JPH01219143A - Sintered permanent magnet material and its production - Google Patents

Sintered permanent magnet material and its production

Info

Publication number
JPH01219143A
JPH01219143A JP63044951A JP4495188A JPH01219143A JP H01219143 A JPH01219143 A JP H01219143A JP 63044951 A JP63044951 A JP 63044951A JP 4495188 A JP4495188 A JP 4495188A JP H01219143 A JPH01219143 A JP H01219143A
Authority
JP
Japan
Prior art keywords
permanent magnet
coercive force
sintered
heat treatment
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63044951A
Other languages
Japanese (ja)
Other versions
JP2720040B2 (en
Inventor
Hiroshi Nagata
浩 永田
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP63044951A priority Critical patent/JP2720040B2/en
Publication of JPH01219143A publication Critical patent/JPH01219143A/en
Application granted granted Critical
Publication of JP2720040B2 publication Critical patent/JP2720040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet having superior magnetic properties by incorporating Cu to a rare-earth sintered permanent magnet containing Fe-B-rare earths as a basic series and also containing Co and subjecting the above magnet to sintering and then to heat treatment under specific conditions. CONSTITUTION:Powdered raw materials are mixed so that they are formed into a composition consisting of, by atom., 12-17%, in total, of Nd and Pr, 5-14% B, <20% Co, 0.02-0.5% Cu, and the balance Fe, which is pulverized in an inert-gas atmosphere of Ar, etc. The above powdered raw materials are compacted in a magnetic field and the resulting green compact is sintered in a reducing or nonoxidizing atmosphere at 900-1,200 deg.C, and the sintered compact is subjected to heat treatment in vacuum, in an inert-gas atmosphere, or in a reducing atmosphere at 430-600 deg.C for about 5min-40hr. By this method, the sintered permanent magnet having high coercive force, and superior square characteristic in demagnetization curve can be obtained.

Description

【発明の詳細な説明】 利用産業分野 この発明は、Fe−B−Rを基本系とじCoを含有する
希土類焼結永久磁石とその製造方法に係り、Cuを含有
して磁石特性を著しく改良した永久磁石、並びに熱処理
条件の最適範囲が広く、製造性が極めてよい焼結永久磁
石材料とその製造方法に関する。
[Detailed description of the invention] Industrial field of application The present invention relates to a rare earth sintered permanent magnet based on Fe-B-R and containing Co, and a method for manufacturing the same, in which the magnetic properties are significantly improved by containing Cu. The present invention relates to permanent magnets, sintered permanent magnet materials that have a wide optimum range of heat treatment conditions and extremely high manufacturability, and methods for manufacturing the same.

背景技術 本出願人は先に、高価なSmやCoを必須としないNd
やPrを中心とし資源的に豊富な軽希土類を用いて、B
、 Feを主成分とし、従来の希土類コバルト磁石の最
高特性を大幅に超える新しい高1↓能磁石して、Fe−
B−R系永久磁石を提案したく特公昭61−34242
号)。
BACKGROUND TECHNOLOGY The present applicant has previously developed Nd, which does not require expensive Sm or Co.
By using light rare earths, which are rich in resources, mainly including and Pr,
, Fe is the main component, and is a new high 1↓ ability magnet that greatly exceeds the best characteristics of conventional rare earth cobalt magnets.
Special Publication No. 61-34242 to propose B-R series permanent magnets
issue).

また、これらの磁石材料において、Feの一部をCoで
置換して、キューリー温度が上昇させ、磁石の温度特性
を改善した永久磁石を提案した(特開昭59−6473
3号)。
In addition, in these magnet materials, a part of Fe was replaced with Co to raise the Curie temperature and to improve the temperature characteristics of the magnet.
No. 3).

さらに、今日の永久磁石に要求される苛酷な環境、すな
わち高温雰囲気での使用や、モーターなどに組込まれ時
の電機子反作用による減磁界にさらされる場合等におい
て、安定した保磁力を得るため、添加元素M(=Nb、
 Cr、 Mo、 W、 AI等)を添加したもの(特
開昭59−64733号、特開昭59−132104号
)、さらに高保磁力を得るために前記Nd、 Prの一
部をTb、 Dy等の重希土類元素に置換したもの(特
開昭58−141850号)、時効処理を行なうことに
より保磁力の向上を図った永久磁石(特開昭59−21
7304号、特開昭59−218704号)を提案した
Furthermore, in order to obtain stable coercive force in the harsh environments required of today's permanent magnets, such as when used in high-temperature atmospheres or when exposed to demagnetizing fields due to armature reaction when incorporated into motors, etc. Additive element M (=Nb,
(Cr, Mo, W, AI, etc.) (JP-A-59-64733, JP-A-59-132104), and in order to obtain a higher coercive force, some of the Nd and Pr are added with Tb, Dy, etc. (Japanese Unexamined Patent Publication No. 58-141850), permanent magnets whose coercive force is improved by aging treatment (Japanese Unexamined Patent Publication No. 59-21)
No. 7304 and Japanese Unexamined Patent Publication No. 59-218704).

上記の各永久磁石において、Coを含むFe−Co−B
−R系磁石は、磁石の温度特性や耐食性を改善するもの
の、高い保磁力を得るためには、熱処理条件の最適温度
範囲が狭く、これを保持することが困難であり、保磁力
及び減磁曲線角型性を低下させる等の影響があった。
In each of the above permanent magnets, Fe-Co-B containing Co
-R-based magnets improve the temperature characteristics and corrosion resistance of the magnet, but in order to obtain high coercive force, the optimum temperature range of heat treatment conditions is narrow and it is difficult to maintain this range, resulting in reduced coercive force and demagnetization. This had the effect of reducing curve squareness.

また、前記添加元素Mや重希土類元素は、高い保磁力を
得るためには、多量に用いなければならず、保磁力は上
がるものの、その分残留磁束密度Brが低下し、高いエ
ネルギー積が得られない問題があった。
In addition, the additive element M and the heavy rare earth elements must be used in large quantities in order to obtain a high coercive force, and although the coercive force increases, the residual magnetic flux density Br decreases accordingly, and a high energy product is not obtained. There was a problem that could not be resolved.

発明の目的 この発明は、Coを含んだFe−Co−B−R系永久磁
石旧料において、40MGOe級の高い磁気特性を発揮
し、高い保磁力と優れた角型性を有する永久磁石材料の
提供と、前記永久磁石を製造性よく得るための製造方法
を目的としている。
Purpose of the Invention The present invention provides a permanent magnet material that exhibits high magnetic properties of 40MGOe class in Fe-Co-B-R permanent magnet materials containing Co, and has high coercive force and excellent squareness. The present invention aims to provide a manufacturing method for obtaining the permanent magnet with good productivity.

発明の概要 この発明は、かかる目的を達成するため、永久磁石材料
の組成について種々検討したところ、Fe−Co−B−
R系をベースとし、ごく少量のCuを含むFe−Co−
B−R−Cu系の一定の組成範囲の合金粉末を成形し、
これを焼結し、さらに特定の温度で熱処理することによ
り、磁石特性、特に残留磁束密度の低下がなく、保磁力
と減磁曲線の角型性が著しく向上した永久磁石材料が得
られることを知見し、この発明を完成したものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention has made various studies on the composition of permanent magnet materials, and has found that Fe-Co-B-
Fe-Co- based on R system and containing a very small amount of Cu
Molding a B-R-Cu alloy powder with a certain composition range,
By sintering this and further heat-treating it at a specific temperature, it is possible to obtain a permanent magnet material with significantly improved coercive force and squareness of the demagnetization curve without any decrease in magnetic properties, especially residual magnetic flux density. This knowledge led to the completion of this invention.

原子比でNdとPrの合計が12〜17at%、B5〜
14at%、Co 20at%以下、Cu 0.02〜
0.5at%、 残部Fe及び不可避的不純物からなることを特徴とする
焼結永久磁石材料であり、 また、 前記組成からなる平均粒度0.5pm〜10pmの合金
粉末を成形し、 非酸化性または還元性雰囲気中で、 900〜1200℃で焼結し、 焼結後、430〜600℃の温度で熱処理することを特
徴とする焼結永久磁石材料の製造方法である。
The total of Nd and Pr in atomic ratio is 12 to 17 at%, B5 to
14at%, Co 20at% or less, Cu 0.02~
It is a sintered permanent magnet material characterized by consisting of 0.5 at%, balance Fe and unavoidable impurities, and an alloy powder having the above composition with an average particle size of 0.5 pm to 10 pm is molded, and non-oxidizing or This is a method for producing a sintered permanent magnet material, which is characterized by sintering at a temperature of 900 to 1200°C in a reducing atmosphere, and after sintering, heat treating at a temperature of 430 to 600°C.

発明の効果 Fe−Co−B−R−Cu系永久磁石は、Fe−B−R
系をベースとする化合物磁石として、従来のアモルファ
ス薄膜や超急冷リボンとは全く異なる結晶性のX線解析
パターンを示し、正方品系結晶構造を主相とする。
Effects of the invention Fe-Co-B-R-Cu permanent magnets are Fe-B-R
As a system-based compound magnet, it exhibits a crystalline X-ray analysis pattern that is completely different from conventional amorphous thin films or ultra-quenched ribbons, and has a tetragonal crystal structure as its main phase.

この発明の特徴である極少量のCuの含有は、Coを含
有するFe−Co−B−R系永久磁石材料の熱処理条件
を緩和し、残留磁束密度を低下させることなく、13k
Oe以上の高い保磁力と優れた減磁曲線の角型性を得る
ことができ、その結果とじて25MGOe以上の高い最
大エネルギー積が得ることができる。
The inclusion of a very small amount of Cu, which is a feature of this invention, eases the heat treatment conditions for the Fe-Co-B-R permanent magnet material containing Co, and allows it to reach 13k without reducing the residual magnetic flux density.
A high coercive force of Oe or more and excellent squareness of the demagnetization curve can be obtained, and as a result, a high maximum energy product of 25 MGOe or more can be obtained.

この発明においてCuは、Coを含有する従来のFe−
B−R系において要求される厳しい熱処理条件、すなわ
ち、狭い最適温度範囲と早い冷却速度条件を緩和し、広
い最適温度と自由な冷却速度を選ぶことが可能となる。
In this invention, Cu is a conventional Fe-containing Co-containing material.
It becomes possible to relax the severe heat treatment conditions required in the BR system, that is, the narrow optimum temperature range and fast cooling rate conditions, and to select a wide optimum temperature and free cooling rate.

これらは大型の磁石の熱処理や、熱処理後の冷却時の磁
石のヒビ割れに対しても極めて有効である。
These are extremely effective in heat treating large magnets and in preventing cracks in magnets during cooling after heat treatment.

永久磁石組成の限定理由 希土類元素Rは、永久磁石の保磁力を12kOe以上、
最大エネルギー積を25MGOe以上とするために12
at%以上の添加が必要であり、17at%を超えると
、Brの減少、並びにBrの減少に伴ない(BH)ma
xが低下するため、 NdとPrの合計は12at%〜17at%とする必要
があり、より好ましい範囲は、12.5at%〜15a
t%である。
Reason for limiting the permanent magnet composition The rare earth element R increases the coercive force of the permanent magnet to 12 kOe or more,
12 to make the maximum energy product more than 25MGOe
It is necessary to add more than 17 at%, and when it exceeds 17 at%, Br decreases and (BH) ma
In order to reduce
t%.

なお、水系永久磁石において、NdとPrとは元素とし
てその機能はほぼ同等であり、いずれがを単独含有可能
であるが、原料の都合上Ndを添加すると、必ず数%程
度はPrが含有され、Prを積極的に添加するか否かは
原料に応じて適宜選定すればよい。
Note that in water-based permanent magnets, Nd and Pr have almost the same functions as elements, and either can be contained alone, but due to the raw materials, if Nd is added, Pr will always be contained at a few percent. , Pr may be appropriately added depending on the raw material.

また、Nd、 Prの一部を、Dy、 Tbなどの重希
土類元素で0.2at%〜3.Oat%置換することに
より、さらに高い保磁力を得ることができる。
In addition, a portion of Nd and Pr may be replaced with heavy rare earth elements such as Dy and Tb at 0.2 at% to 3. By replacing Oat%, even higher coercive force can be obtained.

さらに、希土類元素中に含まれる不純物の内、La< 
Ceなどは少量、例えば全希土類元素中の5at%以下
、の範囲で含有してもよい。
Furthermore, among the impurities contained in rare earth elements, La<
Ce and the like may be contained in a small amount, for example, in a range of 5 at % or less based on the total rare earth elements.

水系永久磁石材料において、Coは、例えばlat%程
度の少量でも耐酸化性向上に効果があり、また、Tc増
大に有効であり、Coの置換量により約310〜750
℃の任意のTcをもつ合金が得られる。
In water-based permanent magnet materials, Co is effective in improving oxidation resistance even in a small amount of, for example, lat%, and is also effective in increasing Tc.
An alloy with an arbitrary Tc of .degree. C. is obtained.

Coff1は、永久磁石のiHcを12kOe以上とす
るため添加するが、Tcの改善効果とコストの点を考慮
して、20at%以下の含有とする。Co成分としては
、R−Co合金等を添加することもできる。Coiの好
ましい範囲は1〜8at%である。
Coff1 is added to increase the iHc of the permanent magnet to 12 kOe or more, but in consideration of Tc improvement effect and cost, the content is set to 20 at% or less. As the Co component, R-Co alloy or the like can also be added. The preferred range of Coi is 1 to 8 at%.

Bは、永久磁石の保磁力を10kOe以上とするために
5at%以上の添加が必要であり、添加につれて1II
cは増大するが、(BH)maxを20MGOe以上と
するために、14at%以下とする必要がある。
B needs to be added in an amount of 5 at% or more in order to make the coercive force of the permanent magnet 10 kOe or more, and as it is added, 1II
Although c increases, in order to make (BH)max 20 MGOe or more, it needs to be 14 at% or less.

この発明においてCuは、Fe−Co−B−R系永久磁
石において、他の磁気特性、すなわち残留磁束密度Bや
最大エネルギー積(BH)maxを全く低下させること
なく、熱処理条件の緩和が可能であり、その結果として
保磁力を上げ、かつ減磁曲線の角型性を改善し、(BH
)maxの向上を図ることが可能となるため添加する。
In this invention, Cu allows relaxation of heat treatment conditions in Fe-Co-B-R permanent magnets without reducing other magnetic properties, such as residual magnetic flux density B and maximum energy product (BH) max. As a result, the coercive force is increased and the squareness of the demagnetization curve is improved, (BH
) It is added because it makes it possible to improve max.

第1図にCu量と得られた磁気特性の変化を示す如く、
Cuは極僅かの添加でもCOを含有するFe−B−R系
磁石の磁気特性を大幅に改善する。
As shown in Figure 1, the change in the amount of Cu and the obtained magnetic properties,
Even when added in a very small amount, Cu significantly improves the magnetic properties of a Fe-BR magnet containing CO.

この発明において、Cu量は、磁気特性の改善のため少
なくとも0.01at%の添加が必要であるが、0.5
at%を超えると焼結密度が低下するため、上限は0.
5at%とする。好ましい範囲は0.03at%〜0.
3at%である。更に好ましくは(BH)max(7)
 fEl1点から0.05at%〜0.2at%である
In this invention, the amount of Cu needs to be added at least 0.01 at% to improve magnetic properties, but 0.5
If it exceeds at%, the sintered density will decrease, so the upper limit is 0.
It is set to 5at%. The preferred range is 0.03at% to 0.03at%.
It is 3at%. More preferably (BH)max(7)
It is 0.05 at% to 0.2 at% from fEl1 point.

この発明に用いるCuは、原料として用いられる鉄やフ
ェロボロンとの混合物でモヨイ。
The Cu used in this invention is a mixture with iron and ferroboron, which are used as raw materials.

さらに、使用原料中に含まれ、あるいは製造工程中に混
入する少量のC,S、 P、 Ca、 Mg、 O。
Furthermore, small amounts of C, S, P, Ca, Mg, and O are contained in the raw materials used or mixed during the manufacturing process.

AI、 Siの存在はこの発明の効果を損ねるものでは
ない。
The presence of AI and Si does not impair the effects of this invention.

製造方法 まず、出発原料となるFe−Co−B−R−Cu組成の
合金粉末を得る。
Manufacturing method First, an alloy powder having a composition of Fe-Co-BR-Cu is obtained as a starting material.

通常の合金溶解後、例えば、鋳造等、アモルファス状態
とならない条件で冷却して得た合金鋳塊を粉砕して分級
、配合等により合金粉末化してもよく、あるいはFe、
 Co、 FeB粉等と共にCa等の還元剤を用いて希
土類酸化物から還元法によって得た合金粉末を用いこと
ができる。
After normal alloy melting, an alloy ingot obtained by cooling under conditions that do not result in an amorphous state, such as casting, may be crushed, classified, blended, etc. to form an alloy powder, or Fe,
An alloy powder obtained by a reduction method from a rare earth oxide using a reducing agent such as Ca together with Co, FeB powder, etc. can be used.

本系合金粉末の平均粒度は、合金粉末の平均粒度が0.
5pm未満では、微粉砕中あるいはその後の製造工程に
おいて、粉末の酸化が著しくなり、また焼結後の密度が
上らず得られる磁石特性も低くなり、また10μmを超
えると、すぐれた磁石特性が得られないため、平均粒度
は0.5〜10pmの範囲とする。すぐれた磁石特性を
得るためには、平均粒度1、θ〜5pmが最も望ましい
The average particle size of this alloy powder is 0.
If it is less than 5 pm, the oxidation of the powder will be significant during pulverization or in the subsequent manufacturing process, and the density after sintering will not increase, resulting in poor magnetic properties.If it exceeds 10 μm, excellent magnetic properties will be lost. Therefore, the average particle size is set in the range of 0.5 to 10 pm. In order to obtain excellent magnetic properties, an average particle size of 1, θ to 5 pm is most desirable.

微粉砕は湿式、乾式のいずれでも可能であるが、乾式で
行なうことが好ましく、粉末の酸化を防止するために窒
素やアルゴン等の不活性ガス雰囲気中で行なうことが必
要である。乾式の微粉砕法としては、ディスクミル、ジ
ェットミ′ル等がある。
Fine pulverization can be carried out either wet or dry, but it is preferable to carry out the dry process, and it is necessary to carry out the process in an inert gas atmosphere such as nitrogen or argon in order to prevent oxidation of the powder. Examples of dry pulverization methods include disk mills and jet mills.

次に合金粉末を成形するが、成形方法は通常の粉末冶金
法と同様に行なうことができ、加圧成形が好ましく、異
方性とするためには、例えば、合金粉末を5kOe以上
の磁界中で0.5〜3.0ton/cm2の圧力で加圧
する。
Next, the alloy powder is molded, and the molding method can be the same as a normal powder metallurgy method, and pressure molding is preferable.In order to make the alloy powder anisotropic, for example, the alloy powder is placed in a magnetic field of 5 kOe or more. Pressure is applied at a pressure of 0.5 to 3.0 ton/cm2.

成型体の焼結は、通常の還元性ないし非酸化性雰囲気中
で所定)H度、900〜1200℃にて焼結するとよい
The molded body is preferably sintered in a normal reducing or non-oxidizing atmosphere at a predetermined degree) H and 900 to 1200°C.

例えば、この成形体を10’Torr以下の真空中ない
し、1〜76 Torr、純度99%以上の不活性ガス
ないし還元性ガス雰囲気中で900〜1200℃の温度
範囲で0.5〜4時間焼結する。
For example, this molded body is baked for 0.5 to 4 hours at a temperature range of 900 to 1200°C in a vacuum of 10'Torr or less or in an inert gas or reducing gas atmosphere of 1 to 76 Torr and a purity of 99% or more. conclude.

なお、焼結は、所定の結晶粒径、焼結密度が得られるよ
う温度、時間等の条件を調節して行なう。
Note that the sintering is performed by adjusting conditions such as temperature and time so that a predetermined crystal grain size and sintered density can be obtained.

焼結体の密度は理論密度(比)の95%以上が磁気特性
上好ましく、例えば、焼結温度 1040〜1160℃で、密度7.2g/cm3以上が
得られ、これは理論密度の95%以上に相当する。さら
に、1060〜1100℃の焼結では、理論密度比99
%以上にも達し、特に好ましい。
The density of the sintered body is preferably 95% or more of the theoretical density (ratio) in terms of magnetic properties. For example, at a sintering temperature of 1040 to 1160°C, a density of 7.2 g/cm3 or more can be obtained, which is 95% of the theoretical density. This corresponds to the above. Furthermore, in sintering at 1060-1100°C, the theoretical density ratio is 99
% or more, which is particularly preferable.

焼結後、室温までの冷却速度は、Cuを有しない従来の
Fe−Co−B−R磁石では、焼結後の冷却速度は磁気
特性のばらつきを防ぐために100℃/min以上が必
要であった。
After sintering, the cooling rate to room temperature is required to be 100°C/min or more in order to prevent variations in magnetic properties in conventional Fe-Co-B-R magnets that do not contain Cu. Ta.

ところが、Cuを含有するこの発明においては、実施例
に示す如く、極徐冷、例えば3℃/min以上もあれば
十分である。このような遅い冷却条件下では前記の43
0〜600℃間を十分に長い時間滞留することができ、
−旦室温近くまで冷却することなく、焼結後の徐冷で、
この発明と同等の効果を得ることもできる。
However, in the case of the present invention containing Cu, as shown in the examples, very slow cooling, for example at 3° C./min or more, is sufficient. Under such slow cooling conditions, the above-mentioned 43
It can stay between 0 and 600°C for a sufficiently long time,
-With slow cooling after sintering without cooling to near room temperature,
It is also possible to obtain effects equivalent to those of this invention.

時効処理は、真空ないし不活性ガスないし還元性ガス雰
囲気中で430℃〜600℃の温度範囲で、およそ5分
から40時間行なう。
The aging treatment is performed in a vacuum, inert gas, or reducing gas atmosphere at a temperature range of 430° C. to 600° C. for about 5 minutes to 40 hours.

時効処理後の徐冷も、Cuを含有しない従来の場合は保
磁力の低下を防止するため、200℃/min以上の早
い冷却速度を必要としていた。
For slow cooling after aging treatment, a fast cooling rate of 200° C./min or more was required in the conventional case that does not contain Cu in order to prevent a decrease in coercive force.

しかし、この発明においては、3〜b いう広い範囲の冷却速度で冷却でき、磁石の変形やヒビ
割れを防止でき、また熱処理炉の損傷を防ぐ意味からも
極めて有利である。
However, the present invention is extremely advantageous in that it can be cooled at a wide range of cooling rates, from 3 to b, preventing deformation and cracking of the magnet, and also preventing damage to the heat treatment furnace.

また、本系焼結磁石の時効処理として、焼結後−旦65
0〜900℃の温度に5分から10時間保持し、続いて
所定の温度で熱処理を行なう2段以上の多段時効処理も
有効である。
In addition, as an aging treatment for this type of sintered magnet, after sintering - 65 days
A multi-stage aging treatment of two or more stages in which the material is maintained at a temperature of 0 to 900° C. for 5 minutes to 10 hours and then heat-treated at a predetermined temperature is also effective.

また、保磁力をさらに高めたり、磁石や粉末の耐酸化性
を向上させるために、lat%以下のTi、V、 Nb
、 Cr、 Mo、 W、 AI、 Zr、 Hf、 
Zn1Ca、Siを含有してもよい。
In addition, in order to further increase the coercive force and improve the oxidation resistance of the magnet and powder, Ti, V, and Nb of less than lat% are added.
, Cr, Mo, W, AI, Zr, Hf,
It may contain Zn1Ca and Si.

実施例 実施例1 出発原料として純度99.9wt%の電解鉄、銅、純度
99.7wt%以上のCo、19wt%Bを含有するフ
ェロボロン、純度97wt%以上のNdを使用して、原
子比で Fe−4Co−14,5Nd−7B−xCu(x = 
0.01〜0.4at%)の組成合金を真空及びアルゴ
ン雰囲気で溶製し、鋳塊を得た。
Examples Example 1 Electrolytic iron with a purity of 99.9 wt%, copper, Co with a purity of 99.7 wt% or more, ferroboron containing 19 wt% B, and Nd with a purity of 97 wt% or more were used as starting materials. Fe-4Co-14,5Nd-7B-xCu (x =
An ingot was obtained by melting an alloy having a composition of 0.01 to 0.4 at% in a vacuum and an argon atmosphere.

その後、この鋳塊をショークラッシャーで粗粉砕し、さ
らにN2ガス気流によるジェットミルで微粉砕シ、平均
粒度3.5pmの微粉砕粉をプレス装置の金型に装入し
、10kOeの磁界中で配向、磁界に直角方向に15t
on/cm2の圧力で成形した。
After that, this ingot was coarsely crushed with a show crusher, further finely crushed with a jet mill using a N2 gas stream, and the finely crushed powder with an average particle size of 3.5 pm was charged into a mold of a press machine and placed in a magnetic field of 10 kOe. Orientation, 15t perpendicular to the magnetic field
Molding was carried out at a pressure of on/cm2.

得られた成形体を、1060〜1100”C12時間、
Ar雰囲気中の条件で焼結し、 さらにAr雰囲気中で、500〜600”Cで熱処理し
、その後、約30℃/minの速度で冷却した。
The obtained molded body was heated at 1060 to 1100"C for 12 hours,
It was sintered in an Ar atmosphere, further heat treated at 500 to 600''C in an Ar atmosphere, and then cooled at a rate of about 30C/min.

得られた種々の永久磁石の保磁力、最大エネルギー積、
焼結密度を測定し、Cu添加量の変化との関係としてを
第1図に示す。図には各々の組成で得られた最高値をプ
ロットした。
The coercive force and maximum energy product of the various permanent magnets obtained,
The sintered density was measured and its relationship with changes in the amount of Cu added is shown in FIG. The highest value obtained for each composition is plotted in the figure.

また、この発明の実施例と同様の方法で作製したCuを
含有しない場合、並びに少量の添加で保磁力を上昇させ
ることが知られているAIを添加した比較例の場合を、
同様に、比較例永久磁石の保磁力、最大エネルギー積を
測定し、AI添加伍の変化との関係としてを第1図に示
す。
In addition, a case in which no Cu was produced using the same method as in the example of the present invention, and a comparative example in which AI was added, which is known to increase the coercive force with the addition of a small amount, were as follows:
Similarly, the coercive force and maximum energy product of the comparative permanent magnet were measured, and the relationship with changes in AI addition level is shown in FIG.

第1図から明らかな如く、比較例のAIを添加した場合
、AIの添加増量にともない、保磁力は増加するが、十
分な保磁力の増加を得る程の添加では、逆に最大エネル
ギー積が低下している。
As is clear from Figure 1, when AI of the comparative example is added, the coercive force increases as the amount of AI added increases, but if the addition is sufficient to obtain a sufficient increase in coercive force, the maximum energy product increases. It is declining.

これに対して、この発明によるCuの添加場合は、Cu
は極少量の添加で保磁力、最大エネルギー積が著しく増
加することが分る。
On the other hand, in the case of adding Cu according to the present invention, Cu
It can be seen that the coercive force and maximum energy product increase significantly with the addition of a very small amount.

実施例2 実施例1で得られた、Cuを0.1at%含有する本発
明試料及びCuを全く含有しない比較例試料を用いて、
焼結後、430〜620℃の種々の温度にて1時間の熱
処理した後、80℃/minの速度で冷却した場合、各
磁石の保磁力の変化を熱処理温度との関係として第2図
に示す。
Example 2 Using the present invention sample containing 0.1 at% Cu and the comparative example sample containing no Cu, obtained in Example 1,
After sintering, heat treatment at various temperatures from 430 to 620°C for 1 hour, followed by cooling at a rate of 80°C/min, changes in the coercive force of each magnet are shown in Figure 2 as a relationship with the heat treatment temperature. show.

比較例の場合、高い保磁力を得るには、最適熱処理温度
範囲が極狭い範囲でしか得られないのに対し、Cuを含
有するこの発明による磁石の場合は、広い温度範囲で高
い保磁力が得られることが分る。
In the case of the comparative example, a high coercive force can be obtained only in an extremely narrow range of optimal heat treatment temperatures, whereas in the case of the magnet according to the present invention containing Cu, a high coercive force can be obtained over a wide temperature range. I know what I can get.

実施例3 実施例1と同様の製造方法にて、原子比でFe−2Co
−13,5Nd−1,5Dy−7Bに、0.1at%C
uを含む本発明試料、及び比較例としてCuを含まない
試料を作製した。
Example 3 Using the same manufacturing method as Example 1, the atomic ratio of Fe-2Co
-13,5Nd-1,5Dy-7B, 0.1at%C
A sample of the present invention containing u and a sample not containing Cu were prepared as a comparative example.

製造に際し、焼結後、430〜620℃の種々の温度に
て1時間の熱処理し、さらに、熱処理後の冷却速度を種
々変化させ、得られた各永久磁石の保磁力を測定し、熱
処理温度と冷却速度と保磁力の関係として、本発明の場
合を第3図、比較例の場合を第4図に示す。なお、図中
の数字は保磁力1Hc(koe)を示す。
During production, after sintering, heat treatment was performed at various temperatures of 430 to 620°C for 1 hour, and the cooling rate after heat treatment was varied, and the coercive force of each obtained permanent magnet was measured, and the heat treatment temperature was determined. The relationship between cooling rate and coercive force is shown in FIG. 3 for the present invention and FIG. 4 for a comparative example. Note that the numbers in the figure indicate a coercive force of 1Hc (koe).

第3図と第4図より明らかな如く、従来は、高い保磁力
を得るには、熱処理後の冷却速度を所要の範囲に保持し
なければならない。
As is clear from FIGS. 3 and 4, conventionally, in order to obtain a high coercive force, the cooling rate after heat treatment must be maintained within a required range.

これにjすして、Cuを含有するこの発明の場合、極徐
冷から急速冷却まで、いずれの冷却速度でもよく、製造
条件に左右されることなく、極めて高い保磁力を有する
永久磁石が得られることが分る。
In addition, in the case of the present invention containing Cu, any cooling rate from extremely slow cooling to rapid cooling can be used, and a permanent magnet with an extremely high coercive force can be obtained regardless of manufacturing conditions. I understand.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCu(Al)の添加量の変化に対する永久磁石
の保磁力、最大エネルギー積、密度の変化を示すグラフ
である。 第2図は熱処理温度と保磁力iHcとの関係を示すグラ
フである。 第3図と第4図は熱処理温度と冷却速度と保磁力の関係
を示すグラフであり、本発明の場合を第3図、比較例の
場合を第4図に示す。
FIG. 1 is a graph showing changes in coercive force, maximum energy product, and density of a permanent magnet with respect to changes in the amount of Cu (Al) added. FIG. 2 is a graph showing the relationship between heat treatment temperature and coercive force iHc. FIGS. 3 and 4 are graphs showing the relationship between heat treatment temperature, cooling rate, and coercive force; FIG. 3 shows the case of the present invention, and FIG. 4 shows the case of a comparative example.

Claims (1)

【特許請求の範囲】 1 原子比でNdとPrの合計が12〜17at%、B5〜
14at%、Co20at%以下、 Cu0.02〜0.5at%、 残部Fe及び不可避的不純物からなることを特徴とする
焼結永久磁石材料。 2 原子比でNdとPrの合計が12〜17at%、B5〜
14at%、Co20at%以下、 Cu0.02〜0.5at%、 残部Fe及び不可避的不純物からなる合金粉末を成形し
、 900〜1200℃で焼結し、 焼結後430〜600℃の温度で熱処理することを特徴
とする焼結永久磁石材料の製造方法。
[Claims] 1 The total of Nd and Pr in atomic ratio is 12 to 17 at%, B5 to
A sintered permanent magnet material comprising 14 at% of Co, 20 at% or less of Co, 0.02 to 0.5 at% of Cu, and the remainder Fe and unavoidable impurities. 2 The total of Nd and Pr in atomic ratio is 12 to 17 at%, B5 to
An alloy powder consisting of 14 at% Co, 20 at% or less Co, 0.02 to 0.5 at% Cu, the balance Fe and unavoidable impurities is formed, sintered at 900 to 1200°C, and heat treated at a temperature of 430 to 600°C after sintering. A method for manufacturing a sintered permanent magnet material, characterized by:
JP63044951A 1988-02-26 1988-02-26 Sintered permanent magnet material and its manufacturing method Expired - Lifetime JP2720040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044951A JP2720040B2 (en) 1988-02-26 1988-02-26 Sintered permanent magnet material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044951A JP2720040B2 (en) 1988-02-26 1988-02-26 Sintered permanent magnet material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01219143A true JPH01219143A (en) 1989-09-01
JP2720040B2 JP2720040B2 (en) 1998-02-25

Family

ID=12705795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044951A Expired - Lifetime JP2720040B2 (en) 1988-02-26 1988-02-26 Sintered permanent magnet material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2720040B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369202A (en) * 1991-06-17 1992-12-22 Isuzu Ceramics Kenkyusho:Kk Composite permanent magnet and manufacture thereof
US5702985A (en) * 1992-06-26 1997-12-30 Staktek Corporation Hermetically sealed ceramic integrated circuit heat dissipating package fabrication method
US6811620B2 (en) 2003-03-28 2004-11-02 Tdk Corporation R-T-B system rare earth permanent magnet
US7192493B2 (en) 2002-09-30 2007-03-20 Tdk Corporation R-T-B system rare earth permanent magnet and compound for magnet
US7311788B2 (en) 2002-09-30 2007-12-25 Tdk Corporation R-T-B system rare earth permanent magnet
US7314531B2 (en) 2003-03-28 2008-01-01 Tdk Corporation R-T-B system rare earth permanent magnet
US7485193B2 (en) 2004-06-22 2009-02-03 Shin-Etsu Chemical Co., Ltd R-FE-B based rare earth permanent magnet material
WO2009150843A1 (en) 2008-06-13 2009-12-17 日立金属株式会社 R-t-cu-mn-b type sintered magnet
CN102543342A (en) * 2011-12-31 2012-07-04 北京工业大学 Sintered neodymium-iron-boron-based permanent magnet material with high coercive force and high corrosion resistance, prepared by doping copper nano-particles, and preparation method thereof
CN103282976A (en) * 2010-12-27 2013-09-04 Tdk株式会社 Magnetic body
CN104112581A (en) * 2013-04-22 2014-10-22 昭和电工株式会社 R-t-b Rare Earth Sintered Magnet And Method Of Manufacturing The Same
DE102016101984A1 (en) 2015-02-04 2016-08-04 Tdk Corporation R-T-B based sintered magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952574A (en) 2014-03-31 2015-09-30 厦门钨业股份有限公司 Nd-Fe-B-Cu type sintered magnet containing W

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609852A (en) * 1983-06-24 1985-01-18 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン High energy stored rare earth-iron magnetic alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609852A (en) * 1983-06-24 1985-01-18 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン High energy stored rare earth-iron magnetic alloy

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369202A (en) * 1991-06-17 1992-12-22 Isuzu Ceramics Kenkyusho:Kk Composite permanent magnet and manufacture thereof
US5702985A (en) * 1992-06-26 1997-12-30 Staktek Corporation Hermetically sealed ceramic integrated circuit heat dissipating package fabrication method
US7192493B2 (en) 2002-09-30 2007-03-20 Tdk Corporation R-T-B system rare earth permanent magnet and compound for magnet
US7255751B2 (en) 2002-09-30 2007-08-14 Tdk Corporation Method for manufacturing R-T-B system rare earth permanent magnet
US7311788B2 (en) 2002-09-30 2007-12-25 Tdk Corporation R-T-B system rare earth permanent magnet
US6811620B2 (en) 2003-03-28 2004-11-02 Tdk Corporation R-T-B system rare earth permanent magnet
US7255752B2 (en) 2003-03-28 2007-08-14 Tdk Corporation Method for manufacturing R-T-B system rare earth permanent magnet
US7314531B2 (en) 2003-03-28 2008-01-01 Tdk Corporation R-T-B system rare earth permanent magnet
US7485193B2 (en) 2004-06-22 2009-02-03 Shin-Etsu Chemical Co., Ltd R-FE-B based rare earth permanent magnet material
WO2009150843A1 (en) 2008-06-13 2009-12-17 日立金属株式会社 R-t-cu-mn-b type sintered magnet
US8092619B2 (en) 2008-06-13 2012-01-10 Hitachi Metals, Ltd. R-T-Cu-Mn-B type sintered magnet
CN103282976A (en) * 2010-12-27 2013-09-04 Tdk株式会社 Magnetic body
CN102543342A (en) * 2011-12-31 2012-07-04 北京工业大学 Sintered neodymium-iron-boron-based permanent magnet material with high coercive force and high corrosion resistance, prepared by doping copper nano-particles, and preparation method thereof
CN104112581A (en) * 2013-04-22 2014-10-22 昭和电工株式会社 R-t-b Rare Earth Sintered Magnet And Method Of Manufacturing The Same
US10020097B2 (en) 2013-04-22 2018-07-10 Showa Denko K.K. R-T-B rare earth sintered magnet and method of manufacturing the same
DE102016101984A1 (en) 2015-02-04 2016-08-04 Tdk Corporation R-T-B based sintered magnet
CN105845305A (en) * 2015-02-04 2016-08-10 Tdk株式会社 R-t-b based sintered magnet
US10388443B2 (en) 2015-02-04 2019-08-20 Tdk Corporation R-T-B based sintered magnet

Also Published As

Publication number Publication date
JP2720040B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
US4601875A (en) Process for producing magnetic materials
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JPH01219143A (en) Sintered permanent magnet material and its production
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP4170468B2 (en) permanent magnet
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JP3303044B2 (en) Permanent magnet and its manufacturing method
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JPH045740B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH045739B2 (en)
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JPH0146574B2 (en)
JPS61264133A (en) Permanent magnet alloy and its manufacture
JPH04247604A (en) Rare earth-fe-co-b anisotropic magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH045738B2 (en)
JPH0475303B2 (en)
JPH045737B2 (en)
JPH04143221A (en) Production of permanent magnet
JPS61143553A (en) Production of material for permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11