JPH08181009A - Permanent magnet and its manufacturing method - Google Patents

Permanent magnet and its manufacturing method

Info

Publication number
JPH08181009A
JPH08181009A JP6335149A JP33514994A JPH08181009A JP H08181009 A JPH08181009 A JP H08181009A JP 6335149 A JP6335149 A JP 6335149A JP 33514994 A JP33514994 A JP 33514994A JP H08181009 A JPH08181009 A JP H08181009A
Authority
JP
Japan
Prior art keywords
permanent magnet
phase
cell
alloy
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6335149A
Other languages
Japanese (ja)
Other versions
JP3303044B2 (en
Inventor
Hideyuki Tanaka
秀之 田中
Takafumi Sato
隆文 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP33514994A priority Critical patent/JP3303044B2/en
Publication of JPH08181009A publication Critical patent/JPH08181009A/en
Application granted granted Critical
Publication of JP3303044B2 publication Critical patent/JP3303044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Abstract

PURPOSE: To achieve a high coercive force and a high energy product in a deposition hardening type magnet. CONSTITUTION: A permanent magnet consists of 23-27% R (R is one type out of rare earth metals containing Y), 3-6 %(6 is not included) Cu, 10-25% Fe, 1.5-4% Zr, and virtually Co for the remainder in terms of weight percentage. The alloy contains an intermetallic compound which mainly consists of rare earth cobalt. The intermetallic compound has a fine structure and Zr-containing sheet-shaped phase exists in parallel to a surface (c) of the crystal of the intermetallic compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,希土類コバルト磁石に
関するものであり,更に詳しくは,R(但し,RはYを
含む希土類金属の内の少なくとも1種)−コバルト金属
間化合物を主体とし,この主体にCu,Fe,又はZr
添加した特定組成のR2 Co17系析出硬化型永久磁石に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth cobalt magnet, and more specifically, it is mainly composed of R (where R is at least one of rare earth metals containing Y) -cobalt intermetallic compound, Cu, Fe, or Zr
The present invention relates to the added specific composition of R 2 Co 17 system precipitation hardening permanent magnet.

【0002】[0002]

【従来の技術】希土類金属とCoとの間に多くの金属間
化合物が存在することは,以前からよく知られていた。
金属化合物の内で,RCo5 を中心とした強磁性化合物
は,結晶磁気異方性が極めて大きく,しかも飽和磁束密
度も高いことから,優れた永久磁石となることが指摘さ
れた。これをきっかけとして,以後多くの研究によって
従来の磁石に比較してはるかに高い特性を持つ希土類コ
バルト磁石が工業化されるに至った。RCo5 系合金の
うち,特にSmCo5 では30KOeに至る高い保磁力
ic )をもち,最大エネルギー積{(BH)m}も
25MGOeに達している。
It has been well known for a long time that many intermetallic compounds exist between rare earth metals and Co.
It has been pointed out that among the metal compounds, the ferromagnetic compound centered on RCo 5 has an extremely large magnetocrystalline anisotropy and a high saturation magnetic flux density, and is therefore an excellent permanent magnet. With this as a trigger, many researches have since led to the industrialization of rare earth cobalt magnets, which have much higher characteristics than conventional magnets. Among the RCo 5 alloys, SmCo 5 has a high coercive force ( i H c ) up to 30 KOe, and the maximum energy product {(BH) m} reaches 25 MGOe.

【0003】これに対して,析出硬化型永久磁石である
2 Co17系合金は,Coに対しRの割合が少なく安価
であり,飽和磁束密度が高く,高いエネルギー積をもっ
ている。それ以後,多くの研究により,Cu,Fe,Z
rを添加した特定組成において,最大エネルギー積で3
0MGOeの特性が得られている。例えば,特公平1−
46575号公報(以下,従来例1と呼ぶ)には,24
〜28wt%の希土類金属R,1〜5wt%の銅Cu,
1〜35wt%の鉄Fe,0.5〜6wt%の(M=N
b,Zr,Ta,Hf,Ti,V),及び22〜73.
5wt%のCoを含有し,微細組織として,セル間距離
500オングストローム以上のセル構造を有する析出硬
化型永久磁石が示されている。また,特公平2−524
13号公報(以下,従来例2と呼ぶ)には,Ce−Co
−Cu−Zr−Fe系,Ce−Sm−Co−Cu−Zr
−Fe系(但し,SmはCeとSmとの合計重量の80
%以下)の永久磁石において,結晶のc面に平行にジル
コニウム含有相が相互の平均感覚が5000オングスト
ローム以下にて存在する永久磁石が示されている。
On the other hand, the R 2 Co 17 type alloy which is a precipitation hardening type permanent magnet has a small ratio of R to Co, is inexpensive, has a high saturation magnetic flux density, and has a high energy product. Since then, many studies have shown that Cu, Fe, Z
The maximum energy product is 3 in the specific composition with r added.
The characteristic of 0MGOe is obtained. For example,
In Japanese Patent No. 46575 (hereinafter referred to as Conventional Example 1), 24
~ 28 wt% rare earth metal R, 1-5 wt% copper Cu,
1 to 35 wt% iron Fe, 0.5 to 6 wt% (M = N
b, Zr, Ta, Hf, Ti, V), and 22-73.
A precipitation hardening permanent magnet containing 5 wt% of Co and having a cell structure with a cell distance of 500 angstroms or more as a microstructure is shown. In addition, Japanese Patent Publication 2-524
No. 13 (hereinafter referred to as Conventional Example 2) describes Ce-Co.
-Cu-Zr-Fe system, Ce-Sm-Co-Cu-Zr
-Fe system (however, Sm is 80% of the total weight of Ce and Sm)
% Or less), the zirconium-containing phases are parallel to the c-plane of the crystal, and the mutual average sensation is less than 5000 angstroms.

【0004】[0004]

【発明が解決しようとする課題】ところで,R2 CO17
系合金は,時効によってRCo5 相とR2 Co17相とが
2相分離して,磁気硬化して好ましい磁気特性を示し,
また,R2 Co17系合金は,微細組織としてセル構造を
有することが知られている。セル構造は,セル間の境界
が明確に区別され,電子線回折パターンの解析結果よ
り,セル内部は菱面体構造の2/17相,又セル境界は
六方晶構造の1/5相をもつとされている。
By the way, R 2 CO 17
The RCo 5 phase and the R 2 Co 17 phase are separated into two phases by aging, and the alloys show a favorable magnetic characteristic by magnetic hardening.
Further, it is known that the R 2 Co 17 type alloy has a cell structure as a fine structure. In the cell structure, the boundaries between the cells are clearly distinguished, and from the analysis result of the electron beam diffraction pattern, it is found that the inside of the cell has a 2/17 phase of a rhombohedral structure and the cell boundary has a 1/5 phase of a hexagonal structure. Has been done.

【0005】従来例1において,R2 Co17系合金の保
磁力は,このセル構造のサイズに起因することがわかっ
ている。R2 Co17に,Cu,FeおよびZrを添加し
た系では,時効時間を長くするとともにセルサイズは粗
大化し,セル径サイズが約700オングストロームにな
ったとき保磁力が最大となり,それ以上時効時間を長く
するとセル径の増大に伴い保磁力が低下するとされてい
る。この限界の値は,約6000オングストローム前後
であることが示されている。しかしながら,従来例1に
おいて,RCo5 相とR2 Co17相以外の相構造につい
ては全くふれていない。
In Conventional Example 1, it has been known that the coercive force of the R 2 Co 17 alloy is due to the size of this cell structure. In the system in which Cu, Fe and Zr were added to R 2 Co 17 , the aging time was lengthened and the cell size was coarsened, and the coercive force became maximum when the cell diameter size became about 700 Å, and the aging time was further increased. It is said that the coercive force decreases as the cell diameter increases as the cell length increases. The value of this limit has been shown to be around 6000 Angstroms. However, in Conventional Example 1, no phase structure other than the RCo 5 phase and the R 2 Co 17 phase was mentioned.

【0006】また,従来例2のCeを必須成分として含
むR2 Co17系合金においては,ジルコニウム含有相に
ついて述べられ,特性が劣化するc面に平行のこのジル
コニウム含有相の相互の平均間隔の上限値は,5000
オングストロームとされている。しかし,Ceを含む組
成範囲内のジルコニウム含有相の相構造ついてのみ述べ
ているだけであって,Ceを含まないものやそのほかの
相構造の詳細については,全く示されていない。
Further, in the R 2 Co 17 type alloy containing Ce as an essential component of Conventional Example 2, the zirconium-containing phase is described, and the average spacing between the zirconium-containing phases parallel to the c-plane where the characteristics deteriorate is described. The upper limit is 5000
It is said to be Angstrom. However, only the phase structure of the zirconium-containing phase within the composition range containing Ce is described, and the details of the phase structure not containing Ce and other phase structures are not shown at all.

【0007】そこで,本発明の技術的課題は,希土類と
してSmを主成分とする希土類コバルト系析出硬化型磁
石において,微細構造を考察し,高保磁力,及び高エネ
ルギー積を可能ならしめる永久磁石及びその製造方法を
提供することにある。
Therefore, the technical problem of the present invention is to consider a fine structure in a rare earth cobalt-based precipitation hardening type magnet containing Sm as a rare earth as a main component, and to provide a permanent magnet capable of achieving a high coercive force and a high energy product. It is to provide the manufacturing method.

【0008】[0008]

【課題を解決するための手段】本発明は,重量百分率
で,23〜27%のR(但し,RはYを含む希土類金属
の内の少なくとも1種)と3〜6%(6は含まず)のC
uと10〜25%のFeと1.5〜4%のZrと残部が
実質的にCoとから成る組成を有する合金であって,前
記合金は希土類コバルトを主体とする金属間化合物を含
有し,微細構造としてセル構造を有し,前記セル構造に
おいてセル内部がR2 Co17の主成分相をもち,且つセ
ル境界部がRCo5 を主成分とする相と金属間化合物の
結晶のc面に平行にZr含有板状相との2つの相によっ
て囲まれた微細組織をもつことを特徴とする。
The present invention provides, by weight percentage, 23 to 27% of R (where R is at least one of rare earth metals containing Y) and 3 to 6% (6 is not included). ) C
An alloy having a composition of u, 10 to 25% Fe, 1.5 to 4% Zr, and the balance substantially Co, the alloy containing an intermetallic compound mainly containing rare earth cobalt. , A cell structure as a fine structure, in which the inside of the cell has a main component phase of R 2 Co 17 , and the cell boundary portion has a phase containing RCo 5 as a main component and the c-plane of the crystal of the intermetallic compound Is characterized by having a microstructure surrounded by two phases in parallel with the Zr-containing plate-like phase.

【0009】ここで,本発明の永久磁石の組成を限定し
た理由は,次の通りである。Yを含む希土類金属の内の
少なくとも1種からなるRが27wt%を越えると飽和
磁束密度(Br)が低下する。又Rが23wt%未満で
は一定の保磁力( ic )は得られるが,減磁曲線の角
型性が悪く磁気特性が劣化するためである。また,Cu
量が3wt%未満では ic が低く,6wt%以上にな
るとキュリー点とBrが低下するからである。また,F
e量に関しては,10wt%未満ではBrが低下し,3
5wt%を越えると ic が低下するからである。更
に,Zr量が1.5〜4wt%の範囲外では ic およ
びエネルギー積{(BH)m}が低下するからである。
The reason for limiting the composition of the permanent magnet of the present invention is as follows. When R, which is at least one of rare earth metals including Y, exceeds 27 wt%, the saturation magnetic flux density (Br) decreases. Further, when R is less than 23 wt%, a constant coercive force ( i H c ) can be obtained, but the squareness of the demagnetization curve is poor and the magnetic properties are deteriorated. Also, Cu
This is because if the amount is less than 3 wt%, i H c is low, and if it is 6 wt% or more, the Curie point and Br decrease. Also, F
Regarding the amount of e, when the content is less than 10 wt%, Br decreases, and 3
Because i H c decreases exceeds 5 wt%. Furthermore, i H c and the energy product {(BH) m} decrease when the Zr amount is outside the range of 1.5 to 4 wt%.

【0010】この様な組成を有する本発明の永久磁石で
は,その微細構造を透過型電子顕微鏡で観察されるよう
なセル構造を有し,このセル構造においてセル内部がR
2 Co17の主成分相をもち,且つセル境界部がRCo5
を主成分とする相とZr含有板状相の2つの相によって
囲まれた微細組織をもち,相隣りあうセルのセル中心間
の距離は500オングストローム未満である。望ましく
は,このセル中心間の距離は200〜400オングスト
ロームの範囲内が良い。
The permanent magnet of the present invention having such a composition has a cell structure whose fine structure can be observed with a transmission electron microscope. In this cell structure, the inside of the cell is R-shaped.
It has the main component phase of 2 Co 17 and the cell boundary is RCo 5
The cell has a microstructure surrounded by two phases, a phase containing as a main component and a Zr-containing plate-like phase, and the distance between the cell centers of adjacent cells is less than 500 angstroms. Desirably, the distance between the cell centers is in the range of 200 to 400 angstroms.

【0011】本発明において,以上のようなセル構造を
有するか否かは,走査型電子顕微鏡あるいは透過型電子
顕微鏡により,容易に観察でき検証することができる。
In the present invention, whether or not it has the above cell structure can be easily observed and verified by a scanning electron microscope or a transmission electron microscope.

【0012】この様な構成本発明の永久磁石は,以下の
様にして製造される。前記に示した組成となるように,
各原料を配合し,1×10-2Torr以下の真空中にお
いて,高周波溶解炉により溶解し母合金インゴットを得
る。次に,得られた母合金インゴットを粗粉砕し,更に
ジェットミル等を用い不活性雰囲気中で微粉砕し平均粒
径が1〜5μmの粉末とする。この粉末を7〜22KO
eの磁場中で磁場に垂直方向,又は平行方向に0.5〜
2.0トン/cm2 の加圧力によるプレス成型する。そ
の後,この成形体を1×10-2Torr以下の真空中,
又は不活性雰囲気中或いはこれらの組み合わせの雰囲気
において,1150〜1250℃の温度で焼結し,上記
雰囲気中にて焼結温度よりも10〜50℃低い温度で溶
体化処理を行う。溶体化処理後,60℃/分以上の冷却
速度で急冷する。急冷後,1×10-2Torr以下の真
空中,又は不活性雰囲気中で700〜870℃の温度で
1時間以上加熱保持して時効処理を行う。
Such a structure The permanent magnet of the present invention is manufactured as follows. So that it has the composition shown above,
Each raw material is blended and melted in a high-frequency melting furnace in a vacuum of 1 × 10 -2 Torr or less to obtain a master alloy ingot. Next, the mother alloy ingot thus obtained is roughly crushed and then finely crushed in an inert atmosphere using a jet mill or the like to obtain a powder having an average particle size of 1 to 5 μm. This powder is 7-22KO
0.5 ~ in the direction perpendicular to or parallel to the magnetic field in the magnetic field of e
Press molding is performed with a pressing force of 2.0 ton / cm 2 . Then, the molded body was placed in a vacuum of 1 × 10 -2 Torr or less,
Alternatively, sintering is performed at a temperature of 1150 to 1250 ° C. in an inert atmosphere or a combination thereof, and solution treatment is performed at a temperature 10 to 50 ° C. lower than the sintering temperature in the atmosphere. After the solution treatment, it is rapidly cooled at a cooling rate of 60 ° C./min or more. After the rapid cooling, the aging treatment is performed by heating and holding at a temperature of 700 to 870 ° C. for 1 hour or more in a vacuum of 1 × 10 −2 Torr or less or in an inert atmosphere.

【0013】なお,本発明において,これら溶解,微粉
砕,焼結,及び溶体化処理はいずれも真空中あるいは不
活性雰囲気中で行うことより,合金に含有される炭素量
を700ppm以下,酸素量を3000ppm以下に極
力抑えることができ,磁気特性に優れた永久磁石を得る
ことが可能となる。
In the present invention, all of the melting, pulverizing, sintering and solution treatment are performed in a vacuum or in an inert atmosphere so that the carbon content in the alloy is 700 ppm or less and the oxygen content is Can be suppressed to 3000 ppm or less as much as possible, and a permanent magnet having excellent magnetic characteristics can be obtained.

【0014】このような製造工程により磁気硬化がなさ
れ,本発明の永久磁石が得られることになる。
By the manufacturing process as described above, the magnetic hardening is performed and the permanent magnet of the present invention is obtained.

【0015】ついでながら,本発明の永久磁石は,時
計,電動モーター,計器,通信機,コンピューター端末
機,スピーカー,ビデオディスク,及びその他各種部品
に広く利用することができる。
Incidentally, the permanent magnet of the present invention can be widely used in watches, electric motors, measuring instruments, communication devices, computer terminals, speakers, video disks, and various other parts.

【0016】[0016]

【作用】本発明においては,析出硬化型磁石の微細構造
にみられるセル構造の他に,希土類コバルト金属間化合
物の結晶のc面に平行にZr含有板状相を析出させて,
セル境界での磁壁のピンニイング効果のみならず板状相
による磁壁のピンニイング効果を持たせ,高保磁力,及
び高エネルギー積を得る。
In the present invention, in addition to the cell structure found in the fine structure of the precipitation hardening magnet, a Zr-containing plate-like phase is precipitated parallel to the c-plane of the crystal of the rare earth cobalt intermetallic compound,
Not only the domain wall pinning effect at the cell boundary but also the domain wall pinning effect due to the plate-like phase is provided to obtain high coercive force and high energy product.

【0017】[0017]

【実施例】以下,本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0018】(実施例1)まず,下記表1に示される6
種の組成の合金となるように各原料を配合し,1×10
-2Torr以下の真空中において,高周波溶解炉により
溶解し6種の母合金インゴットを得た,これら母合金イ
ンゴットを粗粉砕し,ジェットミルを用い不活性雰囲気
中で微粉砕し平均粒径4μmの粉末を得た。この粉末を
15KOeの磁場中で1.0トン/cm2 の加圧力によ
るプレス成型し成型体を得た。このようにして得られた
成型体を,1×10-2Torr以下の真空中,及び不活
性雰囲気中において,1200〜1250℃の温度で焼
結し,次いで1180〜1230℃にて溶体化処理を施
し,100℃/分の冷却速度で急冷を行った。急冷後,
不活性雰囲気中で800℃の温度で300分加熱保持し
て等温時効処理を行った。
Example 1 First, 6 shown in Table 1 below.
Each raw material is blended so as to form an alloy with different composition,
In a vacuum of -2 Torr or less, 6 types of master alloy ingots were obtained by melting in a high frequency melting furnace. These master alloy ingots were roughly crushed and finely crushed in an inert atmosphere with a jet mill to give an average particle size of 4 μm. Of powder was obtained. This powder was press-molded in a magnetic field of 15 KOe under a pressure of 1.0 ton / cm 2 to obtain a molded body. The molded body thus obtained is sintered at a temperature of 1200 to 1250 ° C. in a vacuum of 1 × 10 −2 Torr or less and in an inert atmosphere, and then solution heat treated at 1180 to 1230 ° C. Then, it was rapidly cooled at a cooling rate of 100 ° C./min. After quenching,
Isothermal aging treatment was performed by heating and holding at 800 ° C. for 300 minutes in an inert atmosphere.

【0019】この様にして,磁気硬化した6種の永久磁
石につき,透過電子顕微鏡により観察したところ,微細
構造としてセル構造を有し,セル内部がR2 CO17相を
もち,セル境界部がRCo5 相と,Zr含有板状相との
2つの相によって囲まれた微細組織を有することが確認
された。また,各永久磁石材料につき,磁気特性を測定
したところ,下記表1の結果を得た。
When the six types of permanent magnets magnetically hardened in this way were observed by a transmission electron microscope, they had a cell structure as a fine structure, the inside of the cell had an R 2 CO 17 phase, and the cell boundary portion was It was confirmed to have a fine structure surrounded by two phases, an RCo 5 phase and a Zr-containing plate-like phase. In addition, when the magnetic characteristics of each permanent magnet material were measured, the results shown in Table 1 below were obtained.

【0020】[0020]

【表1】 上記表1から明らかなように,本発明の実施例1に係る
永久磁石は,実用に供するBr, ic ,(BH)mを
もつことがわかる。
[Table 1] As is apparent from Table 1, the permanent magnet according to the first embodiment of the present invention, Br for practical use, i H c, it can be seen that with the (BH) m.

【0021】(実施例2)Sm25.9wt%,Cu
4.5wt%,Fe15.0wt%,Zr3.1wt%
および残部Coからなる組成の合金につき,実施例1と
同様にして溶解,粉砕,成型,焼結および溶体化処理を
順次施した。
(Example 2) Sm 25.9 wt%, Cu
4.5wt%, Fe15.0wt%, Zr3.1wt%
The alloy having the composition consisting of and the balance Co was subjected to melting, crushing, molding, sintering and solution treatment in the same manner as in Example 1.

【0022】次いで不活性雰囲気中にて,等温時効温度
を800℃として,下記表2に示される5種類の等温時
効時間,最短6分,最長900分の範囲内で時効処理を
施した。その結果を下記表2に示す。
Next, the aging treatment was carried out in an inert atmosphere at an isothermal aging temperature of 800 ° C. within the range of 5 types of isothermal aging times shown in Table 2 below, a minimum of 6 minutes and a maximum of 900 minutes. The results are shown in Table 2 below.

【0023】[0023]

【表2】 次に,エネルギー分散型X線分析装置を装備した透過型
電子顕微鏡を用いて,保磁力の異なる供試材の微細組織
を観察し,Zr含有板状相を同定した。微細構造として
セル構造を有し,セル内部がR2 Co17相をもち,セル
境界部がRCo5 相と,Zr含有板状相との2つの相に
よって囲まれた微細組織を有することが確認された。
[Table 2] Next, using a transmission electron microscope equipped with an energy dispersive X-ray analyzer, the microstructures of the test materials having different coercive forces were observed to identify the Zr-containing plate phase. It was confirmed that it has a cell structure as a fine structure, the inside of the cell has an R 2 Co 17 phase, and the cell boundary has a fine structure surrounded by two phases, an RCo 5 phase and a Zr-containing plate-like phase. Was done.

【0024】本発明による供試材9,11の永久磁石の
微細組織写真(結晶のa面)を各々図1,図2に示す。
その時の格子像を現すナノ組織写真を各々図3,図4に
示す。写真より相隣りあうセルのセル中心間の距離は1
00〜400オングストロームである。等温時効時間の
増加とともに保磁力 ic も大きくなる関係があること
が分かる。Zr含有板状相がc軸方向に垂直に,即ちc
面と平行に多数存在している。Zr含有板状相とセル内
部のR2 Co17相のエネルギー分散型X線分析を行った
結果を各々図5,及び図6に示す。
Photographs (a-plane of crystal) of the microstructures of the permanent magnets of the test materials 9 and 11 according to the present invention are shown in FIGS. 1 and 2, respectively.
Nanostructure photographs showing the lattice image at that time are shown in FIGS. 3 and 4, respectively. From the picture, the distance between the cell centers of adjacent cells is 1
It is from 00 to 400 angstroms. It can be seen that there is a relationship in which the coercive force i H c also increases as the isothermal aging time increases. The Zr-containing plate-like phase is perpendicular to the c-axis direction, that is, c
There are many parallel to the surface. The results of energy dispersive X-ray analysis of the Zr-containing plate-like phase and the R 2 Co 17 phase inside the cell are shown in FIGS. 5 and 6, respectively.

【0025】図5に示すように,Zr含有板状相が存在
する部分からは,Zrが多く検出されるが,図6に示す
セル内部のR2 Co17相からは,ほとんどZrは検出さ
れない。
As shown in FIG. 5, a large amount of Zr is detected in the portion where the Zr-containing plate-like phase is present, but almost no Zr is detected in the R 2 Co 17 phase inside the cell shown in FIG. .

【0026】(実施例3)Sm25.7wt%,Cu
4.3wt%,Fe14.9wt%,Zr3.0wt%
および残部Coからなる組成の合金につき,実施例1と
同様にして溶解,粉砕,成型,焼結,溶体化処理,およ
び時効処理を施した。又,各永久磁石材料につき,ガス
含有量の測定を行った。その結果を磁気特性と合わせて
下記表3に示す。
(Example 3) Sm 25.7 wt%, Cu
4.3wt%, Fe14.9wt%, Zr3.0wt%
The alloy having a composition of Co and the balance Co was melted, pulverized, molded, sintered, solution-treated, and aged in the same manner as in Example 1. Also, the gas content of each permanent magnet material was measured. The results are shown in Table 3 below together with the magnetic properties.

【0027】[0027]

【表3】 上記表3の結果のように本発明の実施例3に係る永久磁
石は,炭素量が700ppm以下,酸素量3000pp
m以下のとき実用に供するBr, ic ,(BH)mを
示し,きわめて高い角型比を示すことがわかる。
[Table 3] As shown in the results of Table 3 above, the permanent magnet according to Example 3 of the present invention has a carbon content of 700 ppm or less and an oxygen content of 3000 pp.
m when: Br for practical use, i H c, show the (BH) m, it can be seen that a very high squareness ratio.

【0028】(実施例4)Sm25.8wt%,Cu
4.5wt%,Fe15.0wt%,Zr3.0wt%
および残部Coからなる組成の合金につき,実施例1と
同様にして溶解,粉砕,成型,焼結および溶体化処理を
順次施した。次いで溶体化処理後の急冷を下記表4に示
される5種類の冷却速度,30℃〜300℃/分の範囲
内で行った。急冷後,不活性雰囲気中で800℃の温度
で300分加熱保持して等温時効処理を行った。その結
果を下記表4に示す。
Example 4 Sm 25.8 wt%, Cu
4.5wt%, Fe15.0wt%, Zr3.0wt%
The alloy having the composition consisting of and the balance Co was subjected to melting, crushing, molding, sintering and solution treatment in the same manner as in Example 1. Then, rapid cooling after the solution treatment was performed at five types of cooling rates shown in Table 4 below at a temperature of 30 ° C to 300 ° C / min. After quenching, isothermal aging treatment was performed by heating and holding at 800 ° C. for 300 minutes in an inert atmosphere. The results are shown in Table 4 below.

【0029】[0029]

【表4】 上記表4の結果のように本発明の実施例4に係る永久磁
石は,溶体化後の急冷速度を60℃/分以上のとき実用
に供するBr, ic ,(BH)mを示し,きわめて高
い角型比を示すことがわかる。
[Table 4] As shown in the results of Table 4 above, the permanent magnet according to Example 4 of the present invention shows Br, i H c , (BH) m that are practically used when the quenching rate after solution heat treatment is 60 ° C./min or more, It can be seen that it exhibits an extremely high squareness ratio.

【0030】[0030]

【発明の効果】以上述べた様に,本発明においては,溶
解,微粉砕,焼結,溶体化処理後急冷し,等温時効を施
すことにより,微細構造としてセル構造を有し,セル内
部がR2 Co17の主成分相をもち,セル境界部がRCo
5 を主成分とする相と,Zr含有板状相との2つの相に
よって囲まれた微細構造をもち,高保磁力,及び高エネ
ルギー積等の磁気特性に優れた永久磁石とその製造方法
の提供が可能となった。
As described above, according to the present invention, by melting, finely pulverizing, sintering, solutionizing, quenching and isothermal aging, a cell structure is formed as a fine structure, and the inside of the cell is It has the main component phase of R 2 Co 17 and the cell boundary is RCo
Provided are a permanent magnet having a fine structure surrounded by two phases, a phase containing 5 as a main component and a Zr-containing plate-like phase, and having excellent magnetic properties such as high coercive force and high energy product, and a manufacturing method thereof. Became possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例2に係る微細組織をもつ永久磁
石の金属組織を示す透過型電子顕微鏡写真である。
FIG. 1 is a transmission electron micrograph showing a metal structure of a permanent magnet having a fine structure according to Example 2 of the present invention.

【図2】本発明の実施例2に係る微細組織をもつ永久磁
石の金属組織を示す透過型電子顕微鏡写真である。
FIG. 2 is a transmission electron micrograph showing a metal structure of a permanent magnet having a fine structure according to Example 2 of the present invention.

【図3】図1の永久磁石のナノ組織を説明するための金
属組織を示す透過型電子顕微鏡写真である。
FIG. 3 is a transmission electron micrograph showing a metal structure for explaining a nanostructure of the permanent magnet of FIG.

【図4】図2の永久磁石のナノ組織を説明するための金
属組織を示す透過型電子顕微鏡写真である。
4 is a transmission electron micrograph showing a metal structure for explaining a nanostructure of the permanent magnet of FIG.

【図5】図1の永久磁石のそれぞれZr含有板状相とセ
ル内部のR2 Co17相のエネルギー分散分析図である。
5 is an energy dispersion analysis diagram of the Zr-containing plate-like phase and the R 2 Co 17 phase inside the cell of the permanent magnet of FIG. 1, respectively.

【図6】図2の永久磁石のそれぞれZr含有板状相とセ
ル内部のR2 Co17相のエネルギー分散分析図である。
FIG. 6 is an energy dispersion analysis diagram of the Zr-containing plate-like phase and the R 2 Co 17 phase inside the cell of the permanent magnet of FIG. 2 respectively.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年2月3日[Submission date] February 3, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Name of item to be corrected] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0001】[0001]

【産業上の利用分野】本発明は,希土類コバルト磁石に
関するものであり,更に詳しくは,R(但し,RはYを
含む希土類金属の内の少なくとも1種)−コバルト金属
間化合物を主体とし,この主体にCu,Fe,及びZr
添加した特定組成のRCo17系析出硬化型永久磁石
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth cobalt magnet, and more specifically, it is mainly composed of R (where R is at least one of rare earth metals containing Y) -cobalt intermetallic compound, Mainly Cu, Fe, and Zr
The present invention relates to the added specific composition of R 2 Co 17 based precipitation hardening permanent magnet.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】これに対して,析出硬化型永久磁石である
Co17系合金は,Coに対しRの割合が少なく安
価であり,飽和磁束密度が高く,高いエネルギー積をも
っている。それ以後,多くの研究により,Cu,Fe,
Zrを添加した特定組成において,最大エネルギー積で
30MGOeの特性が得られている。例えば,特公平1
−46575号公報(以下,従来例1と呼ぶ)には,2
4〜28wt%の希土類金属R,1〜5wt%の銅C
u,1〜35wt%の鉄Fe,0.5〜6wt%の(M
=Nb,Zr,Ta,Hf,Ti,V),及び22〜7
3.5wt%のCoを含有し,微細組織として,セル間
距離500オングストローム以上のセル構造を有する析
出硬化型永久磁石が示されている。また,特公平2−5
2413号公報(以下,従来例2と呼ぶ)には,Ce−
Co−Cu−Zr−Fe系,Ce−Sm−Co−Cu−
Zr−Fe系(但し,SmはCeとSmとの合計重量の
80%以下)の永久磁石において,結晶のc面に平行に
ジルコニウム含有相が相互の平均間隔が5000オング
ストローム以下にて存在する永久磁石が示されている。
On the other hand, the R 2 Co 17 type alloy which is a precipitation hardening type permanent magnet has a small ratio of R to Co, is inexpensive, has a high saturation magnetic flux density, and has a high energy product. Since then, many studies have shown that Cu, Fe,
In the specific composition to which Zr is added, the characteristic of 30 MGOe is obtained at the maximum energy product. For example, Japanese Examination 1
-46575 (hereinafter, referred to as Conventional Example 1), 2
4 to 28 wt% rare earth metal R, 1 to 5 wt% copper C
u, 1 to 35 wt% iron Fe, 0.5 to 6 wt% (M
= Nb, Zr, Ta, Hf, Ti, V), and 22 to 7
A precipitation hardening permanent magnet containing 3.5 wt% Co and having a cell structure with a cell distance of 500 angstroms or more as a microstructure is shown. In addition, Japanese Patent Fair 2-5
No. 2413 (hereinafter referred to as Conventional Example 2) describes Ce-
Co-Cu-Zr-Fe system, Ce-Sm-Co-Cu-
In a Zr-Fe system (however, Sm is 80% or less of the total weight of Ce and Sm) permanent magnets whose zirconium-containing phases are parallel to the c-plane of the crystal and whose average interval is 5000 angstroms or less. A magnet is shown.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】そこで,本発明の技術的課題は,希土類と
してSmを主成分とする希土類コバルト系析出硬化型磁
石において,微細構造を考察し,高保磁力,及び高エネ
ルギー積を可能ならしめる永久磁石その製造方法を提
供することにある。
[0007] Therefore, the technical problem of the present invention is a rare earth cobalt-based precipitation hardenable magnet composed mainly of Sm as the rare earth, consider the microstructure, a permanent magnet makes it possible high coercivity, and high energy product It is to provide the manufacturing method.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】ここで,本発明の永久磁石の組成を限定し
た理由は,次の通りである。Yを含む希土類金属の内の
少なくとも1種からなるRが27wt%を越えると飽和
磁束密度(Br)が低下する。又Rが23wt%未満で
は一定の保磁力()は得られるが,減磁曲線の角
型性が悪く磁気特性が劣化するためである。また,Cu
量が3wt%未満ではが低く,6wt%以上にな
るとキュリー点とBrが低下するからである。また,F
e量に関しては,10wt%未満ではBrが低下し,
wt%を越えるとが低下するからである。更
に,Zr量が1.5〜4wt%の範囲外ではおよ
びエネルギー積{(BH)m}が低下するからである。
The reason for limiting the composition of the permanent magnet of the present invention is as follows. When R, which is at least one of rare earth metals including Y, exceeds 27 wt%, the saturation magnetic flux density (Br) decreases. Further, if R is less than 23 wt%, a constant coercive force ( i H c ) can be obtained, but the squareness of the demagnetization curve is poor and the magnetic properties are deteriorated. Also, Cu
This is because if the amount is less than 3 wt%, i H c is low, and if it is 6 wt% or more, the Curie point and Br are lowered. Also, F
With regard to e amount, Br decreases is less than 10 wt%, 2
5 exceeds wt% when i H c is lowered. Furthermore, when the Zr amount is outside the range of 1.5 to 4 wt%, i H c and the energy product {(BH) m} decrease.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】この様な構成本発明の永久磁石は,以下
の様にして製造される。前記に示した組成となるよう
に,各原料を配合し,1×10−2Torr以下の真空
中において,高周波溶解炉により溶解し母合金インゴッ
トを得る。次に,得られた母合金インゴットを粗粉砕
し,更にジェットミル等を用い不活性雰囲気中で微粉砕
し平均粒径が1〜5μmの粉末とする。この粉末を7〜
22KOeの磁場中で磁場に垂直方向,又は平行方向に
0.5〜2.0トン/cmの加圧力によるプレス成
する。その後,この成形体を1×10−2Torr以下
の真空中,又は不活性雰囲気中或いはこれらの組み合わ
せの雰囲気において,1150〜1250℃の温度で焼
結し,上記雰囲気中にて焼結温度よりも10〜50℃低
い温度で溶体化処理を行う。溶体化処理後,60℃/分
以上の冷却速度で急冷する。急冷後,1×10−2To
rr以下の真空中,又は不活性雰囲気中で700〜87
0℃の温度で1時間以上加熱保持して時効処理を行う。
The permanent magnet of the present invention having such a structure is manufactured as follows. The respective raw materials are blended so as to have the composition shown above, and melted in a high frequency melting furnace in a vacuum of 1 × 10 −2 Torr or less to obtain a master alloy ingot. Next, the obtained master alloy ingot is roughly pulverized and further finely pulverized in an inert atmosphere using a jet mill or the like to obtain a powder having an average particle size of 1 to 5 μm. 7 to this powder
Vertical to the magnetic field in a magnetic field of 22KOe, or press formed shape <br/> by pressure of 0.5 to 2.0 t / cm 2 in a parallel direction. Then, the compact is sintered at a temperature of 1150 to 1250 ° C. in a vacuum of 1 × 10 −2 Torr or less, in an inert atmosphere, or in an atmosphere of a combination thereof, and the sintering temperature in the atmosphere is higher than the sintering temperature. Also, the solution treatment is performed at a temperature lower by 10 to 50 ° C. After the solution treatment, it is rapidly cooled at a cooling rate of 60 ° C./min or more. After quenching, 1 × 10 −2 To
700 to 87 in a vacuum below rr or in an inert atmosphere
Aging treatment is performed by heating and holding at a temperature of 0 ° C. for 1 hour or more.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】(実施例1)まず,下記表1に示されるよ
うに,Sm,Ce,Cu,Fe,Zr,及びCoの6種
の組成の合金となるように各原料を配合し,1×10
−2Torr以下の真空中において,高周波溶解炉によ
り溶解し6種の母合金インゴットを得た,これら母合金
インゴットを粗粉砕し,ジェットミルを用い不活性雰囲
気中で微粉砕し平均粒径4μmの粉末を得た。この粉末
を15KOeの磁場中で1.0トン/cmの加圧力に
よるプレス成成形体を得た。このようにして得られ
成形体を,1×10−2Torr以下の真空中,及び
不活性雰囲気中において,1200〜1250℃の温度
で焼結し,次いで1180〜1230℃にて溶体化処理
を施し,100℃/分の冷却速度で急冷を行った。急冷
後,不活性雰囲気中で800℃の温度で300分加熱保
持して等温時効処理を行った。
(Example 1) First, as shown in Table 1 below, each raw material was blended so as to form an alloy of six kinds of compositions of Sm, Ce, Cu, Fe, Zr, and Co, and 1 x 10
-In a vacuum below 2 Torr, 6 kinds of master alloy ingots were obtained by melting in a high frequency melting furnace. These master alloy ingots were coarsely crushed and finely crushed in an inert atmosphere with a jet mill to obtain an average particle size of 4 μm. Of powder was obtained. The press forming shape by the pressurizing force of the powder in a magnetic field of 15 kOe 1.0 tons / cm 2 to obtain a molded body. The compact thus obtained is sintered at a temperature of 1200 to 1250 ° C. in a vacuum of 1 × 10 −2 Torr or less and in an inert atmosphere, and then solution heat treated at 1180 to 1230 ° C. Then, it was rapidly cooled at a cooling rate of 100 ° C./min. After quenching, isothermal aging treatment was performed by heating and holding at 800 ° C. for 300 minutes in an inert atmosphere.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】[0020]

【表1】 上記表1から明らかなように,本発明の実施例1に係る
永久磁石は,実用に供するBr,,(BH)mを
もつことがわかる。
[Table 1] As is apparent from Table 1, the permanent magnet according to the first embodiment of the present invention, Br for practical use, i H c, it can be seen that with the (BH) m.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】(実施例2)Sm25.9wt%,Cu
4.5wt%,Fe15.0wt%,Zr3.1wt%
および残部Coからなる組成の合金につき,実施例1と
同様にして溶解,粉砕,成,焼結および溶体化処理を
順次施した。
(Example 2) Sm 25.9 wt%, Cu
4.5wt%, Fe15.0wt%, Zr3.1wt%
And per alloys having compositions the balance Co, dissolved in the same manner as in Example 1, grinding, forming shapes and successively subjected to sintering and solution treatment.

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】(実施例4)Sm25.8wt%,Cu
4.5wt%,Fe15.0wt%,Zr3.0wt%
および残部Coからなる組成の合金につき,実施例1と
同様にして溶解,粉砕,成,焼結および溶体化処理を
順次施した。次いで溶体化処理後の急冷を下記表4に示
される5種類の冷却速度,30℃〜300℃/分の範囲
内で行った。急冷後,不活性雰囲気中で800℃の温度
で300分加熱保持して等温時効処理を行った。その結
果を下記表4に示す。
Example 4 Sm 25.8 wt%, Cu
4.5wt%, Fe15.0wt%, Zr3.0wt%
And per alloys having compositions the balance Co, dissolved in the same manner as in Example 1, grinding, forming shapes and successively subjected to sintering and solution treatment. Then, rapid cooling after the solution treatment was performed at five types of cooling rates shown in Table 4 below at a temperature of 30 ° C to 300 ° C / min. After quenching, isothermal aging treatment was performed by heating and holding at 800 ° C. for 300 minutes in an inert atmosphere. The results are shown in Table 4 below.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量百分率で,23〜27%のR(Rは
Yを含む希土類金属の内の少なくとも1種)と3〜6%
(但し,6は含まず)のCuと10〜25%のFeと
1.5〜4%のZrと残部が実質的にCoとから成る合
金であって,前記合金は希土類コバルトを主体とする金
属間化合物を含有するとともに微細構造をもち,前記微
細構造において前記金属間化合物の結晶のc面に平行に
Zr含有板状相が存在することを特徴とする永久磁石。
1. A weight percentage of R of 23 to 27% (R is at least one of rare earth metals including Y) and 3 to 6%.
An alloy consisting of Cu (not including 6), 10 to 25% Fe, 1.5 to 4% Zr, and the balance being substantially Co, said alloy being mainly composed of rare earth cobalt. A permanent magnet containing an intermetallic compound and having a fine structure, wherein a Zr-containing plate-like phase is present in the fine structure parallel to the c-plane of the crystal of the intermetallic compound.
【請求項2】 請求項1記載の永久磁石において,前記
微細構造としてセル構造を有し,前記セル構造におい
て,セル内部はR2 Co17の主成分相をもち且つセル境
界部はRCo5 を主成分とする相と前記板状相との2つ
の相によって囲まれた微細組織を備えていることを特徴
とする永久磁石。
2. The permanent magnet according to claim 1, wherein the fine structure has a cell structure, and in the cell structure, the inside of the cell has a main component phase of R 2 Co 17 and the cell boundary portion includes RCo 5 . A permanent magnet having a fine structure surrounded by two phases, a phase as a main component and the plate-like phase.
【請求項3】 請求項1記載の永久磁石において,前記
合金中の含有炭素量が多くとも700ppmで,且つ含
有酸素量が多くとも3000ppmであることを特徴と
する永久磁石。
3. The permanent magnet according to claim 1, wherein the carbon content in the alloy is at most 700 ppm and the oxygen content is at most 3000 ppm.
【請求項4】 重量百分率で,23〜27%のR(Rは
Yを含む希土類金属の内の少なくとも1種)と3〜6%
(但し,6は含まず)のCuと10〜25%のFeと,
1.5〜4%のZrと残部が実質的にCoとから成る合
金組成を有する永久磁石を製造する方法であって,前記
合金組成となるよう原料を配合し,高周波溶解炉により
多くとも1×10-2Torrの真空中において溶解して
母合金インゴットを得る溶解工程と,得られた母合金イ
ンゴットを粗粉砕して粗粉砕粉末を得る粗粉砕工程と,
前記粗粉砕粉末を不活性雰囲気中で微粉砕して平均粒径
が1〜5μmの微粉砕粉末を得る微粉砕工程と,前記微
粉砕粉末を7〜22KOeの磁場中で磁場に垂直方向又
は平行方向に0.5〜2.0トン/cm2 の加圧力によ
るプレスして成形体を得るプレス工程と,前記成形体
を,多くとも1×10-2Torrの真空中,不活性雰囲
気中及びこれらの組み合わせの雰囲気の内のいずれかの
雰囲気中において,1150〜1250℃の焼結温度で
焼結して焼結体を得る焼結工程と,前記雰囲気中にて前
記焼結温度よりも10〜50℃低い温度で熱処理する溶
体化工程と,前記溶体化工程の後,少なくとも60℃/
分の冷却速度で急冷する急冷工程と,前記急冷工程の
後,多くとも1×10-2Torrの真空中又は不活性雰
囲気中で,700〜870℃の温度で少なくとも1時間
加熱保持して時効処理する時効処理工程とを含むことを
特徴とする永久磁石の製造方法。
4. By weight percentage, 23 to 27% R (R is at least one of rare earth metals including Y) and 3 to 6%.
(However, 6 is not included) Cu and 10 to 25% Fe,
A method for producing a permanent magnet having an alloy composition of 1.5 to 4% Zr and the balance substantially Co, in which raw materials are blended so as to have the alloy composition, and at most 1 a dissolution step of dissolving at × 10 -2 Torr in a vacuum to obtain a mother alloy ingot, and coarsely pulverized to obtain a coarsely pulverized powder was coarsely grinding the resulting mother alloy ingot,
A fine pulverizing step of finely pulverizing the coarsely pulverized powder in an inert atmosphere to obtain a finely pulverized powder having an average particle size of 1 to 5 μm; and the finely pulverized powder in a magnetic field of 7 to 22 KOe in a direction perpendicular to or parallel to the magnetic field. In a direction of 0.5 to 2.0 ton / cm 2 to obtain a compact, and the compact is subjected to a vacuum of 1 × 10 -2 Torr at most, in an inert atmosphere, and A sintering step of sintering at a sintering temperature of 1150 to 1250 ° C. to obtain a sintered body in any of the atmospheres of these combinations, and a temperature of 10 times higher than the sintering temperature in the atmosphere. A solution treatment step of heat treatment at a temperature lower by ~ 50 ° C, and at least 60 ° C / after the solution treatment step.
A quenching step of quenching at a cooling rate of a minute, and after the quenching step, heating and holding at a temperature of 700 to 870 ° C. for at least 1 hour in a vacuum or an inert atmosphere of at most 1 × 10 −2 Torr and aging. A method of manufacturing a permanent magnet, comprising: an aging treatment step of treating.
JP33514994A 1994-12-21 1994-12-21 Permanent magnet and its manufacturing method Expired - Lifetime JP3303044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33514994A JP3303044B2 (en) 1994-12-21 1994-12-21 Permanent magnet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33514994A JP3303044B2 (en) 1994-12-21 1994-12-21 Permanent magnet and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH08181009A true JPH08181009A (en) 1996-07-12
JP3303044B2 JP3303044B2 (en) 2002-07-15

Family

ID=18285317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33514994A Expired - Lifetime JP3303044B2 (en) 1994-12-21 1994-12-21 Permanent magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3303044B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140993A (en) * 2013-02-04 2013-07-18 Toshiba Corp Permanent magnet, and motor and generator including the same
JP2013191814A (en) * 2012-03-15 2013-09-26 Toshiba Corp Permanent magnet, and motor and power generator including the same
WO2015037037A1 (en) * 2013-09-13 2015-03-19 株式会社 東芝 Permanent magnet,as well as motor and electrical power generator using same
WO2015140832A1 (en) * 2014-03-19 2015-09-24 株式会社 東芝 Permanent magnet, motor and generator
JP2017126757A (en) * 2017-02-03 2017-07-20 株式会社東芝 Permanent magnet, motor, power generator, and vehicle
US10328064B2 (en) 2014-12-23 2019-06-25 Fgh Biotech, Inc. Compositions of fatostatin based heterocyclic compounds and uses thereof
US11339142B2 (en) 2016-09-07 2022-05-24 Fgh Biotech, Inc. Di-substituted pyrazole compounds for the treatment of diseases
US11497738B2 (en) 2016-04-29 2022-11-15 Fgh Biotech, Inc. Di-substituted pyrazole compounds for the treatment of diseases

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191814A (en) * 2012-03-15 2013-09-26 Toshiba Corp Permanent magnet, and motor and power generator including the same
JP2013140993A (en) * 2013-02-04 2013-07-18 Toshiba Corp Permanent magnet, and motor and generator including the same
WO2015037037A1 (en) * 2013-09-13 2015-03-19 株式会社 東芝 Permanent magnet,as well as motor and electrical power generator using same
CN104718585A (en) * 2013-09-13 2015-06-17 株式会社东芝 Permanent magnet, as well as motor and electrical power generator using same
WO2015140832A1 (en) * 2014-03-19 2015-09-24 株式会社 東芝 Permanent magnet, motor and generator
JPWO2015140832A1 (en) * 2014-03-19 2017-04-06 株式会社東芝 PERMANENT MAGNET, MOTOR, GENERATOR, CAR, AND PERMANENT MAGNET MANUFACTURING METHOD
US10650947B2 (en) 2014-03-19 2020-05-12 Kabushiki Kaisha Toshiba Permanent magnet, motor, and generator
US10328064B2 (en) 2014-12-23 2019-06-25 Fgh Biotech, Inc. Compositions of fatostatin based heterocyclic compounds and uses thereof
US11497738B2 (en) 2016-04-29 2022-11-15 Fgh Biotech, Inc. Di-substituted pyrazole compounds for the treatment of diseases
US11339142B2 (en) 2016-09-07 2022-05-24 Fgh Biotech, Inc. Di-substituted pyrazole compounds for the treatment of diseases
JP2017126757A (en) * 2017-02-03 2017-07-20 株式会社東芝 Permanent magnet, motor, power generator, and vehicle

Also Published As

Publication number Publication date
JP3303044B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
EP0304054B1 (en) Rare earth-iron-boron magnet powder and process of producing same
JPWO2005015580A1 (en) R-T-B system sintered magnet and rare earth alloy
EP0626703A2 (en) Magnetically anisotropic spherical powder
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPH10106875A (en) Manufacturing method of rare-earth magnet
JPH1070023A (en) Permanent magnet and manufacture thereof
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH1092617A (en) Permanent magnet and its manufacture
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH0146575B2 (en)
JP2021125678A (en) Rare earth cobalt permanent magnet, method for manufacturing the same, and device
JPH0620813A (en) Rare earth anisotropic permanent magnet powder and manufacture thereof
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JPS62257704A (en) Permanent magnet
JP6811120B2 (en) Rare earth cobalt permanent magnet manufacturing method
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPH0252413B2 (en)
JP3209292B2 (en) Magnetic material and its manufacturing method
JPH10241923A (en) Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140510

Year of fee payment: 12

EXPY Cancellation because of completion of term