JPS6119084B2 - - Google Patents

Info

Publication number
JPS6119084B2
JPS6119084B2 JP57113683A JP11368382A JPS6119084B2 JP S6119084 B2 JPS6119084 B2 JP S6119084B2 JP 57113683 A JP57113683 A JP 57113683A JP 11368382 A JP11368382 A JP 11368382A JP S6119084 B2 JPS6119084 B2 JP S6119084B2
Authority
JP
Japan
Prior art keywords
temperature
solution treatment
sintering
heat treatment
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57113683A
Other languages
Japanese (ja)
Other versions
JPS594107A (en
Inventor
Tadakuni Sato
Kazuhiro Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP57113683A priority Critical patent/JPS594107A/en
Publication of JPS594107A publication Critical patent/JPS594107A/en
Publication of JPS6119084B2 publication Critical patent/JPS6119084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、R2Co17金属間化合物(ここでRは
イツトリウム及び希土類元素の少なくとも一種を
表す)を主体とするR−Co−Cu−Fe系粉末焼結
型永久磁石材料の製造方法に関するものである。 R−Co−Cu−Fe合金磁材料としては、従来で
はCu10wt%程度以上、Fe6wt%以下とするのが
普通であつた。その理由はCuの添加量がこれに
より少ない場合、あるいはFeの添加量がこれに
より多い場合には保磁力lHcが低下することによ
るものとされていた。 ところで、Cu10wt%程度とし、Fe3wt%以下
とすると、必然的にCoの含有量が増加し、高価
となる欠点がある。 また、このようにCu10wt%程度以上、Fe3wt
%以下とした従来のR−Co−Cu−Fe系永久磁石
においては、その製造過程において、溶体化処理
RCo5相の析出を抑えるため急冷しなければなら
なかつた。しかしながら、急冷は、それ自体困難
な操作であり、冷却媒体を多く必要とするばかり
でなく、製品に割れを生じ易く歩留を低くする原
因にもなつている。 また、従来の製造方法では、溶体化処理後、多
段時効を行つているが、その場合、高い保磁力が
得られるが、4πIs−H曲線2象限において角
型性が悪く肩が丸くなるという欠点があつた。 本発明者等は、同日付の別出願(特願昭57−
113,682号)において、粉末焼結型R2T17系磁石
合金において、Rを22.5〜27.5wt%,Feを15.0〜
23.0wt%,Cuを3.3〜5.0wt%,Zrを1.5〜3.5wt
%,Coを残部としたCoおよびCuの含有量の少な
い組成において、従来と同等以上の磁気特性を得
ながら、溶体化処理後の急冷を必要としない土類
磁石合金としてその製造方法を提案している。 本発明は、上記組成の磁石合金の特性を更に向
上させる製造方法を提供し、前述の欠点を解決す
ることを目的とする。 本発明の製造方法は、R2T14系磁石合金(ここ
で、Rはイツトリウム及び希土類元素、Tは遷移
金属を表す。)を粉末冶金法によつて製造する方
法において、Rを22.5〜27.5wt%,Feを15.0〜
23.0wt%,Cuを3.3〜5.0wt%,Zrを1.5〜3.5wt
%,Coを残部とする合金粉末を作り、該合金粉
末を加圧成形して、1170℃〜1230℃で焼結した
後、1130℃〜1200℃で溶体化処理を行ない、その
後、前記焼結温度と同じ温度での熱処理と前記溶
体化処理温度と同じ温度での熱処理を繰り返し、
その後600℃〜950℃で0.2〜30時間保持した後、
0.05〜5℃/分範囲の冷却速度で500℃以下まで
冷却することを特徴とする希土類コバルト系磁石
の製造方法である。 次に、前述した特願昭57〜113682号)の希土類
磁石の製造法を例1として説明する。 例 1 Smが22.0〜28.0wt%,Feが15.0〜24.0wt%,
Cuが3.0〜5.0wt%,Zrが1.5〜3.5wt%,残部Co
の組成で示される合金となるように原料を調合
し、この混合物をアルゴン雰囲気中で、高周波加
熱によりR2T17系合金を溶解した。この合金を粗
粉砕し、ボールミルを用いて平均粒径約4μmに
微粉砕した。 この粉末を10kOeの磁場中、1ton/cm2の圧力で
成形した。成形物をAr雰囲気中、1170℃〜1230
℃で1〜2時間焼結した後、1130℃〜1200℃で溶
体化処理を行つた後、ブロワーで1500℃〜1000
℃/時間で空冷した。 次にこの試料を600〜950℃で0.2〜30時間保持
した後0.05〜5℃/分の範囲の冷却速度で500℃
以下まで冷却した。試料の組成を種種変化させた
場合の磁気特性を夫々、第1図、第2図、第3
図、第4図に示す。 第1図はSmを22.0〜28.0wt%と変え、
Fe19.0wt%,Cu4.5wt%,Zr2.6wt%残部Coとし
た場合の特性である。第2図は、Sm26.0wt%,
Feを15.0〜24.wt%と変え、Cu4.8wt%,Zr2.4wt
%、残部Coとした場合である。第3図は、
Sm26.3wt%,Fe20.5wt%,Cuを3.0〜5.0wt%を
変え、Zr2.5wt%、残部Coとした場合である。第
4図はSm26.2wt%,Fe19.5wt%,Cu4.9wt%,
Zrを1.5〜3.5wt%と変え、残部Coとした場合であ
る。第1図に関して、土類金属のRとしてSmを
使用した場合、その量が22.5%以下あるいは27.5
%以上ではBrおよびHcが低下し、従つて、
(BH)maxも低下する。この結果Smの量は22.5
〜27.5wt%と限定される。 第2図に関して、Fe含有量が23.0%よりも多
くなると保磁力lHcが低下し、(BH)maxも急激
に低下する。また15.0%より少ないとlHcが
10kOeにみたくなる。従つてFeは15〜23%とす
る。 第3図に関して、Cuは3.3%以下では1Hcが低
下し5.0%以上とするBrが低下してしまう。また
Cuが5.0%より多いと、溶体化処理後の冷却時に
RCo5相が析出しやすくなり、急冷を必要とす
る。従つてCuは3.3〜5.0wt%とする。 第4図に関しては、Zrの含有量が1.5〜3.5wt%
の範囲を越えるとBrおよびエネルギー積(BH)
maxが低下してしまう。 本発明は、例1で示したごときR22.5〜27.5wt
%,Fe15.0〜23.0wt%,Cu3.3〜5.0wt%,Zr1.5
〜3.5wt%,Co残部とする焼結型磁石の磁気特性
を向上させる製造方法を提供するものである。 従来、希土類コバルト磁石の焼結及び溶体化処
理は第5図に示すような時間−温度のプログラム
で処理されるのが一般的であつたが、本発明は、
前述のような組成において、第5図に示すような
焼結、溶体化処理を行なつた後に、第6図に示す
ような熱処理を行なうものである。この熱処理は
前述の焼結温度T1(但しT1は1170℃〜1230℃)
と同じ温度範囲の温度T3まで加熱して保持し、
さらに前記溶体化処理温度T2(但し、T2は1130
℃〜1200℃)と同じ温度範囲の温度T4で保持
し、冷却後、再びT5まで加熱(但しT5は600〜
950℃)して保持時間tAを0.2〜30時間とするよ
う保持後、冷却速度Aを0.05〜5℃/分の範囲と
してT6(500℃以下)まで冷却することによつて
角形比を改善させ(BH)maxを向上させるもの
である。 以下本発明の実施例について述べる。 実施例 1 Smが25.7wt%,Feが19.0wt%,Cuが4.9wt
%,Zrが2.4wt%Co残部なる合金を前述の例1と
同様にして溶解、粉砕、磁場成形した。この成形
物をAr雰囲気中、1210℃で1時間焼結した後、
1180℃で1時間溶体化処理を行なつた。その時の
特性は表1のaでありさらにその試料を1210℃で
0.5時間保持した後、1180℃で1時間熱処理を行
なつた。この試料を850℃で6時間保持した後、
0.05〜5℃/分範囲の冷却速度で500℃以下まで
冷却した。得られた磁気特性は表1のbの通りで
あつた。
The present invention relates to a method for manufacturing an R-Co-Cu-Fe powder sintered permanent magnet material mainly composed of an R 2 Co 17 intermetallic compound (where R represents at least one of yttrium and a rare earth element). It is. Conventionally, the R-Co-Cu-Fe alloy magnetic material usually has a Cu content of about 10 wt% or more and a Fe content of about 6 wt% or less. The reason for this was thought to be that when the amount of Cu added is smaller than this, or when the amount of Fe added is larger than this, the coercive force lHc decreases. By the way, if the Cu content is about 10 wt% and the Fe content is less than 3 wt%, the Co content will inevitably increase, which has the drawback of making it expensive. In addition, as shown above, Cu10wt% or more, Fe3wt%
% or less, the conventional R-Co-Cu-Fe permanent magnets do not undergo solution treatment during the manufacturing process.
Rapid cooling was required to suppress the precipitation of the RCo 5 phase. However, rapid cooling is itself a difficult operation and not only requires a large amount of cooling medium, but also tends to cause cracks in the product, resulting in a low yield. In addition, in the conventional manufacturing method, multi-stage aging is performed after solution treatment, but in that case, a high coercive force can be obtained, but the squareness is poor and the shoulders are rounded in the second quadrant of the 4πI s -H curve. There were flaws. The inventors have filed a separate application filed on the same date (Japanese Patent Application No. 1983-
No. 113, 682), in a powder sintered R 2 T 17 magnet alloy, R is 22.5 to 27.5 wt% and Fe is 15.0 to 27.5 wt%.
23.0wt%, Cu 3.3~5.0wt%, Zr 1.5~3.5wt
%, Co as the balance, with a low content of Co and Cu, we proposed a method for manufacturing it as an earth magnet alloy that does not require rapid cooling after solution treatment, while obtaining magnetic properties equivalent to or better than conventional ones. ing. The present invention aims to solve the above-mentioned drawbacks by providing a manufacturing method that further improves the characteristics of a magnetic alloy having the above-mentioned composition. The manufacturing method of the present invention is a method for manufacturing an R 2 T 14- based magnet alloy (where R represents yttrium and a rare earth element, and T represents a transition metal) by a powder metallurgy method, in which R is 22.5 to 27.5. wt%, Fe 15.0~
23.0wt%, Cu 3.3~5.0wt%, Zr 1.5~3.5wt
%, Co as the balance is made, the alloy powder is press-molded, sintered at 1170°C to 1230°C, and then subjected to solution treatment at 1130°C to 1200°C, and then the sintered repeating heat treatment at the same temperature as the temperature and heat treatment at the same temperature as the solution treatment temperature,
After that, after holding at 600℃~950℃ for 0.2~30 hours,
This is a method for producing a rare earth cobalt magnet characterized by cooling to 500°C or less at a cooling rate in the range of 0.05 to 5°C/min. Next, a method for producing a rare earth magnet according to the above-mentioned Japanese Patent Application No. 113682) will be explained as Example 1. Example 1 Sm is 22.0-28.0wt%, Fe is 15.0-24.0wt%,
Cu 3.0-5.0wt%, Zr 1.5-3.5wt%, balance Co
Raw materials were prepared to form an alloy having the composition shown below, and the R 2 T 17 alloy was melted in this mixture by high-frequency heating in an argon atmosphere. This alloy was coarsely ground and then finely ground to an average particle size of about 4 μm using a ball mill. This powder was compacted under a pressure of 1 ton/cm 2 in a magnetic field of 10 kOe. The molded product is heated to 1170°C to 1230°C in an Ar atmosphere.
After sintering at ℃ for 1 to 2 hours, solution treatment at 1130℃ to 1200℃, and then sintering at 1500℃ to 1000℃ with a blower.
Air cooled at °C/hour. This sample was then held at 600-950°C for 0.2-30 hours and then cooled to 500°C at a cooling rate ranging from 0.05-5°C/min.
Cooled down to below. Figures 1, 2, and 3 show the magnetic properties when the composition of the sample was varied in various ways.
It is shown in Fig. 4. In Figure 1, Sm is changed from 22.0 to 28.0wt%,
These are the characteristics when Fe is 19.0wt%, Cu is 4.5wt%, Zr is 2.6wt% and the balance is Co. Figure 2 shows Sm26.0wt%,
Fe is changed from 15.0 to 24.wt%, Cu4.8wt%, Zr2.4wt
%, and the balance is Co. Figure 3 shows
This is a case where Sm26.3wt%, Fe20.5wt%, and Cu are changed from 3.0 to 5.0wt%, and Zr2.5wt% and the balance is Co. Figure 4 shows Sm26.2wt%, Fe19.5wt%, Cu4.9wt%,
This is a case where Zr is changed to 1.5 to 3.5 wt% and the balance is Co. Regarding Figure 1, when Sm is used as the earth metal R, the amount is 22.5% or less or 27.5% or less.
% or more, Br and Hc decrease, and therefore,
(BH)max also decreases. As a result, the amount of Sm is 22.5
Limited to ~27.5wt%. Regarding FIG. 2, when the Fe content exceeds 23.0%, the coercive force lHc decreases and (BH)max also decreases rapidly. Also, if it is less than 15.0%, lHc
I want to see it at 10kOe. Therefore, Fe should be 15 to 23%. Regarding FIG. 3, when Cu is less than 3.3%, 1 Hc decreases, and when Cu is 5.0% or more, Br decreases. Also
If the Cu content is more than 5.0%, the
RCo 5 phase tends to precipitate, requiring rapid cooling. Therefore, Cu is set at 3.3 to 5.0 wt%. Regarding Figure 4, the Zr content is 1.5 to 3.5wt%.
Beyond the range of Br and energy product (BH)
max will decrease. The present invention uses R22.5 to 27.5wt as shown in Example 1.
%, Fe15.0~23.0wt%, Cu3.3~5.0wt%, Zr1.5
The purpose of the present invention is to provide a manufacturing method for improving the magnetic properties of a sintered magnet with a balance of Co of ~3.5 wt%. Conventionally, sintering and solution treatment of rare earth cobalt magnets were generally carried out using a time-temperature program as shown in FIG.
In the composition as described above, after performing sintering and solution treatment as shown in FIG. 5, heat treatment as shown in FIG. 6 is performed. This heat treatment is performed at the aforementioned sintering temperature T 1 (however, T 1 is 1170°C to 1230°C).
Heat and hold to temperature T 3 in the same temperature range as
Furthermore, the solution treatment temperature T 2 (however, T 2 is 1130
℃ ~ 1200℃), and after cooling, heat again to T 5 (however, T 5 is 600~
950℃) and held for a holding time tA of 0.2 to 30 hours, and then cooled to T 6 (below 500℃) at a cooling rate A of 0.05 to 5℃/min to improve the squareness ratio. (BH)max. Examples of the present invention will be described below. Example 1 Sm: 25.7wt%, Fe: 19.0wt%, Cu: 4.9wt
%, Zr with the balance being 2.4 wt% Co was melted, pulverized, and magnetically formed in the same manner as in Example 1 above. After sintering this molded product at 1210℃ for 1 hour in an Ar atmosphere,
Solution treatment was performed at 1180°C for 1 hour. The characteristics at that time are a in Table 1, and the sample was heated to 1210℃.
After holding for 0.5 hour, heat treatment was performed at 1180°C for 1 hour. After holding this sample at 850℃ for 6 hours,
Cooling was performed to below 500°C at a cooling rate ranging from 0.05 to 5°C/min. The magnetic properties obtained were as shown in Table 1b.

【表】 この様に1210℃焼結、1180℃で溶体化した場合
とさらに熱処理を加えた場合とを比べると熱処理
を加えた方が磁気特性がはるかに良い。 実施例 2 実施例1と同様にして作成した成形体を、Ar
雰囲気中1200℃で2時間焼結した後、1165℃で1
時間溶体化処理を行なつた。その時の磁気特性は
表2のaの通りである。この試料を1210℃で0.5
時間保持した後、1165℃で1時間熱処理を行なつ
た。この試料を800℃で10時間保持した後、2
℃/分の冷却速度で400℃以下まで冷却した。得
られた磁気特性は表2の通りであつた。
[Table] As shown above, when comparing the case of sintering at 1210℃ and solution treatment at 1180℃ with the case of further heat treatment, the magnetic properties are much better with heat treatment. Example 2 A molded body produced in the same manner as in Example 1 was treated with Ar
After sintering at 1200℃ for 2 hours in an atmosphere, sintering at 1165℃ for 1
A time solution treatment was performed. The magnetic properties at that time are as shown in a in Table 2. 0.5 at 1210℃
After holding for an hour, heat treatment was performed at 1165°C for 1 hour. After holding this sample at 800℃ for 10 hours,
It was cooled to below 400°C at a cooling rate of °C/min. The magnetic properties obtained are as shown in Table 2.

【表】 実施例 3 実施例1と同様にし作成した成形体を、Ar雰
囲気中1210℃で1時間焼結した後、1180℃で1時
間溶体化処理を行なつた。この時の磁気特性は表
3のaの通りである。この試料を1180℃で2時間
熱処理した後、830℃で5時間保持し、3℃/分
の冷却速度で500℃以下まで冷却した。得られた
磁気特性は表3のbの通りであつた。
[Table] Example 3 A molded body prepared in the same manner as in Example 1 was sintered at 1210°C for 1 hour in an Ar atmosphere, and then subjected to solution treatment at 1180°C for 1 hour. The magnetic properties at this time are as shown in a in Table 3. This sample was heat treated at 1180°C for 2 hours, held at 830°C for 5 hours, and cooled to below 500°C at a cooling rate of 3°C/min. The magnetic properties obtained were as shown in Table 3b.

【表】 この様に1210℃焼結、1180℃で溶体化した場合
とさらに熱処理を加えた場合とを比べると熱処理
を加えた方が磁気特性がはるかに良い。 この発明はR2T17系磁石合金(ここで、Rはイ
ツトリウム及び希土類元素Tは遷移金属を表
す。)を粉末冶金法によつて製造するにあたつ
て、Rを22.5〜27.5wt%,Feを15.0〜23.0wt%,
Cuを3.3〜5.0wt%,Zrを1.5〜3.5wt%,Coを残
部とする合金粉末を作り、1170℃〜1230℃で焼結
した後、1130℃〜1200℃で溶体化処理を行なつた
後、前記焼結温度及び溶体化処理温度での熱処理
を繰り返し、その後600℃〜950℃で0.2〜30時間
保持した後、0.05〜5℃/分範囲の冷却速度で
500℃以下まで冷却することにより高い保磁力を
得ることができその結果高エネルギー積が得られ
るという優れた効果を有している。 なお、溶体化処理後の冷却は急冷によらず空冷
(1500〜1000℃/時程度の冷却速度)でも異相
RC05の析出がなかつた。従つて急冷という困難
な方法を取らなくても良い。
[Table] As shown above, when comparing the case of sintering at 1210℃ and solution treatment at 1180℃ with the case of further heat treatment, the magnetic properties are much better with heat treatment. This invention relates to the production of an R 2 T 17 -based magnetic alloy (where R represents yttrium and the rare earth element T represents a transition metal) by a powder metallurgy method. Fe 15.0-23.0wt%,
An alloy powder containing 3.3 to 5.0 wt% Cu, 1.5 to 3.5 wt% Zr, and the balance Co was made and sintered at 1170°C to 1230°C, followed by solution treatment at 1130°C to 1200°C. After that, heat treatment was repeated at the sintering temperature and solution treatment temperature, and then held at 600°C to 950°C for 0.2 to 30 hours, and then cooled at a cooling rate in the range of 0.05 to 5°C/min.
It has the excellent effect of being able to obtain a high coercive force by cooling to 500°C or less, resulting in a high energy product. Note that cooling after solution treatment does not involve rapid cooling, but air cooling (cooling rate of about 1500 to 1000°C/hour) is also possible.
There was no precipitation of RC 05 . Therefore, there is no need to take the difficult method of rapid cooling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は、本発明の実施例の磁気特性を示
すグラフで、第1図はSmの量に対する最大エネ
ルギー積(BH)max、残留磁束密度Br、および
保磁力lHcの変化を示し、第2〜4図は、それぞ
れ、Fe,Cu、およびZrの量に対する(BH)
max,Br,lHcの変化を示すグラフである。第5
図は、従来の希土類磁石の製造における焼結−溶
体化処理の温度時間のプログラムを示す図で、第
6図は、溶体化処理後本発明によつて行なわれる
熱処理の温度時間プログララムを示す。
Figures 1 to 4 are graphs showing the magnetic properties of examples of the present invention, and Figure 1 shows changes in maximum energy product (BH) max, residual magnetic flux density Br, and coercive force lHc with respect to the amount of Sm, Figures 2 to 4 show (BH) for the amount of Fe, Cu, and Zr, respectively.
It is a graph showing changes in max, Br, and lHc. Fifth
The figure shows a temperature and time program for sintering and solution treatment in the production of conventional rare earth magnets, and FIG. 6 shows a temperature and time program for heat treatment performed according to the present invention after solution treatment. .

Claims (1)

【特許請求の範囲】[Claims] 1 R2T17系磁石合金(ここで、Rはイツトリウ
ム及び希土類元素、Tは遷移金属を表す。)を粉
末冶金法によつて製造する方法において、Rを
22.5〜27.5wt%,Feを15.0〜23.0wt%,Cuを3.3
〜5.0wt%,Zrを1.5〜3.5wt%,Coを残部とする
合金粉末を作り、該合金粉末を加圧成形して、
1170℃〜1230℃で焼結した後、1130℃〜1200℃で
溶体化処理を行ない、その後、前記焼結温度と同
じ温度範囲内の温度での熱処理と前記溶体化処理
温度と同じ温度範囲内の温度で熱処理を繰り返
し、その後600℃〜950℃で0.2〜30時間保持した
後、0.05〜5℃/分範囲の冷却速度で500℃以下
まで冷却することを特徴とする希土類コバルト系
磁石の製造方法。
1. In a method for producing an R 2 T 17 -based magnetic alloy (where R represents yttrium and a rare earth element, and T represents a transition metal) by a powder metallurgy method, R is
22.5-27.5wt%, Fe 15.0-23.0wt%, Cu 3.3
~5.0 wt%, 1.5 to 3.5 wt% Zr, and the balance Co alloy powder is made, and the alloy powder is press-molded,
After sintering at 1170°C to 1230°C, solution treatment is performed at 1130°C to 1200°C, followed by heat treatment at a temperature within the same temperature range as the sintering temperature and within the same temperature range as the solution treatment temperature. Production of a rare earth cobalt-based magnet characterized by repeated heat treatment at a temperature of , then held at 600°C to 950°C for 0.2 to 30 hours, and then cooled to 500°C or less at a cooling rate in the range of 0.05 to 5°C/min. Method.
JP57113683A 1982-06-30 1982-06-30 Manufacture of rare earth and cobalt group magnetic material Granted JPS594107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57113683A JPS594107A (en) 1982-06-30 1982-06-30 Manufacture of rare earth and cobalt group magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57113683A JPS594107A (en) 1982-06-30 1982-06-30 Manufacture of rare earth and cobalt group magnetic material

Publications (2)

Publication Number Publication Date
JPS594107A JPS594107A (en) 1984-01-10
JPS6119084B2 true JPS6119084B2 (en) 1986-05-15

Family

ID=14618526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57113683A Granted JPS594107A (en) 1982-06-30 1982-06-30 Manufacture of rare earth and cobalt group magnetic material

Country Status (1)

Country Link
JP (1) JPS594107A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214504A (en) * 1984-04-10 1985-10-26 Seiko Epson Corp Manufacture of rare earth magnet
JPH01151934A (en) * 1987-12-08 1989-06-14 Dai Ichi Kogyo Seiyaku Co Ltd Method for stabilizing dispersoid
CN112582121B (en) * 2019-09-27 2022-12-02 河北泛磁聚智电子元件制造有限公司 Preparation method of ultrahigh-performance sintered samarium-cobalt magnet

Also Published As

Publication number Publication date
JPS594107A (en) 1984-01-10

Similar Documents

Publication Publication Date Title
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPS6119084B2 (en)
JPH0319289B2 (en)
JPS6140738B2 (en)
JPH0475303B2 (en)
JPS619551A (en) Rare earth element-iron type permanent magnet alloy
JPH0227425B2 (en)
JPH045737B2 (en)
JPH06224015A (en) Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same
JPS61143553A (en) Production of material for permanent magnet
JPS6053107B2 (en) Rare earth magnet manufacturing method
JPS6358898B2 (en)
JPH05234733A (en) Sintered magnet
JPS62291902A (en) Manufacture of permanent magnet
JP3138927B2 (en) Rare earth magnet manufacturing method
JPH03198302A (en) Permanent magnet
JPS6334607B2 (en)
JPH0444404B2 (en)
JPS6238841B2 (en)
JPH08181010A (en) Rare earth sintered magnet
JPH0316766B2 (en)
JPS6142771B2 (en)