石の生産性の向上に著しい効果があり非常
に有効であった。
Here, when the temperature of the molten metal is lower than 50 ° C., the alloy structure in which fine rare earth oxides having a diameter of 1 μm or less are dispersed and precipitated in crystal grains in the alloy is hardly formed, so that the pulverization ability is reduced. Is not preferable because it does not improve,
If the temperature exceeds 200 ° C, the temperature of the molten metal is so high that the evaporation phenomenon is so severe that the composition of the finally obtained alloy is significantly different from the composition at the time of weighing, and it is difficult to control the composition. , Preferably in the range of 100 ° C to 150 ° C. By manufacturing the Nd-based magnet as described above, the pulverizing ability at the time of fine pulverization was remarkably improved, and as a result, the productivity of the Nd-based magnet was significantly improved and was very effective.

【0017】先ず、上記組成となるように原料金属を秤
量する。次にアルミナ等の酸化物で出来た坩堝を用いて
真空中或は不活性雰囲気中にて高周波溶解炉にてその組
成の溶融温度よりも50℃〜 200℃高い温度となるように
溶湯の温度を制御し溶解を行いその後鋳造して、合金中
の結晶粒子の内部に直径 1μm以下の微細な希土類元素
酸化物が分散して析出した合金組織を持つ合金を作成す
る。
First, raw metal is weighed so as to have the above composition. Next, using a crucible made of an oxide such as alumina, in a vacuum or in an inert atmosphere, in a high-frequency melting furnace, the temperature of the molten metal is set to be 50 ° C to 200 ° C higher than the melting temperature of the composition. Is melted and then cast to form an alloy having an alloy structure in which fine rare-earth element oxides having a diameter of 1 μm or less are dispersed and precipitated in the crystal grains in the alloy.

【0018】次に作成した合金をジョウクラッシャー、
ブラウンミル等で租粉砕を行った後、超音速のガス気流
を用いてジェットミルで微粉砕を行う。このようにして
得られた平均粒系〜20μmの微粉末を約15kOeの
磁場中にて0.2〜2Ton/cm2の圧力にて成形
し、密度が3〜5g/ccの成形体を得る。以上のよう
にして得られた成形体は、1000℃〜1150℃の真
空中或は大気圧以下の不活性ガス中にて0.1〜10時
間焼結を行い、冷却した後、400℃〜1000℃で
0.1〜10時間時効処理を行いNd系磁石とする。
Next, the prepared alloy is subjected to a jaw crusher,
After grinding with a brown mill etc., the supersonic gas flow
And pulverizing with a jet mill. The thus-obtained fine powder having an average grain size of 20 μm is molded in a magnetic field of about 15 kOe at a pressure of 0.2 to 2 Ton / cm 2 to obtain a molded body having a density of 3 to 5 g / cc. . The molded body obtained as described above is sintered in a vacuum at 1000 ° C. to 1150 ° C. or in an inert gas at atmospheric pressure or lower for 0.1 to 10 hours, cooled, and then cooled to 400 ° C. Aging treatment is performed at 1000 ° C. for 0.1 to 10 hours to obtain an Nd-based magnet.

【0019】[0019]

【作用】本発明が解決しようとする課題は、Nd系磁石
の微粉砕能力の向上それに伴う生産性の向上である。微
粉砕能力と、溶解工程を経て製造されたNd系磁石用合
金の金属微細組織に着目して検討を行った結果、溶解工
程における諸条件を最適化し溶解後の合金がその結晶粒
子の内部に直径1μm以下の微細な希土類酸化物が分散
して析出している場合に粉砕能力が著しく向上すること
を発見したもので、このように結晶粒子の内部に直径 1
μm以下の微細な希土類酸化物が分散して析出している
場合には、微細な酸化物は粉砕時に粉砕エネルギーが合
金に加わった時に応力集中部位となるであろうことが予
測され、応力が集中した部分は容易にクラック発生のサ
イトとなると考えられる。そのため、粉砕に要するエネ
ルギーは微細な酸化物が分散して析出していない合金に
較べて少なくてすみ、結果として同一の粉砕エネルギー
を加えられた場合に粉砕能力が向上したものと考えられ
る。
The problem to be solved by the present invention is to improve the fine grinding ability of the Nd-based magnet and to improve the productivity accompanying the improvement. The study focused on the pulverization ability and the metal microstructure of the alloy for Nd-based magnets manufactured through the melting process. As a result, the conditions in the melting process were optimized, and the alloy after melting was placed inside the crystal grains. It has been discovered that when fine rare earth oxides having a diameter of 1 μm or less are dispersed and precipitated, the pulverizing ability is significantly improved.
When fine rare-earth oxides of less than μm are dispersed and precipitated, it is predicted that the fine oxides will become stress-concentrated sites when grinding energy is applied to the alloy during grinding. It is considered that the concentrated portion easily becomes a crack generation site. Therefore, it is considered that the energy required for grinding is smaller than that of an alloy in which fine oxides are dispersed and not precipitated, and as a result, when the same grinding energy is applied, the grinding ability is improved.

【0020】[0020]

【実施例】以下、本発明の実施例、比較例を挙げて説明
するが、本発明はこれらに限定されるものではない。 実施例1 組成式 Nd13.7Dy0.9Fe76.9Co2B6Al0.5となる合金を、純
度99.9wt%以上の原料各金属を誘導加熱高周波溶解炉
にてAr雰囲気中で溶湯の温度を溶融温度よりも100 ℃
高い1340℃の温度となるように制御し溶解を行いその後
鋳造して上記組成の合金を作成した。この合金をAr雰
囲気中で、ジョウクラッシャー、ブラウンミルを用いて
粗粉砕し、窒素ガスを用いたジェットミルにて、平均粒
径 5μmの微粉末となるよう粗粉末の供給条件を調整し
て微粉砕を行った。この微粉末を方位をそろえるために
約15kOe の磁場中で、磁場に対して垂直な方向に約0.9
Ton/cm2 の圧力にて加圧成形して成形体を得た。この成
形体を真空中にて1060℃で90分焼結を行いその後冷却し
て焼結体を得た。このようにして得られた焼結体を、引
き続き不活性ガス雰囲気中で 600℃で 120分熱処理を施
し実施例1とした。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Example 1 An alloy having a composition formula of Nd 13.7 Dy 0.9 Fe 76.9 Co 2 B 6 Al 0.5 was mixed with a raw material having a purity of 99.9 wt% or more. Also 100 ℃
The alloy was controlled and melted at a high temperature of 1340 ° C., and then cast to obtain an alloy having the above composition. This alloy is coarsely pulverized in an Ar atmosphere using a jaw crusher and a brown mill, and the supply conditions of the coarse powder are adjusted by a jet mill using nitrogen gas so that the fine powder has an average particle diameter of 5 μm. Grinding was performed. In order to align the fine powder in a magnetic field of about 15 kOe, about 0.9 kO in a direction perpendicular to the magnetic field.
Press molding was performed at a pressure of Ton / cm 2 to obtain a molded body. The molded body was sintered at 1060 ° C. for 90 minutes in a vacuum, and then cooled to obtain a sintered body. The sintered body thus obtained was subjected to a heat treatment at 600 ° C. for 120 minutes in an inert gas atmosphere to obtain Example 1.

【0021】比較例1、比較例2 実施例1において、溶湯の温度を溶融温度よりも40℃高
い1280℃の温度となるように制御した以外は実施例1と
同じ方法で作製して得られた試料を比較例1とした。又
溶湯の温度を溶融温度よりも230 ℃高い1470℃の温度と
なるように制御した以外は実施例1と同じ方法で作製し
て得られた試料を比較例2とした。
Comparative Example 1 and Comparative Example 2 The same procedure as in Example 1 was carried out except that the temperature of the molten metal was controlled to be 1280 ° C., which is 40 ° C. higher than the melting temperature. The sample obtained was used as Comparative Example 1. A sample prepared and produced in the same manner as in Example 1 was used as Comparative Example 2 except that the temperature of the molten metal was controlled to be 1470 ° C. which was 230 ° C. higher than the melting temperature.

【0022】実施例2、比較例3 組成式Nd12.4Pr1.2Dyo0.4Fe73.2Co6B6Al0.4Ti0.4となる
合金を溶湯温度を溶融温度より100 ℃高い1360℃とした
以外は実施例1と同じ方法で作製して得られた試料を実
施例2とし、又、溶湯温度を溶融温度より40℃高い1300
℃とした以外は実施例1と同じ方法で作製して得られた
試料を比較例3とした。
Example 2 and Comparative Example 3 Example 1 was repeated except that the alloy having the composition formula Nd 12.4 Pr 1.2 Dyo 0.4 Fe 73.2 Co 6 B 6 Al 0.4 Ti 0.4 was heated to 1360 ° C., which was 100 ° C. higher than the melting temperature. A sample obtained by the same method as in Example 2 was used as Example 2, and the temperature of the molten metal was 1300 ° C. higher than the melting temperature by 1300.
A sample prepared and produced in the same manner as in Example 1 except that the temperature was changed to ° C. was used as Comparative Example 3.

【0023】図1の写真は溶解後の実施例1の合金の電
子顕微鏡による観察した結果である。比較例1の合金を
同様に観察した結果を図2の写真に示す。図1の写真に
は、1μm以下のの微細な希土類元素酸化物の析出が見
られるが、図2の写真には析出物が認められないことが
これらの写真からわかる。
The photograph in FIG. 1 is the result of observing the alloy of Example 1 after melting by an electron microscope. The result of similarly observing the alloy of Comparative Example 1 is shown in the photograph of FIG. In the photograph of FIG. 1, precipitation of fine rare earth element oxides of 1 μm or less is observed, but from the photograph in FIG. 2, it can be seen that no precipitate is observed.

【0024】各試料の残留磁束密度(Br),保持力(H
c)及び最大エネルギー積(BHmax)を求めたところ表1
に示すとおりである。
The residual magnetic flux density (Br) and coercive force (H
c) and the maximum energy product (BHmax) was calculated. Table 1
As shown in FIG.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から明らかなように本発明の方法によ
れば、1μm以下の微細な希土類元素酸化物の析出が合
金中に存在する場合粉砕能力が向上し、且つ良好な磁気
特性を有するNd系磁石の製造が可能となった。
As is apparent from Table 1, according to the method of the present invention, when fine rare-earth element oxides of 1 μm or less are present in the alloy, the pulverizing ability is improved and Nd having good magnetic properties is obtained. The production of the system magnet became possible.

【0027】[0027]

【発明の効果】本発明の製造方法により高い生産性のも
とで高性能の希土類焼結磁石を提供することができ、産
業上その効果は極めて高い。
According to the manufacturing method of the present invention, a high performance rare earth sintered magnet can be provided under high productivity, and the effect is extremely high in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法による合金の結晶構造を示す電子
顕微鏡写真(倍率10000 倍)。
FIG. 1 is an electron micrograph (magnification: 10,000) showing the crystal structure of an alloy according to the method of the present invention.

【図2】従来の方法による合金の結晶構造を示す電子顕
微鏡写真(倍率10000 倍)。
FIG. 2 is an electron micrograph (magnification: 10,000) showing the crystal structure of an alloy according to a conventional method.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/053 C22C 33/02 H01F 1/08 H01F 41/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 1/053 C22C 33/02 H01F 1/08 H01F 41/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 式 Rx(Fe1-aCoa)yBzTb(式中RはYを含
む希土類元素のうちの少なくとも一種、TはFe,Co
以外の遷移金属を表し、重量百分率でxは11〜16%、y
は70〜85%、zは4〜9%、bは0〜4%であり、aは
0≦a≦0.2である)からなる希土類磁石の製造方法に
おいて、溶湯の温度を合金の融点より50℃以上200 ℃以
下の高い温度にして、原料金属を坩堝中で溶解し、鋳造
後の合金中の結晶粒子内部に直径1μm以下の微細な希
土類元素酸化物が含まれている合金を超音速のガス気流
を用いてジェットミルにより微粉砕し、焼結することを
特徴とする希土類磁石の製造方法。
1. The formula R x (Fe 1 -a Co a ) y B z T b (wherein R is at least one of the rare earth elements containing Y, and T is Fe, Co
And x represents 11 to 16% by weight percentage and y represents
Is 70 to 85%, z is 4 to 9%, b is 0 to 4%, and a is 0 ≦ a ≦ 0.2) in a rare earth magnet manufacturing method. An alloy in which a raw metal is melted in a crucible at a high temperature of not less than 200 ° C and not more than 200 ° C, and a fine rare earth element oxide having a diameter of 1 µm or less is contained in crystal grains in the alloy after casting . The supersonic gas flow
And pulverizing it with a jet mill using the above method and sintering it.
【請求項2】 請求項1において、ジェットミルにより
平均粒径1〜20μmにすることを特徴とする希土類磁
石の製造方法。
2. A jet mill according to claim 1,
A method for producing a rare earth magnet, wherein the average particle diameter is 1 to 20 μm .
【請求項3】 アルミナからなる坩堝を使用する請求項
1又は2記載の希土類磁石の製造方法。
3. Use of a crucible made of alumina.
3. The method for producing a rare earth magnet according to 1 or 2.
JP6314186A 1994-11-24 1994-11-24 Rare earth magnet manufacturing method Expired - Fee Related JP3053344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6314186A JP3053344B2 (en) 1994-11-24 1994-11-24 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6314186A JP3053344B2 (en) 1994-11-24 1994-11-24 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH08148318A JPH08148318A (en) 1996-06-07
JP3053344B2 true JP3053344B2 (en) 2000-06-19

Family

ID=18050300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6314186A Expired - Fee Related JP3053344B2 (en) 1994-11-24 1994-11-24 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP3053344B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179973B2 (en) 2003-11-18 2008-11-12 Tdk株式会社 Manufacturing method of sintered magnet

Also Published As

Publication number Publication date
JPH08148318A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
EP0126802B1 (en) Process for producing of a permanent magnet
EP0304054B1 (en) Rare earth-iron-boron magnet powder and process of producing same
US7867343B2 (en) Rare earth magnet and method for production thereof
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
JP3549382B2 (en) Rare earth element / iron / boron permanent magnet and method for producing the same
JP3250551B2 (en) Method for producing anisotropic rare earth magnet powder
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JPH08316018A (en) Magnet and bonded magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH0776708A (en) Production of anisotropic rare earth alloy powder for permanent magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP3860372B2 (en) Rare earth magnet manufacturing method
JPH10312918A (en) Magnet and bonded magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH06112019A (en) Nitride magnetic material
JPH08148317A (en) Production of rare earth magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JPH0521219A (en) Production of rare-earth permanent magnet
JPS61139638A (en) Manufacture of sintered permanent magnet material
JP3209292B2 (en) Magnetic material and its manufacturing method
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JP3300555B2 (en) Rare earth magnet manufacturing method
JP3200201B2 (en) Nitride magnetic powder and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees