JPS58136757A - Manufacture of permanent magnet alloy - Google Patents

Manufacture of permanent magnet alloy

Info

Publication number
JPS58136757A
JPS58136757A JP57016289A JP1628982A JPS58136757A JP S58136757 A JPS58136757 A JP S58136757A JP 57016289 A JP57016289 A JP 57016289A JP 1628982 A JP1628982 A JP 1628982A JP S58136757 A JPS58136757 A JP S58136757A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet alloy
alloy
aging
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57016289A
Other languages
Japanese (ja)
Inventor
Kazuya Sato
和也 佐藤
Nobuo Imaizumi
伸夫 今泉
Yoshihisa Tamura
佳久 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP57016289A priority Critical patent/JPS58136757A/en
Publication of JPS58136757A publication Critical patent/JPS58136757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a permanent magnet alloy with enhanced magnetic characteristics by sintering an intermetallic compound alloy having a specified composition consisting of a rare earth metal and transition metals and by subjecting the sintered body to soln. heat treatment under specified conditions and aging. CONSTITUTION:An intermetallic compound alloy having a composition represented by the general formula (where R is one or more among Y, Ce, Pr, Nd, Sm and misch metal, M is one or more among Ti, Zr, Hf, Nb and Ta, 0.2<= alpha<=0.4, 0.3<=beta<=0.06, 0.005<=gamma<=0.05 and 7.5<=z<=8.4) is pulverized, molded and sintered. The sintered body is held at 1,100-1,200 deg.C for >=1hr and rapidly cooled at once to <=900 deg.C at >=1 deg.C/sec cooling rate to form Th2Ni17 type single phase crystals by soln. heat treatment, and aging is carried out. By this method a permanent magnet alloy with superior coercive force and high performance can be manufactured stably.

Description

【発明の詳細な説明】 本発明は希土類金属R(ただしRはY、Ce、Pr。 Nd、Sn+、M、M、の一種または二種以」二からな
る。)とGo、 Feを中心とする遷移金属(T)との
金属間化合物のうち、R2’rTi型化合物を主体とし
た永久磁石合金の製造方法に関するものである。 R2T、型化合物を主体とした永久磁石合金のうちRT
T型組成において籠大エネルギー積(B H)tnax
 ”t 30MGOe、残留磁束密度Br &IIKG
まで達する永久磁石合金が市販されるようになり、各種
の応用分野において利用されている。しかしながら上記
RT7型組成磁石は1tlcが約6 KOe程度しか保
有しないため減磁曲線に折点が含まれるのでパーミアン
ス係数の小さな用途には使用できず、磁気回路中に永久
磁石を挿入し永久磁石の発生する磁界を主として利用す
るような機器でのみ応用され、本来の高エネルギー積を
充分に利用することができなかった。 本発明者等は、特願昭56−120841号において前
記のIIT・?型組底磁石の欠点を改善した新規なR2
Tr1型永久磁石合金を発明したが、その後の調査から
溶体化処理時間を長時間実施し、完全に合金結晶構造を
高温安定相のTh2 Nii?型六方型車方晶単相化し
、その状態を室温(900℃以下)まで急冷し、保存さ
れたまま次工程の時効処理l\移行することにより高保
磁力かつ角型性の良々fな磁気特性が得られることを見
い出した。結晶1J゛態は次工程の時効処理によって最
終的には、1’b 27.n+7型三方菱面体構造とな
るが、溶体化終了段階では均一なTh2 Ni17型六
方晶構造になっていることが時効段階で均一な析出を導
き保磁性を増大する要因となる。本発明の効果は従来の
RT7型磁石ではほとんど見られなかったがR(Co+
−a−s−rFe、 Cus M/ )  zの一般式
で0.2≦7≦0.4゜0.03≦β≦0.06.0.
005≦、≦0.05 、 7.5≦2≦8.4で示さ
れる組成合金について顕著な磁気特性の向上が得られた
。(ただしRはY 、Ce、Pr、Nd。 Sm、M、M、の組合(、MはTi、Zr、IIf、N
b、Taの組合せからなる。)以下実施例に沿って本発
明の特徴および効果について詳述する。 実施例、 Y[)、25m0.8 (f:oO,650
1’eO,285Cu1)、045ZrO,020) 
7.85の一般式で示される合金を誘導加熱炉にて溶解
し、水冷鋳型中にてインゴットを得た。インゴットは振
動ミル法により平均粒径4μmの微粉にした。次に微粉
体は約20KOeの磁界を印加しなから51/c+++
の圧力にて金型生圧縮成形し生材を得た。生材は内部に
残存する空気等のガス分を完全に排気するため充分長時
間(約10時間)真空排気した後、約to” Torr
の真空中て1200℃。 2時間焼結し、溶体化実験用の試料を作成した。 溶体化は第1表の条件で5種類(溶体化温度1170°
C)実験した。溶体化後の粉末法によるX線回折により
結晶構造を調査し、第1図の回折線を得た。 第1図fil、 +21. +31はそれぞれ溶体化温
度】170°Cにおける溶体化時間0.5. 1. 1
2時間のX線回折図形を示す。各条件にて作成した試料
は次に900℃。 3時間加熱した後室温まで1℃/secの冷却率にて徐
冷した。得られた焼結体の磁気特性を測定したところ第
2図に示ず減磁特性となった。第2図(41,+51.
 (6+、 +71. (81はそれれぞれ試料No、
 1. 2゜3、.4.5の減磁曲線を示す。  第  1  表 第1図、第2図の比較から溶体化処理が終了したときの
結晶構造は第1図よりずべてTh2Niil型六方晶形
を示すが、溶体化時間が長くなるに従−1゛(、そのピ
ークが轟く鋭い回折図形になり結晶組織が完全な状態に
移行する。この変化は第2図において保磁力の増加、角
形性の向」二に対応する。すなわち溶体化時間の増加が
磁気特性を大幅に改善する要因になっていることは明白
である。その効果は1時間以上の処理から見られる。 以上に詳述したように本発明による永久磁石合金の製造
方法は、高性能なR2T1?磁石を安定に製造するため
の溶体化処理方法を提供するものである。
[Detailed Description of the Invention] The present invention focuses on rare earth metals R (wherein R consists of one or more of Y, Ce, Pr, Nd, Sn+, M, and M), Go, and Fe. The present invention relates to a method for producing a permanent magnet alloy mainly containing an R2'rTi type compound among intermetallic compounds with a transition metal (T). Among permanent magnet alloys mainly composed of R2T type compounds, RT
In the T-type composition, the cage energy product (B H) tnax
"t 30MGOe, residual magnetic flux density Br &IIKG
Permanent magnetic alloys that reach up to However, since the above RT7 type composition magnet has only about 6 KOe per tlc, the demagnetization curve includes a break point, so it cannot be used for applications with a small permeance coefficient. It was only applied to devices that mainly utilized the generated magnetic field, and the original high energy product could not be fully utilized. In Japanese Patent Application No. 56-120841, the present inventors disclosed that the IIT・? New R2 that improves the shortcomings of molded bottom magnets
Although the Tr1 type permanent magnet alloy was invented, subsequent research showed that the solution treatment time was carried out for a long time, and the alloy crystal structure was completely transformed into a high-temperature stable phase, Th2 Nii? By converting the hexagonal hexagonal crystal into a single phase, rapidly cooling the state to room temperature (below 900 degrees Celsius), and transferring it to the next aging process while it is stored, it has high coercive force and good magnetic properties with squareness. It was found that it was possible to obtain The crystal 1J' state is finally transformed into 1'b 27. by the aging treatment in the next step. Although it has an n+7 type trigonal rhombohedral structure, it becomes a uniform Th2Ni17 type hexagonal structure at the end of solution treatment, which leads to uniform precipitation at the aging stage and increases coercivity. Although the effect of the present invention was hardly seen with the conventional RT7 type magnet,
-a-s-rFe, Cus M/ ) z in the general formula 0.2≦7≦0.4゜0.03≦β≦0.06.0.
Remarkable improvements in magnetic properties were obtained for alloys with compositions of 005≦, ≦0.05, and 7.5≦2≦8.4. (However, R is Y, Ce, Pr, Nd. Sm, M, M, combination (, M is Ti, Zr, IIf, N
It consists of a combination of b and Ta. ) The features and effects of the present invention will be described in detail below with reference to Examples. Example, Y[), 25m0.8 (f: oO, 650
1'eO, 285Cu1), 045ZrO, 020)
An alloy represented by the general formula 7.85 was melted in an induction heating furnace to obtain an ingot in a water-cooled mold. The ingot was made into fine powder with an average particle size of 4 μm by a vibration mill method. Next, the fine powder is 51/c+++ without applying a magnetic field of about 20 KOe.
A raw material was obtained by compression molding using a mold at a pressure of . After evacuating the raw material for a long enough time (approximately 10 hours) to completely exhaust any gases such as air remaining inside, it is heated to approximately to” Torr.
1200℃ in vacuum. After sintering for 2 hours, a sample for solution treatment experiment was prepared. Five types of solution treatment were performed under the conditions shown in Table 1 (solution temperature 1170°
C) experimented. The crystal structure was investigated by X-ray diffraction using a powder method after solution treatment, and the diffraction lines shown in FIG. 1 were obtained. Figure 1 fil, +21. +31 is the solution temperature and the solution time at 170°C is 0.5. 1. 1
The X-ray diffraction pattern for 2 hours is shown. Samples prepared under each condition were then heated to 900°C. After heating for 3 hours, the mixture was slowly cooled to room temperature at a cooling rate of 1° C./sec. When the magnetic properties of the obtained sintered body were measured, it showed demagnetization properties, which are not shown in FIG. Figure 2 (41, +51.
(6+, +71. (81 is sample No.,
1. 2゜3,. 4.5 demagnetization curve is shown. Table 1 Comparison of Figures 1 and 2 shows that the crystal structure after the solution treatment is much more Th2Niil hexagonal than in Figure 1, but as the solution treatment time increases -1゛( , the peak becomes a sharp diffraction pattern and the crystal structure transitions to a complete state. This change corresponds to an increase in coercive force and a direction in squareness in Figure 2. In other words, an increase in solution time causes magnetic It is clear that this is a factor that significantly improves the properties.The effect can be seen after processing for more than 1 hour.As detailed above, the method for producing a permanent magnet alloy according to the present invention has a high performance. The present invention provides a solution treatment method for stably manufacturing R2T1? magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は永久磁石合金のX線回折図形。 第2図は永久磁石合金の減磁曲線を示し、横軸は磁界強
度(キロエルステッド)、縦軸は磁化(キロガウス)を
表す。 特許出願人  並木精密宝石株式会社
Figure 1 shows the X-ray diffraction pattern of a permanent magnet alloy. FIG. 2 shows a demagnetization curve of a permanent magnet alloy, where the horizontal axis represents magnetic field strength (kilo-Oersted) and the vertical axis represents magnetization (kilo-Gauss). Patent applicant Namiki Precision Jewel Co., Ltd.

Claims (1)

【特許請求の範囲】 RCCo+−n−s−rFea、cusMr>zの−・
般式(ただしRはY 、Ce、Pr、Nd、Sm、M、
M、の一種または二種以」二、MはTi 、Zr、lI
t’、Nb、Taの一種または二種以上からなる。)で
。、#2..zの範囲がそれぞれ 0.2≦0≦0. 4 .03≦β≦0.06 (1,005≦、≦0.05 7.5≦2≦8.4 によって規定される合金を粉砕、成形、焼結、溶体化1
時効の各工程から磁石化する製法において溶体化処理を
1100℃〜1200℃の温度範囲で少なくとも1時間
以上保持し、ただちに900℃以下まで1 ’C/ s
ec以上の冷却率で急冷しTh2 Ni17型単相結晶
としたのちに、時効することを特徴とする永久磁石合金
の製造方法。
[Claims] RCCo+-n-s-rFea, cusMr>z-
General formula (where R is Y, Ce, Pr, Nd, Sm, M,
One or more of M, M is Ti, Zr, lI
It consists of one or more of t', Nb, and Ta. )in. , #2. .. The range of z is 0.2≦0≦0. 4. 03≦β≦0.06 (1,005≦, ≦0.05 7.5≦2≦8.4) Grinding, forming, sintering, and solution treatment 1
In the manufacturing method of magnetizing from each step of aging, the solution treatment is held at a temperature range of 1100°C to 1200°C for at least 1 hour, and immediately heated to 900°C or less at 1'C/s
A method for producing a permanent magnet alloy, characterized in that it is rapidly cooled at a cooling rate of ec or more to form a Th2 Ni17 type single phase crystal, and then aged.
JP57016289A 1982-02-05 1982-02-05 Manufacture of permanent magnet alloy Pending JPS58136757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57016289A JPS58136757A (en) 1982-02-05 1982-02-05 Manufacture of permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57016289A JPS58136757A (en) 1982-02-05 1982-02-05 Manufacture of permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS58136757A true JPS58136757A (en) 1983-08-13

Family

ID=11912382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57016289A Pending JPS58136757A (en) 1982-02-05 1982-02-05 Manufacture of permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS58136757A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186906A (en) * 1982-04-26 1983-11-01 Toshiba Corp Permanent magnet and preparation thereof
JPS59169108A (en) * 1983-03-16 1984-09-25 Toshiba Corp Permanent magnet
JPS617608A (en) * 1984-06-22 1986-01-14 Tohoku Metal Ind Ltd Manufacture of permanent magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186906A (en) * 1982-04-26 1983-11-01 Toshiba Corp Permanent magnet and preparation thereof
JPH058562B2 (en) * 1982-04-26 1993-02-02 Tokyo Shibaura Electric Co
JPS59169108A (en) * 1983-03-16 1984-09-25 Toshiba Corp Permanent magnet
JPS617608A (en) * 1984-06-22 1986-01-14 Tohoku Metal Ind Ltd Manufacture of permanent magnet
JPH0444404B2 (en) * 1984-06-22 1992-07-21 Tokin Corp

Similar Documents

Publication Publication Date Title
US3684593A (en) Heat-aged sintered cobalt-rare earth intermetallic product and process
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JPH01219143A (en) Sintered permanent magnet material and its production
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH1070023A (en) Permanent magnet and manufacture thereof
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPS58136757A (en) Manufacture of permanent magnet alloy
JPH1092617A (en) Permanent magnet and its manufacture
JPH01100242A (en) Permanent magnetic material
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPS646267B2 (en)
JPS6027105A (en) Rare earth, iron, boron alloy powder for permanent magnet
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPH0521216A (en) Permanent magnet alloy and its production
JPH0475303B2 (en)
JPS619551A (en) Rare earth element-iron type permanent magnet alloy
JPS6053107B2 (en) Rare earth magnet manufacturing method
JPS58126943A (en) Manufacture of permanent magnet alloy
JPS6140738B2 (en)
JP3138927B2 (en) Rare earth magnet manufacturing method
JPS58147537A (en) Permanent magnet alloy and its manufacture
JPS6119084B2 (en)
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture