JP3303044B2 - Permanent magnet and its manufacturing method - Google Patents

Permanent magnet and its manufacturing method

Info

Publication number
JP3303044B2
JP3303044B2 JP33514994A JP33514994A JP3303044B2 JP 3303044 B2 JP3303044 B2 JP 3303044B2 JP 33514994 A JP33514994 A JP 33514994A JP 33514994 A JP33514994 A JP 33514994A JP 3303044 B2 JP3303044 B2 JP 3303044B2
Authority
JP
Japan
Prior art keywords
permanent magnet
phase
cell
alloy
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33514994A
Other languages
Japanese (ja)
Other versions
JPH08181009A (en
Inventor
秀之 田中
隆文 佐藤
Original Assignee
エヌイーシートーキン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌイーシートーキン株式会社 filed Critical エヌイーシートーキン株式会社
Priority to JP33514994A priority Critical patent/JP3303044B2/en
Publication of JPH08181009A publication Critical patent/JPH08181009A/en
Application granted granted Critical
Publication of JP3303044B2 publication Critical patent/JP3303044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,希土類コバルト磁石に
関するものであり,更に詳しくは,R(但し,RはYを
含む希土類金属の内の少なくとも1種)−コバルト金属
間化合物を主体とし,この主体にCu,Fe,及びZr
添加した特定組成のRCo17系析出硬化型永久磁石
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth cobalt magnet, and more particularly, it mainly comprises an R (where R is at least one rare earth metal containing Y) -cobalt intermetallic compound, The main components are Cu, Fe and Zr
The present invention relates to an R 2 Co 17 precipitation hardening type permanent magnet having a specific composition added.

【0002】[0002]

【従来の技術】希土類金属とCoとの間に多くの金属間
化合物が存在することは,以前からよく知られていた。
金属化合物の内で,RCo5 を中心とした強磁性化合物
は,結晶磁気異方性が極めて大きく,しかも飽和磁束密
度も高いことから,優れた永久磁石となることが指摘さ
れた。これをきっかけとして,以後多くの研究によって
従来の磁石に比較してはるかに高い特性を持つ希土類コ
バルト磁石が工業化されるに至った。RCo5 系合金の
うち,特にSmCo5 では30KOeに至る高い保磁力
ic )をもち,最大エネルギー積{(BH)m}も
25MGOeに達している。
2. Description of the Related Art It has long been well known that many intermetallic compounds exist between a rare earth metal and Co.
It has been pointed out that among the metal compounds, a ferromagnetic compound centered on RCo 5 has an extremely large crystal magnetic anisotropy and a high saturation magnetic flux density, and thus is an excellent permanent magnet. This has led to the commercialization of rare earth cobalt magnets, which have much higher properties than conventional magnets, through much research. Of RCo 5 alloys, in particular having a high coercive force that leads to 30KOe in SmCo 5 (i H c), the maximum energy product {(BH) m} also reached 25 MGOe.

【0003】これに対して,析出硬化型永久磁石である
Co17系合金は,Coに対しRの割合が少なく安
価であり,飽和磁束密度が高く,高いエネルギー積をも
っている。それ以後,多くの研究により,Cu,Fe,
Zrを添加した特定組成において,最大エネルギー積で
30MGOeの特性が得られている。例えば,特公平1
−46575号公報(以下,従来例1と呼ぶ)には,2
4〜28wt%の希土類金属R,1〜5wt%の銅C
u,1〜35wt%の鉄Fe,0.5〜6wt%の(M
=Nb,Zr,Ta,Hf,Ti,V),及び22〜7
3.5wt%のCoを含有し,微細組織として,セル間
距離500オングストローム以上のセル構造を有する析
出硬化型永久磁石が示されている。また,特公平2−5
2413号公報(以下,従来例2と呼ぶ)には,Ce−
Co−Cu−Zr−Fe系,Ce−Sm−Co−Cu−
Zr−Fe系(但し,SmはCeとSmとの合計重量の
80%以下)の永久磁石において,結晶のc面に平行に
ジルコニウム含有相が相互の平均間隔が5000オング
ストローム以下にて存在する永久磁石が示されている。
On the other hand, an R 2 Co 17- based alloy, which is a precipitation hardening type permanent magnet, has a low ratio of R to Co, is inexpensive, has a high saturation magnetic flux density, and has a high energy product. Since then, many studies have shown that Cu, Fe,
In the specific composition to which Zr is added, a characteristic of 30 MGOe is obtained at the maximum energy product. For example, Tokuho 1
No. 46575 (hereinafter referred to as Conventional Example 1) states that
4 to 28 wt% rare earth metal R, 1 to 5 wt% copper C
u, 1-35 wt% iron Fe, 0.5-6 wt% (M
= Nb, Zr, Ta, Hf, Ti, V), and 22-7
A precipitation hardening type permanent magnet containing 3.5 wt% Co and having a cell structure with a cell-to-cell distance of 500 Å or more is shown as a microstructure. In addition, 2-5
No. 2413 (hereinafter referred to as Conventional Example 2) discloses Ce-
Co-Cu-Zr-Fe system, Ce-Sm-Co-Cu-
In a Zr—Fe-based permanent magnet (where Sm is 80% or less of the total weight of Ce and Sm), a zirconium-containing phase exists parallel to the c-plane of the crystal at an average distance of 5000 Å or less from each other. Magnets are shown.

【0004】[0004]

【発明が解決しようとする課題】ところで,R2 CO17
系合金は,時効によってRCo5 相とR2 Co17相とが
2相分離して,磁気硬化して好ましい磁気特性を示し,
また,R2 Co17系合金は,微細組織としてセル構造を
有することが知られている。セル構造は,セル間の境界
が明確に区別され,電子線回折パターンの解析結果よ
り,セル内部は菱面体構造の2/17相,又セル境界は
六方晶構造の1/5相をもつとされている。
However, R 2 CO 17
The RCo 5 phase and the R 2 Co 17 phase are separated into two phases by aging, and are magnetically hardened to exhibit preferable magnetic properties.
It is known that R 2 Co 17 alloy has a cell structure as a fine structure. In the cell structure, the boundaries between cells are clearly distinguished, and analysis results of electron beam diffraction patterns show that the inside of the cell has 2/17 phase of rhombohedral structure and that the cell boundary has 1/5 phase of hexagonal structure. Have been.

【0005】従来例1において,R2 Co17系合金の保
磁力は,このセル構造のサイズに起因することがわかっ
ている。R2 Co17に,Cu,FeおよびZrを添加し
た系では,時効時間を長くするとともにセルサイズは粗
大化し,セル径サイズが約700オングストロームにな
ったとき保磁力が最大となり,それ以上時効時間を長く
するとセル径の増大に伴い保磁力が低下するとされてい
る。この限界の値は,約6000オングストローム前後
であることが示されている。しかしながら,従来例1に
おいて,RCo5 相とR2 Co17相以外の相構造につい
ては全くふれていない。
In Conventional Example 1, it is known that the coercive force of the R 2 Co 17 alloy is caused by the size of the cell structure. In a system in which Cu, Fe and Zr are added to R 2 Co 17 , the aging time is prolonged and the cell size is coarsened. It is said that the coercive force decreases with an increase in the cell diameter when the length is increased. The value of this limit has been shown to be around 6000 angstroms. However, in Conventional Example 1, no mention is made of the phase structure other than the RCo 5 phase and the R 2 Co 17 phase.

【0006】また,従来例2のCeを必須成分として含
むR2 Co17系合金においては,ジルコニウム含有相に
ついて述べられ,特性が劣化するc面に平行のこのジル
コニウム含有相の相互の平均間隔の上限値は,5000
オングストロームとされている。しかし,Ceを含む組
成範囲内のジルコニウム含有相の相構造ついてのみ述べ
ているだけであって,Ceを含まないものやそのほかの
相構造の詳細については,全く示されていない。
In the R 2 Co 17 -based alloy containing Ce as an essential component in the conventional example 2, a zirconium-containing phase is described, and the average distance between the zirconium-containing phases parallel to the c-plane whose characteristics are deteriorated is described. The upper limit is 5000
Angstrom. However, only the phase structure of the zirconium-containing phase within the composition range containing Ce is described, and no details of the phase structure not containing Ce or other phase structures are given.

【0007】そこで,本発明の技術的課題は,希土類と
してSmを主成分とする希土類コバルト系析出硬化型磁
石において,微細構造を考察し,高保磁力,及び高エネ
ルギー積を可能ならしめる永久磁石その製造方法を提
供することにある。
[0007] Therefore, the technical problem of the present invention is a rare earth cobalt-based precipitation hardenable magnet composed mainly of Sm as the rare earth, consider the microstructure, a permanent magnet makes it possible high coercivity, and high energy product It is to provide a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】本発明は,重量百分率
で,23〜27%のR(但し,RはYを含む希土類金属
の内の少なくとも1種)と3〜6%(6は含まず)のC
uと10〜25%のFeと1.5〜4%のZrと残部が
実質的にCoとから成る組成を有する合金であって,前
記合金は希土類コバルトを主体とする金属間化合物を含
するとともにセル中心間距離が500オングストロー
ム以下であるセル構造を備えた微細構造をもち,前記セ
ル構造においてセル内部がRCo17の主成分相をも
ち,且つセル境界部がRCo5を主成分とする相と金属
間化合物の結晶のc面に平行にZr含有板状相との2つ
の相によって囲まれた微細組織をもつことを特徴とす
る。
According to the present invention, 23 to 27% of R (where R is at least one of rare earth metals including Y) and 3 to 6% (not including 6) are expressed by weight percentage. ) C
An alloy having a composition consisting of u, 10 to 25% Fe, 1.5 to 4% Zr, and the balance substantially Co, wherein the alloy contains an intermetallic compound mainly composed of rare earth cobalt. With cell center distance of 500 angstroms
A microstructure having a cell structure of less than or equal to the cell size, wherein in the cell structure, the inside of the cell has a main component phase of R 2 Co 17 , and the cell boundary has a phase of RCo 5 as a main component and a crystal of an intermetallic compound. And a microstructure surrounded by two phases with a Zr-containing plate-like phase parallel to the c-plane.

【0009】ここで,本発明の永久磁石の組成を限定し
た理由は,次の通りである。Yを含む希土類金属の内の
少なくとも1種からなるRが27wt%を越えると飽和
磁束密度(Br)が低下する。又Rが23wt%未満で
は一定の保磁力()は得られるが,減磁曲線の角
型性が悪く磁気特性が劣化するためである。また,Cu
量が3wt%未満ではが低く,6wt%以上にな
るとキュリー点とBrが低下するからである。また,F
e量に関しては,10wt%未満ではBrが低下し,
wt%を越えるとが低下するからである。更
に,Zr量が1.5〜4wt%の範囲外ではおよ
びエネルギー積{(BH)m}が低下するからである。
The reasons for limiting the composition of the permanent magnet of the present invention are as follows. When the R content of at least one of the rare earth metals containing Y exceeds 27 wt%, the saturation magnetic flux density (Br) decreases. The R is a constant coercive force is less than 23wt% (i H c) is obtained, because the squareness of demagnetization curve is deteriorated deteriorated magnetic properties. In addition, Cu
Amount lower i H c is less than 3 wt%, because the Curie point and the Br decreases becomes more than 6 wt%. Also, F
As for the amount of e, Br is reduced when the content is less than 10 wt%, and 2
5 exceeds wt% when i H c is lowered. Further, the outside Zr amount is 1.5~4wt% i H c and energy product {(BH) m} is lowered.

【0010】この様な組成を有する本発明の永久磁石で
は,その微細構造を透過型電子顕微鏡で観察されるよう
なセル構造を有し,このセル構造においてセル内部がR
2 Co17の主成分相をもち,且つセル境界部がRCo5
を主成分とする相とZr含有板状相の2つの相によって
囲まれた微細組織をもち,相隣りあうセルのセル中心間
の距離は500オングストローム未満である。望ましく
は,このセル中心間の距離は200〜400オングスト
ロームの範囲内が良い。
The permanent magnet of the present invention having such a composition has a cell structure whose fine structure can be observed with a transmission electron microscope.
It has a main phase of 2 Co 17 and the cell boundary is RCo 5
And a Zr-containing plate-like phase, and has a microstructure surrounded by two phases, and the distance between cell centers of adjacent cells is less than 500 Å. Preferably, the distance between the cell centers is in the range of 200 to 400 angstroms.

【0011】本発明において,以上のようなセル構造を
有するか否かは,走査型電子顕微鏡あるいは透過型電子
顕微鏡により,容易に観察でき検証することができる。
In the present invention, whether or not the above-described cell structure is provided can be easily observed and verified by a scanning electron microscope or a transmission electron microscope.

【0012】この様な構成本発明の永久磁石は,以下
の様にして製造される。前記に示した組成となるよう
に,各原料を配合し,1×10−2Torr以下の真空
中において,高周波溶解炉により溶解し母合金インゴッ
トを得る。次に,得られた母合金インゴットを粗粉砕
し,更にジェットミル等を用い不活性雰囲気中で微粉砕
し平均粒径が1〜5μmの粉末とする。この粉末を7〜
22KOeの磁場中で磁場に垂直方向,又は平行方向に
0.5〜2.0トン/cmの加圧力によるプレス成
する。その後,この成形体を1×10−2Torr以下
の真空中,又は不活性雰囲気中或いはこれらの組み合わ
せの雰囲気において,1150〜1250℃の温度で焼
結し,上記雰囲気中にて焼結温度よりも10〜50℃低
い温度で溶体化処理を行う。溶体化処理後,60℃/分
以上の冷却速度で急冷する。急冷後,1×10−2To
rr以下の真空中,又は不活性雰囲気中で700〜87
0℃の温度で1時間以上加熱保持して時効処理を行う。
The permanent magnet of the present invention having such a configuration is manufactured as follows. Each raw material is blended so as to have the composition shown above, and melted by a high-frequency melting furnace in a vacuum of 1 × 10 −2 Torr or less to obtain a mother alloy ingot. Next, the obtained master alloy ingot is roughly pulverized, and further finely pulverized in an inert atmosphere using a jet mill or the like to obtain a powder having an average particle diameter of 1 to 5 μm. This powder is 7 ~
Vertical to the magnetic field in a magnetic field of 22KOe, or press formed shape <br/> by pressure of 0.5 to 2.0 t / cm 2 in a parallel direction. Thereafter, the molded body is sintered at a temperature of 1150 to 1250 ° C. in a vacuum of 1 × 10 −2 Torr or less, or in an inert atmosphere, or an atmosphere of a combination of these. The solution treatment is also performed at a temperature lower by 10 to 50C. After the solution treatment, it is rapidly cooled at a cooling rate of 60 ° C./min or more. After quenching, 1 × 10 -2 To
700 to 87 in a vacuum of rr or less or in an inert atmosphere
Aging treatment is performed by heating and holding at a temperature of 0 ° C. for 1 hour or more.

【0013】なお,本発明において,これら溶解,微粉
砕,焼結,及び溶体化処理はいずれも真空中あるいは不
活性雰囲気中で行うことより,合金に含有される炭素量
を700ppm以下,酸素量を3000ppm以下に極
力抑えることができ,磁気特性に優れた永久磁石を得る
ことが可能となる。
In the present invention, these melting, pulverizing, sintering, and solution treatments are all performed in a vacuum or in an inert atmosphere, so that the carbon content of the alloy is 700 ppm or less and the oxygen content is 700 ppm or less. To 3000 ppm or less, and a permanent magnet having excellent magnetic properties can be obtained.

【0014】このような製造工程により磁気硬化がなさ
れ,本発明の永久磁石が得られることになる。
Magnetic hardening is performed by such a manufacturing process, and the permanent magnet of the present invention is obtained.

【0015】ついでながら,本発明の永久磁石は,時
計,電動モーター,計器,通信機,コンピューター端末
機,スピーカー,ビデオディスク,及びその他各種部品
に広く利用することができる。
Incidentally, the permanent magnet of the present invention can be widely used for watches, electric motors, instruments, communication devices, computer terminals, speakers, video disks, and other various components.

【0016】[0016]

【作用】本発明においては,析出硬化型磁石の微細構造
にみられるセル構造の他に,希土類コバルト金属間化合
物の結晶のc面に平行にZr含有板状相を析出させて,
セル境界での磁壁のピンニイング効果のみならず板状相
による磁壁のピンニイング効果を持たせ,高保磁力,及
び高エネルギー積を得る。
In the present invention, in addition to the cell structure seen in the microstructure of the precipitation hardening type magnet, a Zr-containing plate-like phase is precipitated parallel to the c-plane of the crystal of the rare earth cobalt intermetallic compound.
A high coercive force and a high energy product can be obtained by providing not only the pinning effect of the domain wall at the cell boundary but also the pinning effect of the domain wall by the plate-like phase.

【0017】[0017]

【実施例】以下,本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0018】(実施例1) まず,下記表1に示されるように,Sm,Ce,Cu,
Fe,Zr,及びCoの6種の組成の合金となるように
各原料を配合し,1×10−2Torr以下の真空中に
おいて,高周波溶解炉により溶解し6種の母合金インゴ
ットを得た,これら母合金インゴットを粗粉砕し,ジェ
ットミルを用い不活性雰囲気中で微粉砕し平均粒径4μ
mの粉末を得た。この粉末を15KOeの磁場中で1.
0トン/cmの加圧力によるプレス成成形体を得
た。このようにして得られた成形体を,1×10−2
orr以下の真空中,及び不活性雰囲気中において,1
200〜1250℃の温度で焼結し,次いで1180〜
1230℃にて溶体化処理を施し,100℃/分の冷却
速度で急冷を行った。急冷後,不活性雰囲気中で800
℃の温度で300分加熱保持して等温時効処理を行っ
た。
Example 1 First, as shown in Table 1 below , Sm, Ce, Cu,
The respective raw materials were blended so as to be alloys of six kinds of compositions of Fe, Zr, and Co, and were melted by a high frequency melting furnace in a vacuum of 1 × 10 −2 Torr or less to obtain six kinds of mother alloy ingots. , These master alloy ingots are roughly pulverized and finely pulverized in an inert atmosphere using a jet mill to obtain an average particle size of 4 μm.
m were obtained. This powder was dried under a magnetic field of 15 KOe.
By pressure of 0 tons / cm 2 to obtain a press-formed shape molded body. The molded body obtained in this manner is 1 × 10 −2 T
In vacuum at or below orr and in an inert atmosphere, 1
Sintering at a temperature of 200-1250 ° C, then 1180
Solution treatment was performed at 1230 ° C., and rapid cooling was performed at a cooling rate of 100 ° C./min. After quenching, 800 in an inert atmosphere
Isothermal aging treatment was performed by heating and holding at a temperature of 300 ° C. for 300 minutes.

【0019】この様にして,磁気硬化した6種の永久磁
石につき,透過電子顕微鏡により観察したところ,微細
構造としてセル構造を有し,セル内部がR2 CO17相を
もち,セル境界部がRCo5 相と,Zr含有板状相との
2つの相によって囲まれた微細組織を有することが確認
された。また,各永久磁石材料につき,磁気特性を測定
したところ,下記表1の結果を得た。
Observation of the six kinds of magnets thus hardened by a transmission electron microscope revealed that the permanent magnets had a cell structure as a fine structure, the inside of the cell had an R 2 CO 17 phase, and the cell boundary was It was confirmed that it had a microstructure surrounded by two phases of the RCo 5 phase and the Zr-containing plate-like phase. When the magnetic properties of each permanent magnet material were measured, the results shown in Table 1 below were obtained.

【0020】[0020]

【表1】 上記表1から明らかなように,本発明の実施例1に係る
永久磁石は,実用に供するBr,,(BH)mを
もつことがわかる。
[Table 1] As is apparent from Table 1, the permanent magnet according to the first embodiment of the present invention, Br for practical use, i H c, it can be seen that with the (BH) m.

【0021】(実施例2) Sm25.9wt%,Cu4.5wt%,Fe15.0
wt%,Zr3.1wt%および残部Coからなる組成
の合金につき,実施例1と同様にして溶解,粉砕,成
,焼結および溶体化処理を順次施した。
Example 2 Sm 25.9 wt%, Cu 4.5 wt%, Fe 15.0
In the same manner as in Example 1, melting, pulverizing, forming, and
Shape , sintering and solution treatment were sequentially performed.

【0022】次いで不活性雰囲気中にて,等温時効温度
を800℃として,下記表2に示される5種類の等温時
効時間,最短6分,最長900分の範囲内で時効処理を
施した。その結果を下記表2に示す。
Next, aging treatment was performed in an inert atmosphere at an isothermal aging temperature of 800 ° C. within the range of five types of isothermal aging time shown in Table 2 below, a minimum of 6 minutes and a maximum of 900 minutes. The results are shown in Table 2 below.

【0023】[0023]

【表2】 次に,エネルギー分散型X線分析装置を装備した透過型
電子顕微鏡を用いて,保磁力の異なる供試材の微細組織
を観察し,Zr含有板状相を同定した。微細構造として
セル構造を有し,セル内部がR2 Co17相をもち,セル
境界部がRCo5 相と,Zr含有板状相との2つの相に
よって囲まれた微細組織を有することが確認された。
[Table 2] Next, using a transmission electron microscope equipped with an energy dispersive X-ray analyzer, the microstructures of the test materials having different coercive forces were observed, and the Zr-containing plate-like phase was identified. It is confirmed that it has a cell structure as a microstructure, the cell interior has an R 2 Co 17 phase, and the cell boundary has a microstructure surrounded by two phases of an RCo 5 phase and a Zr-containing plate-like phase. Was done.

【0024】本発明による供試材9,11の永久磁石の
微細組織写真(結晶のa面)を各々図1,図2に示す。
その時の格子像を現すナノ組織写真を各々図3,図4に
示す。写真より相隣りあうセルのセル中心間の距離は1
00〜400オングストロームである。等温時効時間の
増加とともに保磁力 ic も大きくなる関係があること
が分かる。Zr含有板状相がc軸方向に垂直に,即ちc
面と平行に多数存在している。Zr含有板状相とセル内
部のR2 Co17相のエネルギー分散型X線分析を行った
結果を各々図5,及び図6に示す。
FIGS. 1 and 2 show microstructure photographs (a-plane of the crystal) of the permanent magnets of the test materials 9 and 11 according to the present invention, respectively.
The nanostructure photographs showing the lattice image at that time are shown in FIGS. 3 and 4, respectively. The distance between the cell centers of adjacent cells is 1
00 to 400 angstroms. It can be seen that there is coercivity i H c is also largely related with the increase of the isothermal aging time. The Zr-containing plate-like phase is perpendicular to the c-axis direction,
There are many parallel to the plane. The results of the energy dispersive X-ray analysis of the Zr-containing plate phase and the R 2 Co 17 phase inside the cell are shown in FIGS. 5 and 6, respectively.

【0025】図5に示すように,Zr含有板状相が存在
する部分からは,Zrが多く検出されるが,図6に示す
セル内部のR2 Co17相からは,ほとんどZrは検出さ
れない。
As shown in FIG. 5, a large amount of Zr is detected from the portion where the Zr-containing plate-like phase exists, but almost no Zr is detected from the R 2 Co 17 phase in the cell shown in FIG. .

【0026】(実施例3)Sm25.7wt%,Cu
4.3wt%,Fe14.9wt%,Zr3.0wt%
および残部Coからなる組成の合金につき,実施例1と
同様にして溶解,粉砕,成型,焼結,溶体化処理,およ
び時効処理を施した。又,各永久磁石材料につき,ガス
含有量の測定を行った。その結果を磁気特性と合わせて
下記表3に示す。
(Example 3) Sm 25.7 wt%, Cu
4.3 wt%, Fe 14.9 wt%, Zr 3.0 wt%
The alloy having the composition consisting of Co and the balance Co was subjected to melting, pulverization, molding, sintering, solution treatment, and aging treatment in the same manner as in Example 1. The gas content of each permanent magnet material was measured. The results are shown in Table 3 below together with the magnetic properties.

【0027】[0027]

【表3】 上記表3の結果のように本発明の実施例3に係る永久磁
石は,炭素量が700ppm以下,酸素量3000pp
m以下のとき実用に供するBr, ic ,(BH)mを
示し,きわめて高い角型比を示すことがわかる。
[Table 3] As shown in Table 3, the permanent magnet according to Example 3 of the present invention has a carbon content of 700 ppm or less and an oxygen content of 3000 pp.
m when: Br for practical use, i H c, show the (BH) m, it can be seen that a very high squareness ratio.

【0028】(実施例4) Sm25.8wt%,Cu4.5wt%,Fe15.0
wt%,Zr3.0wt%および残部Coからなる組成
の合金につき,実施例1と同様にして溶解,粉砕,成
,焼結および溶体化処理を順次施した。次いで溶体化
処理後の急冷を下記表4に示される5種類の冷却速度,
30℃〜300℃/分の範囲内で行った。急冷後,不活
性雰囲気中で800℃の温度で300分加熱保持して等
温時効処理を行った。その結果を下記表4に示す。
(Example 4) Sm 25.8 wt%, Cu 4.5 wt%, Fe15.0
wt%, Zr3.0 wt%, and the balance of Co, the alloy was melted, pulverized and formed in the same manner as in Example 1.
Shape , sintering and solution treatment were sequentially performed. Next, the quenching after the solution treatment was performed by using five types of cooling rates shown in Table 4 below.
The test was performed within a range of 30 ° C. to 300 ° C./min. After quenching, an isothermal aging treatment was performed by heating and holding at 800 ° C. for 300 minutes in an inert atmosphere. The results are shown in Table 4 below.

【0029】[0029]

【表4】 上記表4の結果のように本発明の実施例4に係る永久磁
石は,溶体化後の急冷速度を60℃/分以上のとき実用
に供するBr, ic ,(BH)mを示し,きわめて高
い角型比を示すことがわかる。
[Table 4] Permanent magnets according to a fourth embodiment of the present invention as a result of the above Table 4 shows Br subjecting quench rate after the solution practically 60 ° C. / min or more when, i H c, the (BH) m, It turns out that it shows a very high squareness ratio.

【0030】[0030]

【発明の効果】以上述べた様に,本発明においては,溶
解,微粉砕,焼結,溶体化処理後急冷し,等温時効を施
すことにより,微細構造としてセル構造を有し,セル内
部がR2 Co17の主成分相をもち,セル境界部がRCo
5 を主成分とする相と,Zr含有板状相との2つの相に
よって囲まれた微細構造をもち,高保磁力,及び高エネ
ルギー積等の磁気特性に優れた永久磁石とその製造方法
の提供が可能となった。
As described above, the present invention has a cell structure as a fine structure by quenching after melting, pulverizing, sintering, and solution treatment, and performing isothermal aging. It has a main phase of R 2 Co 17 and the cell boundary is RCo
Provided is a permanent magnet having a microstructure surrounded by two phases of a phase containing 5 as a main component and a Zr-containing plate-like phase, and having excellent magnetic properties such as a high coercive force and a high energy product, and a method for producing the same. Became possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例2に係る微細組織をもつ永久磁
石の金属組織を示す透過型電子顕微鏡写真である。
FIG. 1 is a transmission electron micrograph showing a metal structure of a permanent magnet having a fine structure according to Example 2 of the present invention.

【図2】本発明の実施例2に係る微細組織をもつ永久磁
石の金属組織を示す透過型電子顕微鏡写真である。
FIG. 2 is a transmission electron micrograph showing a metal structure of a permanent magnet having a fine structure according to Example 2 of the present invention.

【図3】図1の永久磁石のナノ組織を説明するための金
属組織を示す透過型電子顕微鏡写真である。
FIG. 3 is a transmission electron micrograph showing a metal structure for explaining a nanostructure of the permanent magnet of FIG. 1;

【図4】図2の永久磁石のナノ組織を説明するための金
属組織を示す透過型電子顕微鏡写真である。
FIG. 4 is a transmission electron micrograph showing a metal structure for explaining a nanostructure of the permanent magnet of FIG. 2;

【図5】図1の永久磁石のそれぞれZr含有板状相とセ
ル内部のR2 Co17相のエネルギー分散分析図である。
5 is an energy dispersion analysis diagram of the Zr-containing plate-like phase of the permanent magnet of FIG. 1 and the R 2 Co 17 phase inside the cell.

【図6】図2の永久磁石のそれぞれZr含有板状相とセ
ル内部のR2 Co17相のエネルギー分散分析図である。
FIG. 6 is an energy dispersion analysis diagram of the Zr-containing plate-like phase of the permanent magnet of FIG. 2 and the R 2 Co 17 phase inside the cell.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−50441(JP,A) 特開 平6−17184(JP,A) 特開 昭58−139406(JP,A) 特公 平2−52413(JP,B2) (58)調査した分野(Int.Cl.7,DB名) H01F 1/032 - 1/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-50441 (JP, A) JP-A-6-17184 (JP, A) JP-A-58-139406 (JP, A) 52413 (JP, B2) (58) Fields surveyed (Int. Cl. 7 , DB name) H01F 1/032-1/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量百分率で,23〜27%のR(Rは
Yを含む希土類金属の内の少なくとも1種)と3〜6%
(但し,6は含まず)のCuと10〜25%のFeと
1.5〜4%のZrと残部が実質的にCoとから成る合
金であって,前記合金は希土類コバルトを主体とする金
属間化合物を含有するとともにセル中心間距離が500
オングストローム以下であるセル構造を備えた微細構造
をもち,前記微細構造において前記金属間化合物の結晶
のc面に平行にZr含有板状相が存在することを特徴と
する永久磁石。
(1) a weight percentage of 23 to 27% of R (R is at least one of rare earth metals including Y) and 3 to 6%
(Excluding 6) is an alloy composed of Cu, 10 to 25% of Fe, 1.5 to 4% of Zr, and the balance substantially Co, and the alloy is mainly composed of rare earth cobalt. Contains an intermetallic compound and has a cell center distance of 500
Microstructure with cell structure less than Angstroms
The rice cake, said permanent magnet, characterized in that parallel to Zr-containing plate-like phase to the c-plane of the crystal of the intermetallic compound in the microstructure is present.
【請求項2】 請求項1記載の永久磁石において,前
セル構造におけるセル内部はRCo17の主成分相を
もち且つセル境界部はRCoを主成分とする相と前記
板状相との2つの相によって囲まれた微細組織を備えて
いることを特徴とする永久磁石。
Wherein Oite permanent magnet according to claim 1, cell interior definitive before SL cell structure has and cell boundary portion main ingredient phase of R 2 Co 17 the phase composed mainly of RCo 5 wherein A permanent magnet having a microstructure surrounded by two phases of a plate-like phase.
【請求項3】 請求項1記載の永久磁石において,前記
合金中の含有炭素量が多くとも700ppmで,且つ含
有酸素量が多くとも3000ppmであることを特徴と
する永久磁石。
3. The permanent magnet according to claim 1, wherein the content of carbon in the alloy is at most 700 ppm, and the content of oxygen is at most 3000 ppm.
【請求項4】 請求項1記載の永久磁石を製造する方法
であって、重量百分率で,23〜27%のR(RはYを
含む希土類金属の内の少なくとも1種)と3〜6%(但
し,6は含まず)のCuと10〜25%のFeと,1.
5〜4%のZrと残部が実質的にCoとから成る合金組
成を有する永久磁石を製造する方法であって,前記合金
組成となるように原料を配合し,高周波溶解炉により多
くとも1×10−2Torrの真空中において溶解して
母合金インゴットを得る溶解工程と,得られた母合金イ
ンゴットを粗粉砕して粗粉砕粉末を得る粗粉砕工程と,
前記粗粉砕粉末を不活性雰囲気中で微粉砕して平均粒径
が1〜5μmの微粉砕粉末を得る微粉砕工程と,前記微
粉砕粉末を7〜22KOeの磁場中で磁場に垂直方向又
は平行方向に0.5〜2.0トン/cmの加圧力によ
るプレスして成形体を得るプレス工程と,前記成形体
を,多くとも1×10−2Torrの真空中,不活性雰
囲気中及びこれらの組み合わせの雰囲気の内のいずれか
の雰囲気中において,1150〜1250℃の焼結温度
で焼結して焼結体を得る焼結工程と,前記雰囲気中にて
前記焼結温度よりも10〜50℃低い温度で熱処理する
溶体化工程と,前記溶体化工程の後,少なくとも60℃
/分の冷却速度で急冷する急冷工程と,前記急冷工程の
後,多くとも1×10−2Torrの真空中又は不活性
雰囲気中で,700〜870℃の温度で少なくとも1時
間加熱保持して時効処理する時効処理工程とを含むこと
を特徴とする永久磁石の製造方法。
4. A method for producing a permanent magnet according to claim 1.
A is, in weight percent, of 23 to 27% R (R is at least one of rare earth metals including Y) and 3-6% (however, 6 is not included) of Cu and 10% to 25% of Fe and 1.
A method for producing a permanent magnet having an alloy composition consisting of 5 to 4% of Zr and the balance being substantially Co, wherein raw materials are blended so as to have the alloy composition, and at most 1 × A melting step of obtaining a master alloy ingot by melting in a vacuum of 10 -2 Torr, a coarse pulverizing step of coarsely pulverizing the obtained mother alloy ingot to obtain a coarsely pulverized powder,
A finely pulverizing step in which the coarsely pulverized powder is finely pulverized in an inert atmosphere to obtain a finely pulverized powder having an average particle size of 1 to 5 μm, and the finely pulverized powder is perpendicular or parallel to the magnetic field in a magnetic field of 7 to 22 KOe. Pressing in a direction with a pressing force of 0.5 to 2.0 ton / cm 2 to obtain a compact, and pressing the compact in a vacuum of at most 1 × 10 −2 Torr, in an inert atmosphere, A sintering step of sintering at a sintering temperature of 1150 to 1250 ° C. in any one of the atmospheres of these combinations to obtain a sintered body; A solution treatment step of performing heat treatment at a temperature lower by 5050 ° C., and after the solution treatment step, at least 60 ° C.
Quenching step of quenching at a cooling rate of / min, and after the quenching step, heating and holding at a temperature of 700 to 870 ° C. for at least 1 hour in a vacuum or an inert atmosphere of at most 1 × 10 −2 Torr. An aging treatment step of performing aging treatment.
JP33514994A 1994-12-21 1994-12-21 Permanent magnet and its manufacturing method Expired - Lifetime JP3303044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33514994A JP3303044B2 (en) 1994-12-21 1994-12-21 Permanent magnet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33514994A JP3303044B2 (en) 1994-12-21 1994-12-21 Permanent magnet and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH08181009A JPH08181009A (en) 1996-07-12
JP3303044B2 true JP3303044B2 (en) 2002-07-15

Family

ID=18285317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33514994A Expired - Lifetime JP3303044B2 (en) 1994-12-21 1994-12-21 Permanent magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3303044B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5586645B2 (en) * 2012-03-15 2014-09-10 株式会社東芝 Permanent magnet and motor and generator using the same
JP5558596B2 (en) * 2013-02-04 2014-07-23 株式会社東芝 Permanent magnet and motor and generator using the same
CN104718585B (en) * 2013-09-13 2018-04-27 株式会社东芝 Permanent magnet and the motor and generator using the permanent magnet
WO2015140832A1 (en) * 2014-03-19 2015-09-24 株式会社 東芝 Permanent magnet, motor and generator
US10328064B2 (en) 2014-12-23 2019-06-25 Fgh Biotech, Inc. Compositions of fatostatin based heterocyclic compounds and uses thereof
ES2912921T3 (en) 2016-04-29 2022-05-30 Fgh Biotech Inc Disubstituted pyrazole compounds for the treatment of diseases
EP3510027B1 (en) 2016-09-07 2022-11-02 FGH BioTech, Inc. Di-substituted pyrazole compounds for the treatment of diseases
JP6448675B2 (en) * 2017-02-03 2019-01-09 株式会社東芝 Permanent magnets, motors, generators, and cars

Also Published As

Publication number Publication date
JPH08181009A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
US4814139A (en) Permanent magnet having good thermal stability and method for manufacturing same
US4601875A (en) Process for producing magnetic materials
EP0177371B1 (en) Process for manufacturing a permanent magnet
JPH0789521B2 (en) Rare earth iron permanent magnet
JP4605013B2 (en) R-T-B system sintered magnet and rare earth alloy
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2720040B2 (en) Sintered permanent magnet material and its manufacturing method
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPH10106875A (en) Manufacturing method of rare-earth magnet
JP4170468B2 (en) permanent magnet
JPH1070023A (en) Permanent magnet and manufacture thereof
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH1092617A (en) Permanent magnet and its manufacture
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH0146575B2 (en)
JPH0146574B2 (en)
JPH045739B2 (en)
JPS61264133A (en) Permanent magnet alloy and its manufacture
JPH0252413B2 (en)
JPH11297518A (en) Pare-earth magnet material
JPH045737B2 (en)
JPS62257704A (en) Permanent magnet
JPH0227425B2 (en)
JPH07245206A (en) Powder for rare-earth permanent magnet and its manufacturing method
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020327

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140510

Year of fee payment: 12

EXPY Cancellation because of completion of term