JPH0227425B2 - - Google Patents

Info

Publication number
JPH0227425B2
JPH0227425B2 JP62245243A JP24524387A JPH0227425B2 JP H0227425 B2 JPH0227425 B2 JP H0227425B2 JP 62245243 A JP62245243 A JP 62245243A JP 24524387 A JP24524387 A JP 24524387A JP H0227425 B2 JPH0227425 B2 JP H0227425B2
Authority
JP
Japan
Prior art keywords
hours
stage aging
treatment
present
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62245243A
Other languages
Japanese (ja)
Other versions
JPS6487715A (en
Inventor
Takaaki Yasumura
Teruo Kyomya
Yasutoshi Mizuno
Kazuo Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP62245243A priority Critical patent/JPS6487715A/en
Publication of JPS6487715A publication Critical patent/JPS6487715A/en
Publication of JPH0227425B2 publication Critical patent/JPH0227425B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、希土類元素と遷移金属を主成分とす
るR2M17系(但しRはイツトリウムを含む希土類
元素、Mは主として遷移金属である)永久磁石材
料を製造する方法に関し、更に詳しくは、Mとし
てコバルト、マンガン、鉄を含み、Mの量(z)
を少なくし適切な熱処理を行うことによつて保磁
力を実用範囲まで高めた希土類磁石合金の製造方
法に関するものである。 [従来の技術] R―Co―Mn―Fe系の2―17型希土類永久磁石
合金は従来公知である。この種の材料としては例
えば次の一般式、 R(Co1-u-v-w Mnu Fev Twz ただし、 0<u≦0.30 0.05<v≦0.50 0.001<w≦0.20 7.5≦z<8.5 Rは希土類元素の1種または2種以上、Tは
Ge,Al,Si,Mg,Zn,Cd,In,Sn,Mo,W,
V,Nb,Taの1種または2種以上、 で表される材料がある(例えば特公昭60−43900
号、特公昭61−8140号、特公昭61−36361号、特
公昭61−36362号など)。 これらの永久磁石の製法は、アルゴンガス中に
おいて高周波加熱炉で溶解し粉砕した後、磁場中
でプレス成形する。そして各組成に応じて1150〜
1250℃で焼結しアルゴン中で急冷する。その後
1100〜1150℃で1時間、700〜800℃で1時間、
400〜500℃で8〜10時間熱処理を施して磁石とす
る。 [発明が解決しようとする問題点] 一般的にはMnを含むR―Co―Mn―Fe系合金
では高い保磁力が得られ難い問題がある。そこで
従来技術では前記一般式において、zの値を7.5
以上に設定しないと必要な保磁力(iHc)を有す
る磁石が得られなかつた。 本発明の目的は、z値が7.5未満という低い領
域でも保磁力を実用範囲まで高めることができ、
高エネルギー積を発生させうるようにした永久磁
石材料の製造方法を提供することにある。 [問題点を解決するための手段] 本発明者はR―Co―Mn―Fe系の永久磁石合金
において永久磁石としての保磁力を実用範囲まで
高め、高エネルギー積を得る方法について種々検
討した結果、特定の組成領域で且つ特定の焼結・
溶体化処理並びに2段時効処理の条件を採用する
ことによつて前記目的を達成できることを見出
し、本発明を完成させるに至つたものである。 即ち本発明において原料組成は、一般式 R(Co1-u-v-w Mnu Fev Twz ただし、 0<u≦0.30 0.05<v≦0.50 0.001<w≦0.20 u+v+w<1 6.0≦z<7.5 Rはイツトリウムを含む希土類元素の1種また
は2種以上、TはV,Nb,Ta,Mo,もしくは
Zrから選ばれる1種または2種以上、 からなる合金である。 本発明ではこのような組成の合金を1150〜1250
℃で焼結し、1100〜1240℃で且つ焼結温度より10
〜50℃低い温度で溶体化処理を行い、その後第1
段時効を500〜1000℃で等温処理し、第2段時効
を第1段時効より50℃以上高い温度で等温処理
し、続いて毎分0.2〜10℃の冷却速度で連続的に
300〜600℃まで冷却する。 本発明の特徴は、永久磁石を構成する金属元素
の組成と焼結・溶体化処理および時効処理方法と
の結合にある。 本発明における合金の組成比率や処理条件等は
全て各種実験結果に基づいている。前記の一般式
において、zの値を7.5未満としたのは、本発明
方法のような焼結・溶体化処理並びに時効処理方
法を採用すると従来技術のようなz値が7.5以上
の場合にはかえつて保磁力が低下することが判明
したからである。本発明においてz値の範囲は
6.0≦z<7.5であるが、より好ましい範囲は7.0≦
z<7.5程度である。 また本発明において特に二段時効を採用し、そ
の第2段時効を第1段時効より50℃以上高い温度
で等温処理するのは、前記のようにz値が7.5未
満の場合には、そのような処理を行わないと保磁
力を実用範囲まで高めることができないからであ
る。 [実施例 1−1] (前工程) 必要とする合金を高周波溶解炉で溶解し、ジヨ
ークラツシヤによつて粗粉砕したのちジエツトミ
ルにより微粉砕し、この微粉砕粉を磁場の強さ
15kOe、成形圧3ton/cm2で圧縮成形した。 (合金の組成) Sm(Co0.69Mn0.09Fe0.20V0.027.4 (熱処理) 焼結を1180℃で5時間、溶体化処理を1150℃で
5時間行い、第1段時効を700℃で1時間、第2
段時効を800℃で3時間行い、冷却速度1℃/分
で400℃まで冷却した。 (特性値) 得られた磁石の磁気特性は次の通りである。 Br=11.2kOe iHc=8.0kOe bHc=6.7kOe (BH)max=25.7MGOe [実施例 1−2] (前工程) 実施例1−1に同じ。 (合金の組成) Sm(Co0.70Mn0.07Fe0.21Nb0.027.4 (熱処理) 焼結を1195℃で5時間、溶体化処理を1170℃で
5時間行い、第1段時効を600℃で1時間、第2
段時効を800℃で3時間行い、冷却速度1℃/分
で400℃まで冷却した。 (特性値) 得られた磁石の磁気特性は次の通りである。 Br=11.3kOe iHc=7.8kOe bHc=6.4kOe (BH)max=25.3MGOe [実施例 1−3] (前工程) 実施例1−1に同じ。 (合金の組成) Sm(Co0.70Mn0.08Fe0.20Ta0.027.4 (熱処理) 焼結を1185℃で5時間、溶体化処理を1160℃で
5時間行い、第1段時効を700℃で1時間、第2
段時効を800℃で3時間行い、冷却速度1℃/分
で400℃まで冷却した。 (特性値) 得られた磁石の磁気特性は次の通りである。 Br=11.2kOe iHc=7.6kOe bHc=5.8kOe (BH)max=25.4MGOe [実施例 1−4] (前工程) 実施例1−1に同じ。 (合金の組成) Sm(Co0.70Mn0.09Fe0.19Mo0.027.4 (熱処理) 焼結を1190℃で5時間、溶体化処理を1150℃で
5時間行い、第1段時効を600℃で1時間、第2
段時効を800℃で3時間行い、冷却速度1℃/分
で400℃まで冷却した。 (特性値) 得られた磁石の磁気特性は次の通りである。 Br=11.7kOe iHc=8.9kOe bHc=7.1kOe (BH)max=26.8MGOe [実施例 1−5] (前工程) 実施例1−1に同じ。 (合金の組成) Sm(Co0.70Mn0.08Fe0.20Zr0.027.4 (熱処理) 焼結を1185℃で5時間、溶体化処理を1140℃で
5時間行い、第1段時効を600℃で1時間、第2
段時効を800℃で3時間行い、冷却速度1℃/分
で400℃まで冷却した。 (特性値) 得られた磁石の磁気特性は次の通りである。 Br=11.9kOe iHc=8.2kOe bHc=6.9kOe (BH)max=26.4MGOe [実施例 1−6] (前工程) 実施例1−1に同じ。 (合金の組成) Sm(Co0.69Mn0.085Fe0.20Nb0.005Zr0.02)7.4 (熱処理) 焼結を1195℃で5時間、溶体化処理を1170℃で
5時間行い、第1段時効を600℃で1時間、第2
段時効を800℃で3時間行い、冷却速度1℃/分
で400℃まで冷却した。 (特性値) 得られた磁石の磁気特性は次の通りである。 Br=11.2kOe iHc=8.5kOe bHc=7.2kOe (BH)max=27.1MGOe 上記実施例1−1〜6の結果から、T(V,
Nb,Ta,Mo,Zr)の添加に応じて、適切な熱
処理を施すことにより希土類磁石として実用範囲
の磁気特性が生じることが判る。 [実施例 2] (前工程) 実施例1−1に同じ。 (合金の組成) Sm(Co0.69Mn0.09Fe0.20V0.20V0.02)7.4 (熱処理) 焼結を1180℃で5時間、溶体化処理を1150℃で
5時間行う。 その後、時効処理条件を種々変えて試料を作製
し、磁気特性を測定した。 <処理A>…従来技術 500〜1000℃の範囲で3時間等温処理し、冷却
速度1℃/分で400℃まで冷却した(第1図A参
照)。得られた磁石の磁気特性を第1表に示す。
[Industrial Application Field] The present invention manufactures an R 2 M 17- based permanent magnet material whose main components are rare earth elements and transition metals (where R is a rare earth element including yttrium, and M is mainly a transition metal). Regarding the method, in more detail, M includes cobalt, manganese, and iron, and the amount of M (z)
The present invention relates to a method for producing a rare earth magnet alloy whose coercive force is increased to a practical range by reducing the coercive force and performing appropriate heat treatment. [Prior Art] A 2-17 type rare earth permanent magnet alloy based on R—Co—Mn—Fe is conventionally known. Examples of this kind of material include the following general formula: R(Co 1-uvw Mn u Fev T w ) z However, 0<u≦0.30 0.05<v≦0.50 0.001<w≦0.20 7.5≦z<8.5 One or more rare earth elements, T is
Ge, Al, Si, Mg, Zn, Cd, In, Sn, Mo, W,
There are materials represented by one or more of V, Nb, and Ta (for example, Japanese Patent Publication No. 60-43900
Special Publication No. 61-8140, Special Publication No. 61-36361, Special Publication No. 36362, etc.). These permanent magnets are manufactured by melting and pulverizing in a high-frequency heating furnace in argon gas, and then press-forming in a magnetic field. and 1150~ depending on each composition
Sinter at 1250℃ and quench in argon. after that
1 hour at 1100-1150℃, 1 hour at 700-800℃,
Heat treatment is performed at 400 to 500°C for 8 to 10 hours to form a magnet. [Problems to be Solved by the Invention] Generally, there is a problem in that it is difficult to obtain a high coercive force with R—Co—Mn—Fe alloys containing Mn. Therefore, in the prior art, the value of z is set to 7.5 in the above general formula.
Unless it is set above, a magnet having the necessary coercive force (iHc) cannot be obtained. The purpose of the present invention is to be able to increase the coercive force to a practical range even in the low z-value region of less than 7.5,
An object of the present invention is to provide a method for manufacturing a permanent magnet material that can generate a high energy product. [Means for Solving the Problems] The present inventor has conducted various studies on methods for increasing the coercive force as a permanent magnet to a practical range and obtaining a high energy product in an R-Co-Mn-Fe-based permanent magnet alloy. , in a specific composition range and in a specific sintering process.
The inventors have discovered that the above object can be achieved by adopting the conditions of solution treatment and two-stage aging treatment, and have completed the present invention. That is, in the present invention, the raw material composition has the general formula R (Co 1-uvw Mnu Fe v T w ) z However, 0<u≦0.30 0.05<v≦0.50 0.001<w≦0.20 u+v+w<1 6.0≦z<7.5 R is one or more rare earth elements including yttrium, T is V, Nb, Ta, Mo, or
It is an alloy consisting of one or more selected from Zr. In the present invention, the alloy with such a composition is 1150 to 1250
Sintered at 1100-1240℃ and 10% below the sintering temperature
Solution treatment is performed at ~50℃ lower temperature, then the first
Stage aging is carried out isothermally at 500-1000℃, second-stage aging is carried out isothermally at a temperature 50℃ or more higher than the first-stage aging, followed by continuous cooling at a cooling rate of 0.2-10℃ per minute.
Cool to 300-600℃. The feature of the present invention lies in the combination of the composition of the metal elements constituting the permanent magnet and the sintering/solution treatment and aging treatment methods. The alloy composition ratio, processing conditions, etc. in the present invention are all based on the results of various experiments. In the above general formula, the value of z is set to be less than 7.5 because if the sintering/solution treatment and aging treatment method such as the method of the present invention is adopted, if the z value is 7.5 or more as in the conventional technology, This is because it has been found that the coercive force actually decreases. In the present invention, the range of z values is
6.0≦z<7.5, but the more preferable range is 7.0≦
z<7.5. Furthermore, in the present invention, two-stage aging is particularly adopted, and the second-stage aging is isothermally treated at a temperature higher than the first-stage aging by 50°C or more. This is because unless such treatment is performed, the coercive force cannot be increased to a practical level. [Example 1-1] (Pre-process) The required alloy is melted in a high frequency melting furnace, coarsely pulverized by a geo crusher, and then finely pulverized by a jet mill.
Compression molding was performed at 15 kOe and a molding pressure of 3 ton/cm 2 . (Alloy composition) Sm (Co 0.69 Mn 0.09 Fe 0.20 V 0.02 ) 7.4 (Heat treatment) Sintering was performed at 1180°C for 5 hours, solution treatment was performed at 1150°C for 5 hours, and first stage aging was performed at 700°C for 1 hour. , second
Stage aging was performed at 800°C for 3 hours and cooled to 400°C at a cooling rate of 1°C/min. (Characteristic values) The magnetic properties of the obtained magnet are as follows. Br=11.2kOe iHc=8.0kOe bHc=6.7kOe (BH)max=25.7MGOe [Example 1-2] (Pre-process) Same as Example 1-1. (Alloy composition) Sm (Co 0.70 Mn 0.07 Fe 0.21 Nb 0.02 ) 7.4 (Heat treatment) Sintering was performed at 1195°C for 5 hours, solution treatment was performed at 1170°C for 5 hours, and first stage aging was performed at 600°C for 1 hour. , second
Stage aging was performed at 800°C for 3 hours and cooled to 400°C at a cooling rate of 1°C/min. (Characteristic values) The magnetic properties of the obtained magnet are as follows. Br=11.3kOe iHc=7.8kOe bHc=6.4kOe (BH)max=25.3MGOe [Example 1-3] (Pre-process) Same as Example 1-1. (Alloy composition) Sm (Co 0.70 Mn 0.08 Fe 0.20 Ta 0.02 ) 7.4 (Heat treatment) Sintering was performed at 1185°C for 5 hours, solution treatment was performed at 1160°C for 5 hours, and first stage aging was performed at 700°C for 1 hour. , second
Stage aging was performed at 800°C for 3 hours and cooled to 400°C at a cooling rate of 1°C/min. (Characteristic values) The magnetic properties of the obtained magnet are as follows. Br=11.2kOe iHc=7.6kOe bHc=5.8kOe (BH)max=25.4MGOe [Example 1-4] (Pre-process) Same as Example 1-1. (Alloy composition) Sm (Co 0.70 Mn 0.09 Fe 0.19 Mo 0.02 ) 7.4 (Heat treatment) Sintering was performed at 1190°C for 5 hours, solution treatment was performed at 1150°C for 5 hours, and first stage aging was performed at 600°C for 1 hour. , second
Stage aging was performed at 800°C for 3 hours and cooled to 400°C at a cooling rate of 1°C/min. (Characteristic values) The magnetic properties of the obtained magnet are as follows. Br=11.7kOe iHc=8.9kOe bHc=7.1kOe (BH)max=26.8MGOe [Example 1-5] (Pre-process) Same as Example 1-1. (Alloy composition) Sm (Co 0.70 Mn 0.08 Fe 0.20 Zr 0.02 ) 7.4 (Heat treatment) Sintering was performed at 1185°C for 5 hours, solution treatment was performed at 1140°C for 5 hours, and first stage aging was performed at 600°C for 1 hour. , second
Stage aging was performed at 800°C for 3 hours and cooled to 400°C at a cooling rate of 1°C/min. (Characteristic values) The magnetic properties of the obtained magnet are as follows. Br=11.9kOe iHc=8.2kOe bHc=6.9kOe (BH)max=26.4MGOe [Example 1-6] (Pre-process) Same as Example 1-1. (Alloy composition) Sm (Co 0.69 Mn 0.085 Fe 0.20 Nb 0.005 Zr0.02 )7.4 (Heat treatment) Sintering was performed at 1195°C for 5 hours, solution treatment was performed at 1170°C for 5 hours, and the first stage aging was performed at 600°C. 1 hour, 2nd
Stage aging was performed at 800°C for 3 hours and cooled to 400°C at a cooling rate of 1°C/min. (Characteristic values) The magnetic properties of the obtained magnet are as follows. Br=11.2kOe iHc=8.5kOe bHc=7.2kOe (BH)max=27.1MGOe From the results of Examples 1-1 to 6 above, T(V,
It can be seen that by applying appropriate heat treatment depending on the addition of Nb, Ta, Mo, Zr), magnetic properties within the practical range as a rare earth magnet can be produced. [Example 2] (Pre-process) Same as Example 1-1. (Alloy composition) Sm (Co 0.69 Mn 0.09 Fe 0.20 V 0.20 V0.02) 7.4 (Heat treatment) Sintering is performed at 1180°C for 5 hours, and solution treatment is performed at 1150°C for 5 hours. Thereafter, samples were prepared under various aging treatment conditions and their magnetic properties were measured. <Treatment A>...Prior art The material was subjected to isothermal treatment in the range of 500 to 1000°C for 3 hours, and cooled to 400°C at a cooling rate of 1°C/min (see Fig. 1A). The magnetic properties of the obtained magnet are shown in Table 1.

【表】 <処理B>…従来技術 800℃で3時間等温処理し冷却速度0.2〜9℃/
分で400℃まで冷却した(第1図B参照)。得られ
た磁石の磁気特性を第2表に示す。
[Table] <Treatment B>...Prior art Isothermal treatment at 800℃ for 3 hours, cooling rate 0.2~9℃/
It was cooled to 400°C in 1 minute (see Figure 1B). The magnetic properties of the obtained magnet are shown in Table 2.

【表】 <処理C>…本発明方法 第1段時効を700℃で1時間等温処理し、次い
で第2段時効を600〜1000℃の範囲で3時間等温
処理して、冷却速度1℃/分で400℃まで冷却し
た(第1図C参照)。得られた磁石の磁気特性を
第3表に示す。
[Table] <Treatment C>...Method of the present invention The first stage aging is performed isothermally at 700°C for 1 hour, and then the second stage aging is performed isothermally at a temperature of 600 to 1000°C for 3 hours, with a cooling rate of 1°C/ It was cooled to 400°C in 1 minute (see Figure 1C). The magnetic properties of the obtained magnet are shown in Table 3.

【表】 <処理D>…本発明方法 第1段時効を700℃で1時間等温処理し、次い
で第2段時効を800℃で3時間等温処理して、冷
却速度0.2〜9℃/分で400℃まで冷却した(第1
図D参照)。得られた磁石の磁気特性を第4表に
示す。
[Table] <Treatment D>...Method of the present invention The first stage aging was performed isothermally at 700°C for 1 hour, and then the second stage aging was performed isothermally at 800°C for 3 hours at a cooling rate of 0.2 to 9°C/min. Cooled to 400℃ (first
(See Figure D). The magnetic properties of the obtained magnet are shown in Table 4.

【表】 実施例2の結果から次のことが判る。処理A,
Bは従来の熱処理方法であり、これではzが7.5
未満の場合に保磁力は小さい。それに対して本発
明方法の処理C,Dではzが7.5未満の場合でも
高い保磁力が得られる。 [比較例] (前工程) 実施例1−1に同じ。 (合金の組成) Sm(Co0.69Mn0.087Fe0.20V0.0237.4 (熱処理) 焼結を1180℃で5時間、溶体化処理を1150℃で
5時間行つたものを、第1段時効を500〜800℃の
範囲で1時間等温処理し(もしくは第1段時効無
し)、続いて第2段時効を800℃で3時間行い、冷
却速度1℃/分で400℃まで冷却した。得られた
磁石の磁気特性を第5表に示す。
[Table] The following can be seen from the results of Example 2. Processing A,
B is the conventional heat treatment method, in which z is 7.5
The coercive force is small when it is less than . On the other hand, in treatments C and D of the method of the present invention, a high coercive force can be obtained even when z is less than 7.5. [Comparative Example] (Pre-process) Same as Example 1-1. (Alloy composition) Sm (Co 0.69 Mn 0.087 Fe 0.20 V 0.023 ) 7.4 (Heat treatment) Sintered at 1180℃ for 5 hours and solution treatment at 1150℃ for 5 hours, first stage aged at 500~ Isothermal treatment was carried out in the range of 800°C for 1 hour (or without first stage aging), followed by second stage aging at 800°C for 3 hours, and cooling to 400°C at a cooling rate of 1°C/min. Table 5 shows the magnetic properties of the obtained magnet.

【表】 このようにz値が7.5以上の場合には、本発明
のような2段時効処理を行うとかえつて保磁力が
低下してしまう。 [発明の効果] 本発明は上記のように特定の合金組成を採用し
特定の焼結・溶体化処理と2段時効処理条件を採
用したことによつて、前記一般式におけるz値が
7.5未満の低い組成領域であつても永久磁石に必
要な高い保磁力を発生させることができ、またル
ープの角型性を改善でき、その結果、高いエネル
ギー積を発生させ得る優れた効果が生じる。
[Table] In this way, when the z value is 7.5 or more, performing the two-stage aging treatment as in the present invention will actually reduce the coercive force. [Effects of the Invention] The present invention employs a specific alloy composition as described above, and employs specific sintering/solution treatment and two-stage aging treatment conditions, so that the z value in the general formula can be changed.
Even in a low composition range of less than 7.5, it is possible to generate the high coercive force required for a permanent magnet, and the squareness of the loop can be improved, resulting in an excellent effect that can generate a high energy product. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図A〜Dは実施例2における時効処理の温
度プログラムの説明図である。
FIGS. 1A to 1D are explanatory diagrams of temperature programs for aging treatment in Example 2.

Claims (1)

【特許請求の範囲】 1 一般式 R(Co1-u-v-w Mnu Fev Twz ただし、 0<u≦0.30 0.05<v≦0.50 0.001<w≦0.20 u+v+w<1 6.0≦z<7.5 Rはイツトリウムを含む希土類元素の1種また
は2種以上、TはV,Nb,Ta,Mo,もしくは
Zrから選ばれる1種または2種以上、 からなる組成の合金を、1150〜1250℃で焼結し、
1100〜1240℃で且つ焼結温度より10〜50℃低い温
度で液体化処理を行い、その後第1段時効を500
〜1000℃で等温処理し、第2段時効を第1段時効
より50℃以上高い温度で等温処理し、続いて毎分
0.2〜10℃の冷却速度で連続的に300〜600℃まで
冷却することを特徴とする永久磁石材料の製造方
法。
[Claims] 1 General formula R(Co 1-uvw Mn u Fe v T w ) zWhere : 0<u≦0.30 0.05<v≦0.50 0.001<w≦0.20 u+v+w<1 6.0≦z<7.5 One or more rare earth elements including yttrium, T is V, Nb, Ta, Mo, or
An alloy consisting of one or more selected from Zr is sintered at 1150-1250℃,
Liquefaction treatment is performed at a temperature of 1100 to 1240℃ and 10 to 50℃ lower than the sintering temperature, and then the first stage aging is performed for 500℃.
Isothermal treatment at ~1000℃, second stage aging at a temperature 50℃ or more higher than the first stage aging, followed by
A method for producing a permanent magnet material, characterized by continuous cooling to 300 to 600°C at a cooling rate of 0.2 to 10°C.
JP62245243A 1987-09-29 1987-09-29 Production of permanent magnet material Granted JPS6487715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62245243A JPS6487715A (en) 1987-09-29 1987-09-29 Production of permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62245243A JPS6487715A (en) 1987-09-29 1987-09-29 Production of permanent magnet material

Publications (2)

Publication Number Publication Date
JPS6487715A JPS6487715A (en) 1989-03-31
JPH0227425B2 true JPH0227425B2 (en) 1990-06-18

Family

ID=17130786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62245243A Granted JPS6487715A (en) 1987-09-29 1987-09-29 Production of permanent magnet material

Country Status (1)

Country Link
JP (1) JPS6487715A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442507A (en) * 1990-06-08 1992-02-13 Hitachi Metals Ltd Rare earth based permanent magnet and heat treatment thereof ad magnet body
CN106531383B (en) * 2016-11-08 2018-11-20 中国科学院宁波材料技术与工程研究所 Samarium-cobalt alloy material, samarium-cobalt alloy powder and preparation method thereof and SmCo base magnet

Also Published As

Publication number Publication date
JPS6487715A (en) 1989-03-31

Similar Documents

Publication Publication Date Title
US4814139A (en) Permanent magnet having good thermal stability and method for manufacturing same
EP0177371B1 (en) Process for manufacturing a permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPH10106875A (en) Manufacturing method of rare-earth magnet
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH1070023A (en) Permanent magnet and manufacture thereof
JPH0354805A (en) Rare-earth permanent magnet and manufacture thereof
EP0331517B1 (en) Method for manufacture of rare earth permanent magnet
JPH0227425B2 (en)
JPS6119084B2 (en)
JPH06163226A (en) Method of manufacturing rare earth element magnet
JPS63282239A (en) Permanent magnet alloy
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPS60165702A (en) Manufacture of permanent magnet
JPH0319289B2 (en)
JPS61143553A (en) Production of material for permanent magnet
JPH04323803A (en) Method of manufacturing rare-earth magnet
JPH0252413B2 (en)
JPS63157844A (en) Manufacture of permanent magnet material
JPS5848606A (en) Production of permanent magnet of rare earths
JPH06244012A (en) Manufacture of permanent magnet
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JPS62291902A (en) Manufacture of permanent magnet
JPS61164206A (en) Permanent magnet