JP2576672B2 - Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance - Google Patents

Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance

Info

Publication number
JP2576672B2
JP2576672B2 JP2185951A JP18595190A JP2576672B2 JP 2576672 B2 JP2576672 B2 JP 2576672B2 JP 2185951 A JP2185951 A JP 2185951A JP 18595190 A JP18595190 A JP 18595190A JP 2576672 B2 JP2576672 B2 JP 2576672B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet powder
recrystallized
rare earth
magnetic anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2185951A
Other languages
Japanese (ja)
Other versions
JPH03129703A (en
Inventor
亮治 中山
拓夫 武下
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to EP90114691A priority Critical patent/EP0411571B1/en
Priority to DE69009335T priority patent/DE69009335T2/en
Priority to US07/560,594 priority patent/US5228930A/en
Publication of JPH03129703A publication Critical patent/JPH03129703A/en
Priority to US07/978,911 priority patent/US5338371A/en
Application granted granted Critical
Publication of JP2576672B2 publication Critical patent/JP2576672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁気的異方性および耐食性に優れた、Y
を含む希土類元素のうち少くとも1種(以下、Rで示
す)、Fe,CoおよびBを主成分とするR−Fe−Co−B系
永久磁石粉末、およびそのR−Fe−Co−B系永久磁石粉
末を用いて製造したボンド磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a magnetic recording medium having excellent magnetic anisotropy and corrosion resistance.
R-Fe-Co-B permanent magnet powder containing Fe, Co and B as main components, and an R-Fe-Co-B system The present invention relates to a bonded magnet manufactured using permanent magnet powder.

〔従来の技術〕[Conventional technology]

R−Fe−B系合金磁石粉末は、R−Fe−B系合金が優
れた磁気特性を示す永久磁石材料として注目されてか
ら、主にボンド磁石用磁石粉末として開発されている。
The R-Fe-B-based alloy magnet powder has been mainly developed as a magnet powder for bonded magnets since the R-Fe-B-based alloy attracted attention as a permanent magnet material exhibiting excellent magnetic properties.

一般に、ボンド磁石は、含有される磁石粉末と同種の
焼結磁石等に比べて磁気特性では劣るにもかかわらず、
物理的強度に優れ、かつ形状の自由度が高いなどの理由
から、近年その利用範囲を急速に広げつつある。このボ
ンド磁石は、磁石粉末と有機バインダー、金属バインダ
ー等とを結合してなるもので、その磁石粉末の磁気特性
によってボンド磁石の磁気特性が左右される。
In general, bond magnets are inferior in magnetic properties compared to sintered magnets and the like of the same type as the contained magnet powder,
In recent years, its use range has been rapidly expanding because of its excellent physical strength and high degree of freedom in shape. The bonded magnet is formed by combining a magnet powder with an organic binder, a metal binder, and the like, and the magnetic characteristics of the bonded magnet are influenced by the magnetic characteristics of the magnet powder.

上記ボンド磁石の製造に用いられるR−Fe−B系永久
磁石粉末の1つに特開平1−132106号公報記載のR−Fe
−B系永久磁石粉末がある。
One of the R-Fe-B-based permanent magnet powders used for the production of the bonded magnet is R-Fe described in JP-A-1-132106.
-B-based permanent magnet powder.

このR−Fe−B系永久磁石粉末は、強磁性相であるR2
Fe14B型金属間化合物相(以下、R2Fe14B型相という)を
主相とするR−Fe−B系母合金を原料とし、この母合金
原料を所定の温度範囲のH2雰囲気中で熱処理してRHXとF
e2Bと残部Feの各相に相変態を促した後、脱H2工程でH2
を原料から取り去ることにより再び強磁性相であるR2Fe
14B型相を生成させたもので、その結果得られたR−Fe
−B系永久磁石粉末の組織は、平均粒径:0.05〜3μm
の極めて微細なR2Fe14B型相の再結晶組織を主相とした
集合組織となっている。
This R-Fe-B permanent magnet powder is composed of a ferromagnetic phase of R 2
Fe 14 B type intermetallic compound phase (hereinafter, referred to as R 2 Fe 14 B type phase) the R-Fe-B base alloy as a main phase as a raw material, H 2 atmosphere of this mother alloy materials a predetermined temperature range Heat treatment in RH X and F
After prompting phase transformation to each phase of e 2 B and the balance Fe, H 2 with deionized H 2 steps
Is removed from the raw material, and the ferromagnetic phase R 2 Fe
14 B type phase was formed, and the resulting R-Fe
The structure of the B-based permanent magnet powder has an average particle size of 0.05 to 3 μm.
Has a texture mainly composed of a recrystallized microstructure of the R 2 Fe 14 B type phase.

さらに、上記特開平1−132106号公報にはR−Fe−Co
−B系永久磁石粉末について記載されているが、上記R
−Fe−Co−B系であっても上記に従ってFeの一部をCoで
置換した形となり、平均粒径:0.05〜3μmの極めて微
細なR2(Fe,Co)14B型相の再結晶組織を主相とした集合
組織となっている。
Furthermore, R-Fe-Co is disclosed in JP-A-1-132106.
-B-based permanent magnet powder is described.
Even in the case of the -Fe-Co-B system, a part of Fe is replaced with Co as described above, and recrystallization of an extremely fine R 2 (Fe, Co) 14 B type phase having an average particle size of 0.05 to 3 μm. It is an organizational structure with the organization as the main phase.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来の再結晶組織を有するR−Fe−Co−B系永久
磁石粉末は、 (1) 磁気的異方性を有するが、合金組成や製造条件
の微少の変動により磁気的異方性が低下することがあ
り、安定して優れた磁気的異方性を得ることが難しい。
The R-Fe-Co-B permanent magnet powder having the above-mentioned conventional recrystallized structure has (1) magnetic anisotropy, but the magnetic anisotropy is reduced due to a slight change in the alloy composition or manufacturing conditions. And it is difficult to stably obtain excellent magnetic anisotropy.

(2) 磁気的異方性を付与する手段として、一般にR
−Fe−Co−B系永久磁石粉末を熱間圧延、熱間押出し等
の熱間塑性加工を施して、R−Fe−Co−B系永久磁石粉
末の結晶粒を偏平化する手段が知られており、かかる熱
間塑性加工を上記再結晶組織を有するR−Fe−Co−B系
永久磁石粉末に付与しても磁気的異方性は向上するが、
上記熱間塑性加工は場所により加工率のバラツキが生じ
ることは避けられず、安定して均一な磁気的異方性に優
れたR−Fe−Co−B系永久磁石粉末が得られないばかり
でなく、製造工程が複雑となってコストがかかる。
(2) As means for imparting magnetic anisotropy, generally R
Means for flattening the crystal grains of the R-Fe-Co-B permanent magnet powder by subjecting the Fe-Co-B permanent magnet powder to hot plastic working such as hot rolling and hot extrusion are known. Even if the hot plastic working is applied to the R-Fe-Co-B-based permanent magnet powder having the recrystallized structure, the magnetic anisotropy is improved,
The hot plastic working inevitably causes a variation in the working ratio depending on the place, and it is not possible to obtain a stable and uniform R-Fe-Co-B permanent magnet powder having excellent magnetic anisotropy. In addition, the manufacturing process is complicated and costly.

(3) 上記熱間塑性加工により上記再結晶粒を偏平化
すると、偏平化したR−Fe−Co−B系永久磁石粉末は、
再結晶のままのR−Fe−Co−B系永久磁石粉末よりも腐
食されやすく、このR−Fe−Co−B系永久磁石粉末を工
場などの高温多湿な環境下に長期間保存すると、上記R
−Fe−Co−B系永久磁石粉末の表面が腐食し、磁気特性
が劣化する。
(3) When the recrystallized grains are flattened by the hot plastic working, the flattened R-Fe-Co-B-based permanent magnet powder becomes
The R-Fe-Co-B permanent magnet powder is more easily corroded than the recrystallized R-Fe-Co-B permanent magnet powder, and when this R-Fe-Co-B permanent magnet powder is stored for a long time in a high-temperature and high-humidity environment such as a factory, R
-The surface of the Fe-Co-B-based permanent magnet powder is corroded, and the magnetic properties are degraded.

等の問題点があった。And so on.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者等は、上記熱間塑性加工を行うこと
なく磁気的異方性に優れ、かつ耐食性にも優れた永久磁
石粉末を得るべく研究を行った結果、 (1) Ga,Zr,Hrのうち1種または2種以上の合計量:
0.001〜5.0%(%は原子%、以下%は原子%を示す)を
含むR2(Fe,Co)14B型相を主相とする再結晶粒が隣接し
た再結晶集合組織を有するR−Fe−Co−B系永久磁石粉
末は、熱間塑性加工を施すことなく優れた磁気的異方性
を示す、 (2) 上記再結晶集合組織を構成する個々の再結晶粒
の最短粒径をa、最長粒径をbとすると、 b/a<2 となるような形状の再結晶粒から構成される再結晶集合
組織を有するR−Fe−Co−B系永久磁石粉末は、耐食性
が優れている、 などの知見を得たのである。
Thus, the present inventors conducted research to obtain a permanent magnet powder having excellent magnetic anisotropy and excellent corrosion resistance without performing the hot plastic working, and as a result, (1) Ga, Zr, Total amount of one or more of Hr:
An R- having a recrystallized texture in which recrystallized grains containing an R 2 (Fe, Co) 14 B-type phase as a main phase containing 0.001 to 5.0% (% indicates atomic%, hereinafter% indicates atomic%) The Fe-Co-B-based permanent magnet powder exhibits excellent magnetic anisotropy without being subjected to hot plastic working. (2) The shortest particle size of each recrystallized grain constituting the recrystallized texture is determined by a, where the longest particle size is b, R-Fe-Co-B permanent magnet powder having a recrystallized texture composed of recrystallized grains having a shape satisfying b / a <2 has excellent corrosion resistance. And other findings.

この発明は、かかる知見にもとづいてなされたもので
あって、 (a) R,Fe,CoおよびBを主成分とするR−Fe−Co−
B系永久磁石粉末の個々の粉末が、 R:10〜20%、 Co:0.1〜50%、 B:3〜20%、 Ga,ZrおよびHfのうち1種または2種以上の合計:0.00
1〜5.0%、 を含有し、残りがFeおよび不可避不純物からなる組成
と、 個々の再結晶粒の最短粒径aと最長粒径bの比b/aの
値が2未満である形状および平均再結晶粒径が0.05〜20
μmの寸法を有し、かつ正方晶構造をとるR2(Fe,Co)
14B型金属間化合物相を主相とする再結晶粒が隣接した
再結晶集合組織と、 を有する磁気的異方性および耐食性に優れた希土類−Fe
−Co−B系永久磁石粉末、 (b) R,Fe,Co、およびBを主成分とするR−Fe−Co
−B系永久磁石粉末の個々の粉末が、 R:10〜20%、 Co:0.1〜50%、 B:3〜20%、 Ga,ZrおよびHfのうち1種または2種以上の合計:0.00
1〜5.0%、を含有し、さらに、 Al,VおよびSiのうち1種または2種以上の合計:0.01
〜2.0%を含有し、残りがFeおよび不可避不純物からな
る組成と、 個々の再結晶粒の最短粒径aと最長粒径bの比b/aの
値が2未満である形状および平均再結晶粒径が0.05〜20
μmの寸法を有し、かつ正方晶構造をとるR2(Fe,Co)
14B型金属間化合物相を主相とする再結晶粒が隣接した
再結晶集合組織と、 を有する磁気的異方性および耐食性に優れた希土類−Fe
−Co−B系永久磁石粉末、並びに、 (c) 上記(a)および(b)の希土類−Fe−Co−B
系永久磁石粉末で製造されたボンド磁石、 に特徴を有するものである。
The present invention has been made based on such findings, and (a) R-Fe-Co- containing R, Fe, Co and B as main components.
The individual powders of the B-based permanent magnet powder are: R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, Total of one or more of Ga, Zr and Hf: 0.00
And a composition in which the ratio b / a of the shortest particle size a to the longest particle size b of each recrystallized grain is less than 2 and the balance is Fe and unavoidable impurities. Recrystallized particle size is 0.05-20
R 2 (Fe, Co) with μm size and tetragonal structure
14 Recrystallized texture in which recrystallized grains mainly composed of B-type intermetallic compound phase are adjacent to each other, and rare earth-Fe with excellent magnetic anisotropy and corrosion resistance
-Co-B permanent magnet powder, (b) R-Fe-Co containing R, Fe, Co and B as main components
The individual powders of the B-based permanent magnet powder are as follows: R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, total of one or more of Ga, Zr and Hf: 0.00
1 to 5.0%, and a total of one or more of Al, V and Si: 0.01
2.02.0%, the balance being Fe and unavoidable impurities, and the shape and average recrystallization in which the ratio b / a of the shortest particle size a to the longest particle size b of each recrystallized grain is less than 2. Particle size 0.05-20
R 2 (Fe, Co) with μm size and tetragonal structure
14 Recrystallized texture in which recrystallized grains mainly composed of B-type intermetallic compound phase are adjacent to each other;
-Co-B-based permanent magnet powder; and (c) the rare earth -Fe-Co-B of (a) and (b) above.
And a bonded magnet manufactured from a system-based permanent magnet powder.

この発明の磁気的異方性および耐食性に優れたR−Fe
−Co−B系永久磁石粉末は、溶解鋳造してGa,Zr,Hfのう
ち1種または2種以上を所定の成分組成となるように含
有したR−Fe−Co−B系母合金およびこの合金にさら
に、Al,V,Siのうち1種または2種以上を所定の成分組
成となるように含有したR−Fe−Co−B系母合金を製造
し、このR−Fe−Co−B系母合金を水素ガス雰囲気中で
昇温し、温度:500〜1000℃、水素ガス雰囲気中または水
素ガスと不活性ガスの混合ガス雰囲気中で熱処理し、つ
いで、温度:500〜1000℃、水素ガス圧力:1Torr以下の真
空雰囲気または水素ガス分圧:1Torr以下の不活性ガス雰
囲気になるまで脱水素処理したのち、冷却することによ
り製造される。
R-Fe excellent in magnetic anisotropy and corrosion resistance of the present invention
-Co-B-based permanent magnet powder is an R-Fe-Co-B-based master alloy containing one or more of Ga, Zr, and Hf by melting and casting so as to have a predetermined component composition; An R-Fe-Co-B-based master alloy containing one or more of Al, V, and Si so as to have a predetermined component composition is further produced in the alloy, and this R-Fe-Co-B The system mother alloy is heated in a hydrogen gas atmosphere, and heat-treated in a hydrogen gas atmosphere or a mixed gas atmosphere of a hydrogen gas and an inert gas at a temperature of 500 to 1000 ° C., and then a temperature of 500 to 1000 ° C. It is manufactured by performing dehydrogenation treatment until the gas pressure becomes 1 Torr or less vacuum atmosphere or hydrogen gas partial pressure: 1 Torr or less inert gas atmosphere, and then cooling.

上記Ga,Zr,Hfのうち1種または2種以上を所定量含有
したR−Fe−Co−B系母合金を温度:600〜1200℃で均質
化処理する工程および上記脱水素処理したのち温度:300
〜1000℃で熱処理する工程を付加することにより一層優
れた磁気的異方性および耐食性を有するR−Fe−Co−B
系永久磁石粉末を製造することができる。
A step of homogenizing an R-Fe-Co-B-based master alloy containing a predetermined amount of one or more of Ga, Zr, and Hf at a temperature of 600 to 1200 ° C and a temperature after the dehydrogenation treatment : 300
R-Fe-Co-B having better magnetic anisotropy and corrosion resistance by adding a heat treatment step at ~ 1000 ° C
-Based permanent magnet powder can be manufactured.

上記Ga,Zr,Hfのうち1種または2種以上を所定量含有
し、さらにAl,V,Siのうち1種または2種以上を所定量
含有したR−Fe−Co−B系母合金を温度:600〜1200℃で
均質化処理する工程および上記脱水素処理したのち温
度:300〜1000℃で熱処理する工程を付加することにより
得られたR−Fe−Co−B系永久磁石粉末は、優れた磁気
的異方性および耐食性のほかに、一層優れた最大エネル
ギー積をもつようになる。
An R-Fe-Co-B-based master alloy containing a predetermined amount of one or more of Ga, Zr, and Hf, and a predetermined amount of one or more of Al, V, and Si. Temperature: R-Fe-Co-B-based permanent magnet powder obtained by adding a step of homogenizing at 600 to 1200 ° C and a step of heat treating at a temperature of 300 to 1000 ° C after the dehydrogenation treatment, In addition to good magnetic anisotropy and corrosion resistance, it has a better maximum energy product.

このようにして製造されたこの発明のR−Fe−Co−B
系永久磁石粉末の組織は、粒内および粒界部に不純物や
歪がないR2(Fe,Co)14B型金属間化合物相の再結晶粒が
隣接した再結晶集合組織から構成されている。
The R-Fe-Co-B of the present invention thus produced
The structure of the permanent magnet powder is composed of a recrystallized texture in which recrystallized grains of the R 2 (Fe, Co) 14 B type intermetallic compound phase are free from impurities and strains in the grains and grain boundaries. .

この再結晶集合組織を構成する再結晶粒の平均再結晶
粒は0.05〜20μmの範囲内にあれば十分であるが、単磁
区粒径の寸法(約0.3μm)に近い0.05〜3μmの範囲
内にあることが一層好ましい。
It is sufficient that the average recrystallized grain constituting the recrystallized texture is in the range of 0.05 to 20 μm, but in the range of 0.05 to 3 μm which is close to the size of the single magnetic domain grain size (about 0.3 μm). Is more preferable.

上記寸法を有する個々の再結晶粒は、最短粒径aと最
長粒径bの比がb/a<2の形状を有することが好まし
く、この形状を有する再結晶粒は、全再結晶粒の50容量
%以上存在することが必要である。上記最短粒径aと最
長粒径bの比b/aが2より小さい再結晶粒の形状を有す
ることにより、R−Fe−Co−B系永久磁石粉末の保磁力
が改善されるとともに耐食性も向上し、従来の熱間塑性
加工を行って得られた磁気的異方性を有するR−Fe−Co
−B系永久磁石粉末よりも耐食性に優れ、磁気的異方性
にバラツキがなく、歩留りよく安定して優れた磁気特性
を得ることができる。
The individual recrystallized grains having the above dimensions preferably have a shape in which the ratio of the shortest particle size a to the longest particle size b is b / a <2. It must be present at 50% by volume or more. By having a recrystallized grain shape in which the ratio b / a of the shortest particle diameter a to the longest particle diameter b is smaller than 2, the coercive force of the R-Fe-Co-B-based permanent magnet powder is improved and the corrosion resistance is also improved. R-Fe-Co with improved magnetic anisotropy obtained by performing conventional hot plastic working
-It is superior in corrosion resistance to B-based permanent magnet powder, has no variation in magnetic anisotropy, and can obtain excellent magnetic properties stably with good yield.

さらに、このようにして製造されたこの発明のR−Fe
−Co−B系永久磁石粉末の再結晶集合組織は、実質的に
R2(Fe,Co)14B型金属間化合物相からなる再結晶粒が隣
接しているために、粒界相のない分だけ磁化の値を高め
ることができるとともに、粒界相を介して進行する腐食
を抑止し、さらに熱間塑性加工による応力歪も存在しな
いことから応力腐食の可能性も少なく、耐食性が向上す
るものと考えられる。
Further, the R-Fe of the present invention thus produced
-The recrystallization texture of the Co-B-based permanent magnet powder is substantially
Since the recrystallized grains composed of the R 2 (Fe, Co) 14 B-type intermetallic compound phase are adjacent to each other, the magnetization value can be increased by the absence of the grain boundary phase, and also through the grain boundary phase. It is considered that the corrosion is prevented from progressing, and since there is no stress distortion due to hot plastic working, the possibility of stress corrosion is small and the corrosion resistance is improved.

したがって、磁気的異方性および耐食性に優れたこの
発明のR−Fe−Co−B系永久磁石粉末を使用して製造し
たボンド磁石も、優れた磁気的異方性および耐食性を有
するものである。
Therefore, a bonded magnet manufactured using the R-Fe-Co-B-based permanent magnet powder of the present invention having excellent magnetic anisotropy and corrosion resistance also has excellent magnetic anisotropy and corrosion resistance. .

つぎに、この発明の耐食性および磁気的異方性および
耐食性に優れたR−Fe−Co−B系永久磁石粉末の成分組
成および平均再結晶粒径を上記の如く限定した理由につ
いて説明する。
Next, the reason why the component composition and the average recrystallized grain size of the R-Fe-Co-B-based permanent magnet powder having excellent corrosion resistance, magnetic anisotropy and corrosion resistance of the present invention are limited as described above will be described.

(a) R Rは、Nd,Pr,Tb,Dy,La,Ce,Ho,Er,Eu,Sm,Gd,Tm,Yb,Lu
およびYのうち1種または2種以上であり、一般にNdを
主体とし、これにその他の希土類元素を添加して用いら
れるが、特にTb,DyおよびPrは保磁力iHcを向上させる効
果があり、Rの含有量が10%より低くても、また20%よ
り高くても永久磁石粉末の保磁力が低下し、優れた磁気
特性が得られない。したがって、Rの含有量は10〜20%
に定めた。
(A) R R is Nd, Pr, Tb, Dy, La, Ce, Ho, Er, Eu, Sm, Gd, Tm, Yb, Lu
And one or more of Y, which is generally composed mainly of Nd, and used by adding other rare earth elements thereto. Particularly, Tb, Dy and Pr have an effect of improving the coercive force iHc, If the R content is lower than 10% or higher than 20%, the coercive force of the permanent magnet powder decreases, and excellent magnetic properties cannot be obtained. Therefore, the content of R is 10-20%
Determined.

(b) B Bの含有量が3%より低くても、また20%より高くて
も永久磁石粉末の保磁力が低下し、優れた磁気特性が得
られないので、B含有量は3〜20%と定めた。またBの
一部をC,N,O,Fで置換してもよい。
(B) BB If the B content is lower than 3% or higher than 20%, the coercive force of the permanent magnet powder is reduced, and excellent magnetic properties cannot be obtained. %. A part of B may be replaced with C, N, O, or F.

(c) Co Coを添加することにより永久磁石粉末の保磁力および
磁気的温度特性(例えば、キュリー点)が向上し、さら
に耐食性を向上させる効果があるが、その含有量が0.1
%未満では所望の効果が得られず、一方、50%を越えて
含有してもかえって磁気特性が低下するので好ましくな
い。したがって、Coの含有量は0.1〜50%に定めた。Co
の含有量は、0.1〜20%の間では、最も保磁力が高くな
るのでCo:0.1〜20%とするのが一層好ましい。
(C) Co By adding Co, the coercive force and magnetic temperature characteristics (for example, Curie point) of the permanent magnet powder are improved, and there is an effect of further improving the corrosion resistance.
If the content is less than 50%, the desired effect cannot be obtained. On the other hand, if the content exceeds 50%, the magnetic properties are rather deteriorated. Therefore, the content of Co is set to 0.1 to 50%. Co
Is more preferably 0.1 to 20% since the coercive force becomes highest when the content is 0.1 to 20%.

(d) Ga,ZrおよびHf これらの成分は、R−Fe−Co−B系永久磁石粉末の成
分として含有し、保磁力を向上させるとともに優れた磁
気的異方性および耐食性を安定的に付与する作用を有す
るが、その含有量が0.001%未満では所望の効果が得ら
れず、一方、5.0%を越えて含有すると磁気特性が低下
する。したがって、Ga,ZrおよびHfのうち1種または2
種以上の合計は0.001〜5.0%に定めた。
(D) Ga, Zr and Hf These components are contained as components of the R-Fe-Co-B-based permanent magnet powder to improve coercive force and stably impart excellent magnetic anisotropy and corrosion resistance. However, if the content is less than 0.001%, the desired effect cannot be obtained, while if the content exceeds 5.0%, the magnetic properties deteriorate. Therefore, one or two of Ga, Zr and Hf
The total number of species is set to 0.001 to 5.0%.

(e) Al,VおよびSi Ga,Zr,Hfのうち1種または2種以上:0.001〜5.0%含
有するR−Fe−Co−B系永久磁石合金に、Al,VおよびSi
のうち1種または2種以上を添加することにより最大エ
ネルギー積を安定して高めることができるが、その含有
量が0.01%未満では所望の効果が得られず、一方、2.0
%を越えて添加しても、磁化の値を高めることができな
いので好ましくない。
(E) Al, V and Si One or more of Ga, Zr and Hf: R, Fe and Co based permanent magnet alloys containing 0.001 to 5.0%,
The maximum energy product can be stably increased by adding one or more of the above, but if the content is less than 0.01%, the desired effect cannot be obtained.
% Is not preferable because the value of magnetization cannot be increased.

したがって、Al,VおよびSiのうち1種または2種以上
は合計量で0.01〜2.0%に定めた。
Therefore, one or more of Al, V and Si are set to 0.01 to 2.0% in total.

(f) 平均再結晶粒径 R−Fe−Co−B系永久磁石粉末の個々の粉末の組織を
構成するR2(Fe,Co)14B型相再結晶粒の平均再結晶粒径
が0.05μmより小さいと着磁が困難になるので好ましく
なく、一方、20μmより大きいと保磁力や角型性が低下
し、高磁気特性が得られないので好ましくない。
(F) Average recrystallized grain size The average recrystallized grain size of the R 2 (Fe, Co) 14 B type phase recrystallized grains constituting each powder structure of the R-Fe-Co-B-based permanent magnet powder is 0.05. If it is smaller than μm, magnetization becomes difficult, which is not preferable. On the other hand, if it is larger than 20 μm, coercive force and squareness decrease, and high magnetic properties cannot be obtained, which is not preferable.

したがって、平均再結晶粒径は0.05〜20μmに定め
た。この場合、平均再結晶粒径は単磁区粒径の寸法(0.
3μm)に近い0.05〜3μmとする方が一層好ましい。
Therefore, the average recrystallized grain size is set to 0.05 to 20 μm. In this case, the average recrystallized grain size is the size of the single magnetic domain grain size (0.
It is more preferable that the thickness is 0.05 to 3 μm, which is close to 3 μm).

以上、R−Fe−Co−B系永久磁石粉末について述べた
が、上記限定理由は、上記R−Fe−Co−B系永久磁石粉
末から製造されたR−Fe−Co−B系ボンド磁石について
もあてはまることである。
As described above, the R-Fe-Co-B-based permanent magnet powder has been described. The reason for the limitation is that the R-Fe-Co-B-based bonded magnet manufactured from the R-Fe-Co-B-based permanent magnet powder is used. That is also true.

〔実 施 例〕〔Example〕

この発明を実施例および比較例にもとづいて具体的に
説明する。
The present invention will be specifically described based on examples and comparative examples.

実施例1〜36、比較例1〜10、および従来例1〜2 プラズマ溶解し鋳造して得られた第1表に示されるCo
並びにGa,ZrおよびHfのうち1種または2種以上含まれ
るR−Fe−Co−B系各種合金インゴット、さらに、Ga,Z
rおよびHfを全く含まないR−Fe−Co−B系合金インゴ
ットを用意し、これら合金インゴットをそれぞれアルゴ
ンガス雰囲気中、温度:1120℃、40時間保持の条件で均
質化処理したのち、この均質化処理インゴットを約20mm
角まで砕いて原料合金とした。この原料合金を1気圧の
水素雰囲気中で室温から850℃まで昇温し、850℃で4時
間保持の水素雰囲気中熱処理を施し、ついで、830℃、
真空度:1×10-1Torr以下になるまで脱水素を行った後、
直ちにアルゴンガスを流入して急冷した。
Examples 1 to 36, Comparative Examples 1 to 10, and Conventional Examples 1 to 2 Co shown in Table 1 obtained by plasma melting and casting.
And R-Fe-Co-B-based alloy ingots containing one or more of Ga, Zr and Hf;
An R-Fe-Co-B based alloy ingot containing no r and Hf was prepared, and these alloy ingots were each homogenized in an argon gas atmosphere at a temperature of 1120 ° C. for 40 hours. Approximately 20mm
The raw material alloy was crushed to the corner. This raw material alloy was heated from room temperature to 850 ° C. in a hydrogen atmosphere at 1 atm, and subjected to a heat treatment in a hydrogen atmosphere maintained at 850 ° C. for 4 hours.
After performing dehydrogenation until the degree of vacuum becomes 1 × 10 -1 Torr or less,
Immediately, argon gas was introduced to quench the mixture.

得られた原料合金を、乳鉢で軽く粉砕し、平均粒度:3
0μmを有する実施例1〜36、比較例1〜10および従来
例1の磁石粉末を得た。また、上記従来例1の水素処理
を終えた原料合金の一部をさらに660℃、1×10-3Torr
の真空中で密度98%までホットプレスを行い、続けて75
0℃で高さ1/4まで塑性加工したのち、このバルクを平均
粒径:30μmとなるように粉砕し、従来例2の磁石粉末
を得た。このようにして得られた実施例1〜36、比較例
1〜10および従来例1〜2のR−Fe−Co−B系永久磁石
粉末の平均再結晶粒径および最短粒径aと最長粒径bの
比b/a<2となる再結晶粒の存在量(容量%)を測定し
たのち、これらR−Fe−Co−B系永久磁石粉末をふるい
分けして50〜420μmの間の粒径に揃え、これら粉末
を、それぞれ100gづつとり、そのまま温度:80℃、湿度9
5%の雰囲気中に放置して湿潤試験を行い、1000時間経
過後の粉末の酸化による重量変化を測定し、重量変化率
(重量%)になおしてそれらの結果を第1表に示した。
The obtained raw material alloy was lightly pulverized in a mortar, and average particle size: 3
Magnet powders of Examples 1 to 36, Comparative Examples 1 to 10 and Conventional Example 1 having 0 μm were obtained. Further, a part of the raw material alloy which had been subjected to the hydrogen treatment of the above-mentioned conventional example 1 was further heated at 660 ° C. and 1 × 10 −3 Torr.
Hot pressing to a density of 98% in a vacuum of
After plastic working to a height of 1/4 at 0 ° C., the bulk was pulverized so as to have an average particle size of 30 μm to obtain a magnet powder of Conventional Example 2. The average recrystallized grain size, the shortest grain size a and the longest grain size of the R-Fe-Co-B-based permanent magnet powders of Examples 1 to 36, Comparative Examples 1 to 10 and Conventional Examples 1 and 2 thus obtained. After measuring the abundance (volume%) of the recrystallized grains satisfying the ratio b / a <2 of the diameter b, these R-Fe-Co-B permanent magnet powders are sieved to obtain a particle diameter of 50 to 420 μm. 100g each of these powders, temperature: 80 ° C, humidity 9
A wet test was carried out by leaving the sample in a 5% atmosphere, and the weight change due to oxidation of the powder after 1000 hours was measured. The results are shown in Table 1 in terms of the weight change rate (% by weight).

一方、この発明のR−Fe−Co−B系永久磁石粉末の代
表的な磁石粉末である第1表の実施例25で得られた磁石
粉末について、透過電子顕微鏡観察し、その透過電子顕
微鏡による組織写真を第1図に示した。第1図の磁石粉
末の明視野像から、磁石粉末中に、一様に平均再結晶粒
径:0.3μmのR2(Fe,Co)14B金属間化合物相が存在して
おり、再結晶粒の最短粒径aと最長粒径bの比b/a<2
の形状の再結晶粒が全再結晶粒の約90容量%存在してい
ることおよび個々の再結晶粒間には粒界相が存在せず、
R2(Fe,Co)14B金属間化合物相の再結晶粒が隣接した再
結晶集合組織を有していることが視覚的にわかる。
On the other hand, the magnet powder obtained in Example 25 in Table 1, which is a typical magnet powder of the R-Fe-Co-B-based permanent magnet powder of the present invention, was observed with a transmission electron microscope, and was observed with a transmission electron microscope. The photograph of the structure is shown in FIG. From the bright field image of the magnet powder of FIG. 1, the magnet powder, uniformly average recrystallized grain size: 0.3 [mu] m of R 2 (Fe, Co) 14 B intermetallic phase is present, recrystallization The ratio of the shortest particle size a to the longest particle size b of the grains b / a <2
That the recrystallized grains having the shape of (a) are present at about 90% by volume of the total recrystallized grains, and that no grain boundary phase exists between the individual recrystallized grains;
It can be seen visually that the recrystallized grains of the R 2 (Fe, Co) 14 B intermetallic compound phase have adjacent recrystallized textures.

上述のように、平均再結晶粒径、上記b/a<2となる
形状の再結晶粒の存在割合を測定し、透過電子顕微鏡観
察したのち、上記実施例1〜36、比較例1〜10および従
来例1〜2で得られたR−Fe−Co−B系永久磁石粉末
を、それぞれ3.0重量%のエポキシ樹脂と混合し、25KOe
の横磁 場中または無磁場中、圧力:6Ton/cm2でプレス成形し、
ついで温度:120℃、2時間保持の熱硬化処理を施して実
施例1〜36、比較例1〜10および従来例1および2のボ
ンド磁石を製造した。
As described above, the average recrystallized grain size, the ratio of the recrystallized grains having the shape of b / a <2 were measured, and observed with a transmission electron microscope. Each of the R-Fe-Co-B permanent magnet powders obtained in Conventional Examples 1 and 2 was mixed with 3.0% by weight of an epoxy resin to obtain 25KOe.
Horizontal magnet During or without a magnetic field fly pressure: then pressed at 6 ton / cm 2,
Then, a thermosetting treatment of holding at a temperature of 120 ° C. for 2 hours was performed to produce bonded magnets of Examples 1 to 36, Comparative Examples 1 to 10, and Conventional Examples 1 and 2.

上記横磁場中プレス成形して得られたボンド磁石およ
び無磁場中プレス成形して得られたボンド磁石の磁気特
性をそれぞれ測定して第1表に示し、それらの磁気特性
を比較し、磁石粉末の磁気的異方性を評価した。
The magnetic properties of the bonded magnet obtained by press-molding in a horizontal magnetic field and the bonded magnet obtained by press-forming in a non-magnetic field were measured and shown in Table 1, and their magnetic properties were compared. Was evaluated for magnetic anisotropy.

第1表の結果から、 (1) この発明の実施例1〜36のR−Fe−Co−B系永
久磁石粉末を横磁場中プレス成形して得られたボンド磁
石は、無磁場中プレス成形して得られたボンド磁石より
も磁気特性、特に最大エネルギー積(BH)maxおよび残
留磁束密度Brが優れているところから、この発明の実施
例1〜36のR−Fe−Co−B系永久磁石粉末は、磁気的異
方性に優れたR−Fe−Co−B系永久磁石粉末である。し
かしながら、この発明の条件から外れた値(第1表にお
いて※印を付した値)を有する比較例1〜10のR−Fe−
Co−B系永久磁石粉末を用いて作製したボンド磁石は、
磁気的異方性も低く、磁気特性が極めて低い。
From the results in Table 1, (1) the bonded magnets obtained by press-molding the R-Fe-Co-B-based permanent magnet powders of Examples 1 to 36 of the present invention in a horizontal magnetic field were press-formed in a non-magnetic field. Since the magnetic properties, particularly the maximum energy product (BH) max and the residual magnetic flux density Br, are superior to those of the bonded magnets obtained in Example 1, the R-Fe-Co-B-based permanent magnets of Examples 1 to 36 of the present invention were used. The magnet powder is an R-Fe-Co-B-based permanent magnet powder having excellent magnetic anisotropy. However, the R-Fe- of Comparative Examples 1 to 10 having values (values marked with * in Table 1) out of the conditions of the present invention.
Bond magnet made using Co-B permanent magnet powder,
It has low magnetic anisotropy and extremely low magnetic properties.

(2) Ga,Zr,Hfの添加しない従来例1のR−Fe−Co−
B系永久磁石粉末は、実施例1〜36と比べて製造条件が
同じでも磁気的異方性が十分でないと共に耐食性が劣っ
ており、さらに、磁気的異方性を付与するために、熱間
塑性加工を行って再結晶粒を偏平状にし、再結晶粒の最
短粒径aと最長粒径bの比b/a<2となるような再結晶
粒が約40%(すなわち、熱間加工によりb/a≧2の偏平
形状を有する結晶粒が全結晶粒の約60%をしめる)の従
来例2のR−Fe−Co−B系永久磁石粉末は、実施例1〜
36のR−Fe−Co−B系永久磁石粉末に比べて磁気的異方
性は劣らないものの、湿潤試験による重量変化率が大き
いことから、耐食性が大幅に低下する、ことがわかる。
(2) R-Fe-Co- of Conventional Example 1 without addition of Ga, Zr and Hf
The B-based permanent magnet powder has insufficient magnetic anisotropy and is inferior in corrosion resistance even under the same manufacturing conditions as in Examples 1 to 36. The recrystallized grains are flattened by plastic working, and about 40% of the recrystallized grains having a ratio b / a <2 of the shortest grain size a and the longest grain size b of the recrystallized grains (ie, hot working) According to the R-Fe-Co-B permanent magnet powder of Conventional Example 2, the crystal grains having a flat shape of b / a ≧ 2 account for about 60% of the total crystal grains,
Although the magnetic anisotropy is not inferior to that of the R-Fe-Co-B permanent magnet powder of No. 36, the corrosion resistance is greatly reduced because the weight change rate by the wet test is large.

実施例37〜46および比較例11〜13 プラズマ溶解し鋳造して得られたGa,ZrおよびHfのう
ち1種または2種以上含まれるR−Fe−Co−B系合金
に、さらにAl,V,Siのうち1種または2種以上含有する
第2表に示される成分組成の各種合金インゴットを作製
し、これらインゴットを先の実施例1〜36、比較例1〜
10および従来例1と全く同一条件で、実施例37〜46およ
び比較例11〜13の平均粒径:30μmを有するR−Fe−Co
−B系永久磁石粉末を製造し、再結晶粒の最短粒径aと
最長粒径bの比b/aを測定したのち、先の条件と同一条
件で湿潤試験による重量変化率(重量%)を測定し、つ
いでボンド磁石を製造し、横磁場中プレス成形して得ら
れたボンド磁石および無磁場中プレス成形して得られた
ボンド磁石の磁気特性を測定し、それらの結果を第2表
に示した。
Examples 37 to 46 and Comparative Examples 11 to 13 An R-Fe-Co-B-based alloy containing one or more of Ga, Zr and Hf obtained by plasma melting and casting was further added with Al, V , Si, and prepared various alloy ingots having the composition shown in Table 2 containing one or more of Si. These ingots were prepared in Examples 1 to 36 and Comparative Examples 1 to 3.
R-Fe-Co having an average particle diameter of 30 μm in Examples 37 to 46 and Comparative Examples 11 to 13 under the same conditions as in Example 10 and Conventional Example 1.
After producing a B-type permanent magnet powder and measuring the ratio b / a of the shortest particle size a to the longest particle size b of the recrystallized grains, the weight change rate (% by weight) by a wet test under the same conditions as above. Were measured, then the bonded magnets were manufactured, and the magnetic properties of the bonded magnets obtained by press molding in a transverse magnetic field and the bonded magnets obtained by press molding in a non-magnetic field were measured. The results are shown in Table 2. It was shown to.

第2表の結果から、Ga,ZrおよびHfのうち1種または
2種以上:0.001〜5.0%に、さらにAl,VおよびSiのうち
1種または2種以上を0.01〜2.0%添加することにより
最大エネルギー積がさらに向上し、より顕著な磁気的異
方性を示 すことがわかる。
From the results in Table 2, one or more of Ga, Zr, and Hf: 0.001 to 5.0%, and one or more of Al, V, and Si are added by 0.01 to 2.0%. Maximum energy product is further improved, showing more pronounced magnetic anisotropy You can see that

〔発明の効果〕 この発明は、CoとともにGa,Zr,Hfのうち1種または2
種以上を含有せしめることにより熱間塑性加工を施すこ
となくH2処理だけで顕著な磁気的異方性を示しかつ耐食
性に優れたR−Fe−Co−B系永久磁石粉末を得ることが
できるので、従来のように熱間塑性加工等の磁気的異方
性化の手段を施す必要もないなどの効果を有するもので
ある。
[Effects of the Invention] The present invention provides one or two of Ga, Zr, and Hf together with Co.
It is possible to obtain hot H 2 treatment alone showed marked magnetic anisotropy and R-Fe-Co-B based permanent magnet powder excellent in corrosion resistance without performing the plastic working by incorporating more species Therefore, there is an effect that there is no need to perform a magnetic anisotropy means such as hot plastic working as in the related art.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明のR−Fe−Co−B系永久磁石粉末の
透過電子顕微鏡による金属組織写真である。
FIG. 1 is a metallographic photograph of the R-Fe-Co-B-based permanent magnet powder of the present invention taken by a transmission electron microscope.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−45103(JP,A) 特開 昭63−232301(JP,A) 特開 平1−103805(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-64-45103 (JP, A) JP-A-63-232301 (JP, A) JP-A-1-103805 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Yを含む希土類元素のうち少なくとも一種
(以下Rで示す)とFeとCoとBを主成分とするR−Fe−
Co−B系永久磁石粉末の個々の粉末が、 原子百分率で、 R:10〜20%、Co:0.1〜50%、 B:3〜20%、 Ga,ZrおよびHfのうち1種または2種以上の合計:0.001
〜5.0%、を含有し、残りがFeおよび不可避不純物から
なる組成と、 正方晶構造をとるR2(Fe,Co)14B型金属間化合物相を主
相とする再結晶粒が隣接した再結晶集合組織とを有し、 上記再結晶集合組織は、個々の再結晶粒の最短粒径aと
最長粒径bの比b/aの値が2未満である形状の再結晶粒
が全再結晶粒の50容量%以上存在し、かつ上記再結晶集
合組織を構成する再結晶粒の平均再結晶粒径が0.05〜20
μmの寸法を有することを特徴とする磁気的異方性およ
び耐食性に優れた希土類−Fe−Co−B系永久磁石粉末。
An R-Fe- containing at least one of the rare earth elements containing Y (hereinafter referred to as R), Fe, Co and B as main components.
The individual powders of the Co-B permanent magnet powder are, in atomic percentage, R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, one or two of Ga, Zr and Hf. Total above: 0.001
And a recrystallization grain whose main phase is an R 2 (Fe, Co) 14 B-type intermetallic compound phase having a tetragonal structure. The recrystallized texture has a ratio of the shortest particle diameter a to the longest particle diameter b of each recrystallized grain b / a of less than 2, and the recrystallized grains are all recrystallized. The average recrystallized grain size of the recrystallized grains present in 50% by volume or more of the crystal grains and constituting the recrystallized texture is 0.05 to 20
A rare earth-Fe-Co-B permanent magnet powder having a size of μm and having excellent magnetic anisotropy and corrosion resistance.
【請求項2】RとFeとCoとBを主成分とするR−Fe−Co
−B系永久磁石粉末の個々の粉末が、 原子百分率で、 R:10〜20%、Co:0.1〜50%、 B:3〜20%、 Ga,ZrおよびHfのうち1種または2種以上の合計:0.001
〜5.0%、を含有し、さらに、 Al,VおよびSiのうち1種または2種以上の合計:0.01〜
2.0%を含有し、残りがFeおよび不可避不純物からなる
組成を有することを特徴とする請求項1記載の磁気的異
方性および耐食性に優れた希土類−Fe−Co−B系永久磁
石粉末。
2. R-Fe-Co containing R, Fe, Co and B as main components.
The individual powder of the B-based permanent magnet powder is, in atomic percentage, R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, one or more of Ga, Zr and Hf Total: 0.001
-5%, and a total of one or more of Al, V and Si: 0.01 to
2. The rare earth-Fe-Co-B permanent magnet powder according to claim 1, wherein the rare earth-Fe-Co-B permanent magnet powder has excellent magnetic anisotropy and corrosion resistance.
【請求項3】上記平均再結晶粒径は、好ましくは、0.05
〜3μmであることを特徴とする請求項1または2記載
の磁気的異方性および耐食性に優れた希土類−Fe−Co−
B系永久磁石粉末。
3. The average recrystallized particle size is preferably 0.05%.
3. The rare earth element having excellent magnetic anisotropy and corrosion resistance according to claim 1 or 2,
B-based permanent magnet powder.
【請求項4】上記請求項1,2または3記載の磁気的異方
性および耐食性に優れた希土類−Fe−Co−B系永久磁石
粉末で製造されたことを特徴とする希土類−Fe−Co−B
系ボンド磁石。
4. A rare earth-Fe-Co made from the rare earth-Fe-Co-B-based permanent magnet powder having excellent magnetic anisotropy and corrosion resistance according to claim 1, 2 or 3. -B
System bonded magnet.
JP2185951A 1989-07-31 1990-07-13 Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance Expired - Fee Related JP2576672B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP90114691A EP0411571B1 (en) 1989-07-31 1990-07-31 Rare earth permanent magnet powder, method for producing same and bonded magnet
DE69009335T DE69009335T2 (en) 1989-07-31 1990-07-31 Rare earth powder for permanent magnet, manufacturing process and bonded magnet.
US07/560,594 US5228930A (en) 1989-07-31 1990-07-31 Rare earth permanent magnet power, method for producing same and bonded magnet
US07/978,911 US5338371A (en) 1989-07-31 1992-11-19 Rare earth permanent magnet powder, method for producing same and bonded magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19883789 1989-07-31
JP1-198837 1989-07-31

Publications (2)

Publication Number Publication Date
JPH03129703A JPH03129703A (en) 1991-06-03
JP2576672B2 true JP2576672B2 (en) 1997-01-29

Family

ID=16397744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2185951A Expired - Fee Related JP2576672B2 (en) 1989-07-31 1990-07-13 Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance

Country Status (1)

Country Link
JP (1) JP2576672B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet
JP2006344854A (en) * 2005-06-10 2006-12-21 Mitsubishi Materials Pmg Corp Rare earth magnet having high strength and high resistance
JP2006344856A (en) * 2005-06-10 2006-12-21 Mitsubishi Materials Pmg Corp Rare earth magnet having high strength and high resistance
JP2006344855A (en) * 2005-06-10 2006-12-21 Mitsubishi Materials Pmg Corp Rare earth magnet having high strength and high resistance

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849109A (en) * 1997-03-10 1998-12-15 Mitsubishi Materials Corporation Methods of producing rare earth alloy magnet powder with superior magnetic anisotropy
US6444052B1 (en) 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder
US7632360B2 (en) 2003-08-27 2009-12-15 Nissan Motor Co., Ltd. Rare earth magnet powder and method of producing the same
EP1744328B1 (en) 2005-06-10 2012-07-25 Nissan Motor Co., Ltd. Rare earth magnet having high strength and high electrical resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530641B2 (en) * 1986-03-20 1996-09-04 日立金属株式会社 Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JPH01103805A (en) * 1987-07-30 1989-04-20 Tdk Corp Permanent magnet
JPS6445103A (en) * 1987-08-13 1989-02-17 Tdk Corp Manufacture of rare earth alloy magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet
JP2006344854A (en) * 2005-06-10 2006-12-21 Mitsubishi Materials Pmg Corp Rare earth magnet having high strength and high resistance
JP2006344856A (en) * 2005-06-10 2006-12-21 Mitsubishi Materials Pmg Corp Rare earth magnet having high strength and high resistance
JP2006344855A (en) * 2005-06-10 2006-12-21 Mitsubishi Materials Pmg Corp Rare earth magnet having high strength and high resistance

Also Published As

Publication number Publication date
JPH03129703A (en) 1991-06-03

Similar Documents

Publication Publication Date Title
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3092672B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
EP0477810B1 (en) R-Fe-B type permanent magnet powder and bonded magnet therefrom
JPH01219143A (en) Sintered permanent magnet material and its production
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH045740B2 (en)
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JP2001085256A (en) PRODUCTION OF RARE-EARTH-Fe-Co-B MAGNET
JPH045739B2 (en)
JP3860372B2 (en) Rare earth magnet manufacturing method
JP2773444B2 (en) Rare earth-Fe-B based anisotropic magnet
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JPH045738B2 (en)
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JPS6077961A (en) Permanent magnet material and its manufacture
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JP3736830B2 (en) Rare earth-Fe-Co-B magnet powder and bonded magnet excellent in squareness and thermal stability
JPH05152115A (en) Manufacture of magnetic recording powder
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees