JPH0444404B2 - - Google Patents

Info

Publication number
JPH0444404B2
JPH0444404B2 JP59127288A JP12728884A JPH0444404B2 JP H0444404 B2 JPH0444404 B2 JP H0444404B2 JP 59127288 A JP59127288 A JP 59127288A JP 12728884 A JP12728884 A JP 12728884A JP H0444404 B2 JPH0444404 B2 JP H0444404B2
Authority
JP
Japan
Prior art keywords
solution treatment
temperature
sintering
powder
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59127288A
Other languages
Japanese (ja)
Other versions
JPS617608A (en
Inventor
Tadakuni Sato
Tsutomu Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP59127288A priority Critical patent/JPS617608A/en
Publication of JPS617608A publication Critical patent/JPS617608A/en
Publication of JPH0444404B2 publication Critical patent/JPH0444404B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、R2T17系磁石合金(ここでRは希土
類元素の少なくとも一種、Tは遷移金属の少なく
とも一種)からなる永久磁石を、粉末治金法によ
つて製造する方法に関するものである。希土類元
素にはイツトリウムが含まれることはもちろんで
ある。 〔従来の技術〕 希土類コバルト系磁石の中で、工業的に多く用
いられているものは、高い保磁力IHCを特徴とし
たSmCo5を代表とするRCo5系磁石と、高い残留
磁化(Br)を特徴としたSm2Co17を代表とする
上記R2T17系磁石である。R2T17系磁石において
は、RをSm、TをCoとし、Coの一部をFe、Ni、
Cu、Ti、Zr、Hf等の遷移金属で置換した合金
で、高いエネルギー積(BH)naxの磁石が実現さ
れている。これらの磁石は一般に粉末治金法によ
つて、製造されている。 R2T17系永久磁石は、粉末治金法によつて製造
する場合に、は、一般に粉末を成形して得られた
R2T17系磁石合金からなる粉末成形体を、液相焼
結した後、溶体化処理及び時効処理することによ
つて、製造される。 R2T17系磁石は、保磁力(IHCBHC)及び減磁
曲線の角形性、即ち4・(BA)nax/Br2を向上さ
せることにより、高い磁石特性が得られる。HC
および角形性に関しては、組成と溶体化処理の寄
与が大きい。 R2T17系磁石を粉末治金法によつて製造する場
合、一般には、焼結温度では合金の固体と液相が
混在し、焼結が進行していく。この液相は合金の
組成とも関係しており、ある温度以下になると消
失する。また温度が更に低くなると、Th2Zn17
相とCaCu5型相の2種の固相が存在することにな
り、従来の溶体化処理は焼結温度より数十℃低い
一定温度に保持して一段階だけ行なわれていた。 〔発明が解決しようとする問題点〕 このように従来の永久磁石の製造方法では、焼
結後の溶体化処理が、一定温度に保持されて一段
階しか行なわれていないので、保磁力IHCBHC
エネルギー積(BH)nax、角形性4・(BH)nax
Br2は比較的低い値しか得られず、高い磁石特性
を得ることができなかつた。 本発明の目的は、従来行なわれていた焼結後の
一段階の溶体化処理の代りに、焼結時に生成され
た液相の消失する温度範囲内において順次に溶体
化処理温度を低下させて複数段階に渡つて溶体化
処理を行なうことにより、従来法に比べIHCB
HC、(BH)nax、角形性の向上したR2T17系永久磁
石を得ることができるようにした永久磁石の製造
方法を提供することにある。 〔問題点を解決するための手段〕 本発明によれば、粉末を成形して得られた
R2T17系磁石合金(ここでRはイツトリウムを含
む希土類元素の少なくとも一種、Tは遷移金属の
少なくとも一種)からなる粉末成形体を、液相焼
結した後、溶体化処理及び時効処理することによ
つて、永久磁石を製造する方法において、前記溶
体化処理は、前記焼結時に生成される液相の消失
する温度範囲内において順次に溶体化処理温度を
低下させて複数段階に渡つて行うことを特徴とす
る永久磁石の製造方法が得られる。 〔実施例〕 次に本発明の実施例について図面を参照して説
明する。 実施例 1 Smが25.5wt%、Feが19.0wt%、Cuが4.8wt%、
Zrが2.5wt%、Coが残部となるように、アルゴン
雰囲気中で、高周波加熱により、合金を溶解し
た。次にこの合金を粗粉砕した後、ボールミルを
用いて平均粒径約4μmに微粉砕した。この粉末
を約30KOeの磁界中1ton/cm2の圧力で成形した。
この粉末成形体をAr雰囲気中1215℃で1時間焼
結した。この焼結体を焼結温度以下の温度で一段
目の溶体化処理を、1180℃より高く1205℃以下の
温度範囲内で、1時間保持して行ない、続いて二
段目の溶体化処理を1180℃で2時間保持して行な
つた。これに先立つてこの焼結体に含まれている
液相の消失温度を調べたところ、1200℃近傍で金
属組織観察上液相は消失していた。 この焼結試料を800℃で7時間時効し、徐冷し
た後、磁石特性を測定した。一段目の溶体化処理
温度と磁石特性の関係を第1図に示す。液相の消
失する1200℃近傍から二段目の溶体化処理の間の
温度で一段目の溶体化処理を行なうことにより、
磁石性は著しく向上している。 実施例 2 Smが25.0wt%、Feが22wt%、Cuが4.3wt%、
Zrが2.1wt%、Coが残部となるように、実施例1
と同様にして、粉末成形体を作成した。この成形
体をAr雰囲気中に1220℃で1時間焼結した後、
液相が消失している1185℃で1時間の一段目の溶
体化処理を行ない、続いて1170℃で3時間の二段
目の溶体化処理を行なつた。この試料を800℃で
30時間時効し、徐冷後、磁石特性を測定した。こ
の二段処理した試料と、1185℃での溶体化処理を
行なわず、1170℃で4時間溶体化処理した試料
(一段処理)との比較を表1に示す。溶体化を二
段処理で行なつた方が著しく高い磁石特性を示し
ている。 実施例 3 Sm0.5Ce0.5が24.5wt%、Feが16wt%、Cuが
4.9wt%、Zrが2.6wt%、Coが残部となるように
実施例1と同様にして、粉末成形体を作成した。
この成形体をAr雰囲気中1180℃で1時間焼結し
た後、液相が消失している1170℃で30分の一段目
の溶体化続いて1165℃で30分の二段目の溶体化処
理を行ない、引き続き三段目の溶体化処理を1160
℃で2時間行なつた。この試料を800℃で30時間
時効し、徐冷後、磁石特性を測定した。多段溶体
化を行なわず、1160℃で3時間溶体化処理した試
料(一段処理)と、上述の三段処理した試料との
比較を表2に示す。溶体化を三段処理で行なつた
方が高い磁石特性を示している。
[Industrial Application Field] The present invention provides a permanent magnet made of an R 2 T 17 magnet alloy (where R is at least one rare earth element and T is at least one transition metal) by powder metallurgy. It relates to a manufacturing method. Of course, rare earth elements include yttrium. [Prior art] Among rare earth cobalt magnets, those that are widely used industrially are RCo 5 magnets, typified by SmCo 5 , which has a high coercive force IHC , and RCo 5 magnets, which have a high residual magnetization ( This is the above-mentioned R 2 T 17- based magnet represented by Sm 2 Co 17 , which is characterized by Br). In the R 2 T 17 series magnet, R is Sm, T is Co, and a part of Co is Fe, Ni,
Magnets with high energy product (BH) nax have been realized with alloys substituted with transition metals such as Cu, Ti, Zr, and Hf. These magnets are generally manufactured by powder metallurgy. When manufacturing R 2 T 17 series permanent magnets by powder metallurgy, they are generally obtained by molding powder.
It is manufactured by liquid-phase sintering a powder compact made of an R 2 T 17 magnet alloy, followed by solution treatment and aging treatment. The R 2 T 17 -based magnet can obtain high magnetic properties by improving the coercive force ( I H C , B H C ) and the squareness of the demagnetization curve, that is, 4·(BA) nax /Br 2 . H C
Regarding the squareness, composition and solution treatment have a large contribution. When R 2 T 17 magnets are manufactured by powder metallurgy, generally the solid and liquid phases of the alloy coexist at the sintering temperature, and sintering progresses. This liquid phase is also related to the composition of the alloy, and disappears below a certain temperature. Furthermore, when the temperature is lowered further, two types of solid phases exist: Th 2 Zn 17 type phase and CaCu 5 type phase, and conventional solution treatment requires keeping the temperature at a constant temperature several tens of degrees Celsius lower than the sintering temperature. Only one step was carried out. [Problems to be solved by the invention] As described above, in the conventional manufacturing method of permanent magnets, the solution treatment after sintering is carried out in only one step while being held at a constant temperature, so that the coercive force I H C , BHC ,
Energy product (BH) nax , squareness 4・(BH) nax /
Only a relatively low value of Br 2 was obtained, and high magnetic properties could not be obtained. The object of the present invention is to reduce the solution treatment temperature in sequence within the temperature range in which the liquid phase generated during sintering disappears, instead of the conventional one-step solution treatment after sintering. By performing solution treatment in multiple stages, I H C and B
An object of the present invention is to provide a method for producing a permanent magnet, which makes it possible to obtain an R 2 T 17 -based permanent magnet with improved H C , (BH) nax , and squareness. [Means for solving the problem] According to the present invention, the powder obtained by molding the powder
A powder compact made of an R 2 T 17 magnet alloy (where R is at least one rare earth element including yttrium, and T is at least one transition metal) is subjected to liquid phase sintering, followed by solution treatment and aging treatment. Particularly, in the method for manufacturing a permanent magnet, the solution treatment is performed in multiple steps by successively lowering the solution treatment temperature within a temperature range in which a liquid phase generated during the sintering disappears. A method for manufacturing a permanent magnet is obtained. [Example] Next, an example of the present invention will be described with reference to the drawings. Example 1 Sm is 25.5wt%, Fe is 19.0wt%, Cu is 4.8wt%,
The alloy was melted by high frequency heating in an argon atmosphere so that Zr was 2.5 wt% and Co was the balance. Next, this alloy was coarsely ground, and then finely ground to an average particle size of about 4 μm using a ball mill. This powder was compacted at a pressure of 1 ton/cm 2 in a magnetic field of approximately 30 KOe.
This powder compact was sintered at 1215° C. for 1 hour in an Ar atmosphere. This sintered body is subjected to a first solution treatment at a temperature below the sintering temperature, held at a temperature higher than 1180℃ and lower than 1205℃ for 1 hour, and then subjected to a second solution treatment. The test was carried out by holding at 1180°C for 2 hours. Prior to this, we investigated the disappearance temperature of the liquid phase contained in the sintered body of the lever, and found that the liquid phase disappeared at around 1200°C based on metallographic observation. This sintered sample was aged at 800°C for 7 hours, slowly cooled, and then its magnetic properties were measured. FIG. 1 shows the relationship between the first stage solution treatment temperature and magnet properties. By performing the first stage solution treatment at a temperature between 1200℃, where the liquid phase disappears, and the second stage solution treatment,
Magnetism is significantly improved. Example 2 Sm is 25.0wt%, Fe is 22wt%, Cu is 4.3wt%,
Example 1 so that Zr was 2.1wt% and Co was the balance.
A powder compact was created in the same manner as above. After sintering this compact at 1220℃ for 1 hour in an Ar atmosphere,
A first stage solution treatment was carried out for 1 hour at 1185°C where the liquid phase had disappeared, followed by a second stage solution treatment at 1170°C for 3 hours. This sample was heated to 800℃.
After aging for 30 hours and slow cooling, the magnetic properties were measured. Table 1 shows a comparison between this two-stage treated sample and a sample that was solution-treated at 1170°C for 4 hours without solution treatment at 1185°C (single-stage treatment). The two-step solution treatment showed significantly better magnetic properties. Example 3 Sm 0.5 Ce 0.5 is 24.5wt%, Fe is 16wt%, Cu is
A powder compact was prepared in the same manner as in Example 1 so that Zr was 4.9 wt%, Zr was 2.6 wt%, and Co was the balance.
After sintering this compact at 1180°C for 1 hour in an Ar atmosphere, a first solution treatment at 1170°C for 30 minutes, where the liquid phase has disappeared, followed by a second solution treatment at 1165°C for 30 minutes. Then, the third stage solution treatment was carried out at 1160
The reaction was carried out for 2 hours at ℃. This sample was aged at 800°C for 30 hours, and after slow cooling, the magnetic properties were measured. Table 2 shows a comparison between a sample that was solution-treated at 1160° C. for 3 hours without multi-stage solution treatment (single-stage treatment) and a sample that was subjected to the three-stage treatment described above. It shows that the magnetic properties are better when the solution treatment is performed in three stages.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明では、R2T17系磁石合金を粉
末治金法により製造するにあたつて、粉末成形体
を焼結した後、焼結時に生成される液相の消失す
る温度範囲内において順次に溶体化処理温度を低
下させて複数段階に渡つて溶体化処理を行うこと
により従来法に比べ、著しく高いBHCIHC
(BH)nax及び角形性を得ることができ、極めてす
ぐれた永久磁石合金が実現できる。 また、本発明のように液相の消失の温度で溶体
化処理することで、拡散が促進されR2T17単一相
となるために、磁石特性が改善される。 また、本発明によれば、従来のように消失温度
より低い温度では溶体化処理時間を極めて長くし
なければ、磁石特性が向上しなかつたものが、溶
体化処理時間が比較的短時間で行なえ、この点か
らも工業上有利である。
As described above, in the present invention, when producing an R 2 T 17 -based magnet alloy by powder metallurgy, after sintering a powder compact, the temperature range within which the liquid phase produced during sintering disappears. By sequentially lowering the solution treatment temperature and performing solution treatment in multiple stages, significantly higher B H C , I H C , and
(BH) Nax and squareness can be obtained, and an extremely excellent permanent magnet alloy can be realized. Further, by performing solution treatment at a temperature at which the liquid phase disappears as in the present invention, diffusion is promoted and a single R 2 T 17 phase is formed, thereby improving magnetic properties. Furthermore, according to the present invention, the magnetic properties can be improved in a relatively short time compared to the conventional method where the magnetic properties were not improved unless the solution treatment time was extremely long at a temperature lower than the vanishing temperature. , It is also industrially advantageous from this point of view.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1における焼結後の一
段目の溶体化処理温度と磁石特性を示す図であ
る。
FIG. 1 is a diagram showing the first stage solution treatment temperature after sintering and magnet characteristics in Example 1 of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 粉末を成形して得られたR2T17系合金(ここ
でRはイツトリウムを含む希土類元素の少なくと
も一種、Tは遷移金属の少なくとも一種)からな
る粉末成形体を液相焼結した後、溶体化処理及び
時効処理することによつて永久磁石を製造する方
法において、前記溶体化処理は、前記焼結時に生
成される液相の消失する温度範囲内において順次
に溶体化処理温度を低下させて複数段階に渡つて
行うことを特徴とする永久磁石の製造方法。
1. After liquid-phase sintering of a powder compact made of an R 2 T 17- based alloy (where R is at least one rare earth element including yttrium and T is at least one transition metal) obtained by compacting the powder, In the method of manufacturing a permanent magnet by solution treatment and aging treatment, the solution treatment includes sequentially lowering the solution treatment temperature within a temperature range in which a liquid phase generated during the sintering disappears. A method for producing a permanent magnet, characterized in that the process is carried out in multiple steps.
JP59127288A 1984-06-22 1984-06-22 Manufacture of permanent magnet Granted JPS617608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127288A JPS617608A (en) 1984-06-22 1984-06-22 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127288A JPS617608A (en) 1984-06-22 1984-06-22 Manufacture of permanent magnet

Publications (2)

Publication Number Publication Date
JPS617608A JPS617608A (en) 1986-01-14
JPH0444404B2 true JPH0444404B2 (en) 1992-07-21

Family

ID=14956258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127288A Granted JPS617608A (en) 1984-06-22 1984-06-22 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS617608A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6105046B2 (en) * 2014-03-19 2017-03-29 株式会社東芝 PERMANENT MAGNET, MOTOR, GENERATOR, CAR, AND PERMANENT MAGNET MANUFACTURING METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143917A (en) * 1976-05-26 1977-11-30 Hitachi Metals Ltd Permanent magnetic material and making method of it
JPS58136757A (en) * 1982-02-05 1983-08-13 Namiki Precision Jewel Co Ltd Manufacture of permanent magnet alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143917A (en) * 1976-05-26 1977-11-30 Hitachi Metals Ltd Permanent magnetic material and making method of it
JPS58136757A (en) * 1982-02-05 1983-08-13 Namiki Precision Jewel Co Ltd Manufacture of permanent magnet alloy

Also Published As

Publication number Publication date
JPS617608A (en) 1986-01-14

Similar Documents

Publication Publication Date Title
JP2904667B2 (en) Rare earth permanent magnet alloy
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPS6181603A (en) Preparation of rare earth magnet
JPH0444404B2 (en)
JP2001085256A (en) PRODUCTION OF RARE-EARTH-Fe-Co-B MAGNET
JPS6119084B2 (en)
JPS62181403A (en) Permanent magnet
JPH0319289B2 (en)
JPS5848606A (en) Production of permanent magnet of rare earths
JP2642619B2 (en) Manufacturing method of permanent magnet
JPH045737B2 (en)
JPH0122970B2 (en)
JPS6334607B2 (en)
JPS6236366B2 (en)
JPH0252413B2 (en)
JPS6334606B2 (en)
JPS6238841B2 (en)
JPS59154004A (en) Manufacture of permanent magnet
JPH0227425B2 (en)
JPS6358898B2 (en)
JP3138927B2 (en) Rare earth magnet manufacturing method
JPH05234733A (en) Sintered magnet
JPH0831625A (en) Manufacture of high-molecular composite rare earth magnet alloy powder
JPH01164007A (en) Manufacture of permanent magnet
JPH06108190A (en) Rare earth permanent magnet alloy