JP3092672B2 - Rare earth-Fe-Co-B anisotropic magnet - Google Patents

Rare earth-Fe-Co-B anisotropic magnet

Info

Publication number
JP3092672B2
JP3092672B2 JP03060833A JP6083391A JP3092672B2 JP 3092672 B2 JP3092672 B2 JP 3092672B2 JP 03060833 A JP03060833 A JP 03060833A JP 6083391 A JP6083391 A JP 6083391A JP 3092672 B2 JP3092672 B2 JP 3092672B2
Authority
JP
Japan
Prior art keywords
recrystallized
total
anisotropic magnet
texture
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03060833A
Other languages
Japanese (ja)
Other versions
JPH04245403A (en
Inventor
拓夫 武下
亮治 中山
義成 石井
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP03060833A priority Critical patent/JP3092672B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to EP92903728A priority patent/EP0522177B2/en
Priority to DE69203405T priority patent/DE69203405T3/en
Priority to CA 2079223 priority patent/CA2079223A1/en
Priority to PCT/JP1992/000073 priority patent/WO1992013353A1/en
Priority to CN92100957A priority patent/CN1045498C/en
Priority to TW81100775A priority patent/TW227619B/zh
Publication of JPH04245403A publication Critical patent/JPH04245403A/en
Priority to US08/021,187 priority patent/US5395462A/en
Application granted granted Critical
Publication of JP3092672B2 publication Critical patent/JP3092672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、優れた磁気的異方性
を有し、かつ保磁力温度係数の小さいR(但し、Rは、
Yを含む希土類元素のうち少くとも1種を示す),F
e,Co,およびBを主成分とするR−Fe−Co−B
系異方性磁石に関するものである。さらに詳細には、上
記異方性磁石はホットプレス成形体または熱間静水圧プ
レス(以下、HIPと記す)成形体からなるR−Fe−
Co−B系異方性磁石に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to R having excellent magnetic anisotropy and a small temperature coefficient of coercive force (where R is
At least one of the rare earth elements containing Y), F
R-Fe-Co-B containing e, Co, and B as main components
The present invention relates to a system anisotropic magnet. More specifically, the anisotropic magnet is an R-Fe- formed of a hot press molded body or a hot isostatic press (hereinafter, referred to as HIP) molded body.
It relates to a Co-B based anisotropic magnet.

【0002】[0002]

【従来の技術】特開平1−132106号公報には、R
−Fe−B系に代表されるR−Fe−Co−B系母合金
を水素処理することにより得られたR−Fe−Co−B
系永久磁石粉末が記載されている。
2. Description of the Related Art Japanese Patent Laid-Open Publication No.
R-Fe-Co-B obtained by subjecting an R-Fe-Co-B-based master alloy represented by -Fe-B system to hydrogen treatment
Based permanent magnet powder is described.

【0003】このR−Fe−Co−B系永久磁石粉末
は、強磁性相であるR(Fe,Co)14B型金属間
化合物相(以下、R(Fe,Co)14B型相とい
う)を主相とするR−Fe−Co−B系母合金を原料と
し、この母合金原料を所定の温度範囲のH雰囲気中で
熱処理してRHxと(Fe,Co)Bと残部Feの各
相に相変態を促した後、脱H工程でHを原料から取
り去る処理(以下、この処理をHDDR処理という)
施すことにより再び強磁性相であるR(Fe,Co)
14B型相を生成させるたもので、その結果得られたR
−Fe−Co−B系永久磁石粉末の組織は、平均粒径:
0.05〜3μmの極めて微細なR(Fe,Co)
14B型相の再結晶組織を主相とした集合組織となって
いる。
This R-Fe-Co-B permanent magnet powder is composed of a ferromagnetic phase of R 2 (Fe, Co) 14 B type intermetallic compound phase (hereinafter, R 2 (Fe, Co) 14 B type phase). the R-Fe-Co-B-based master alloy as a main phase of) that as a raw material, and RHx by heat-treating the mother alloy material in an H 2 atmosphere in a predetermined temperature range (Fe, Co) 2 B and the balance after prompting phase transformation to each phase of Fe, de H 2 steps in removing and H 2 from the raw material processing (hereinafter, this process is referred to HDDR process) is again ferromagnetic phase by subjecting the R 2 (Fe, Co )
14 B phase was formed and the resulting R
-The structure of the Fe-Co-B-based permanent magnet powder has an average particle size of:
Extremely fine R 2 (Fe, Co) of 0.05 to 3 μm
It has a texture with the recrystallized structure of the 14B type phase as the main phase.

【0004】上記R−Fe−Co−B系永久磁石粉末
は、ホットプレスしてホットプレス成形体としただけで
は十分な磁気的異方性が得られないために、特開平2−
39503号公報に記載されているように、上記ホット
プレス成形体をさらに熱間圧延などの熱間圧延加工を施
して、R2 (Fe,Co)14B相の再結晶粒のC軸を配
向せしめた圧延組織とすることにより磁気的異方性を向
上させていた。
[0004] The above R-Fe-Co-B permanent magnet powder does not provide sufficient magnetic anisotropy only by hot pressing to form a hot pressed compact.
As described in JP-A-39503, the hot-pressed product is further subjected to hot rolling such as hot rolling to orient the C-axis of the recrystallized grains of the R 2 (Fe, Co) 14 B phase. The magnetic anisotropy was improved by using a reduced rolling structure.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記ホ
ットプレス成形体をさらに熱間圧延して得られたR−F
e−Co−B系熱延磁石は優れた磁気的異方性を有する
ものの、上記永久磁石粉末をホットプレスしたままの磁
石に比べて保磁力の温度係数が増大し、このR−Fe−
Co−B系熱延磁石をモータ等に組み込んだ場合に、温
度の変化によってモータ等の性能が変化し、安定性に欠
けるなどの課題があった。
However, the R-F obtained by hot-rolling the above hot-pressed body is further used.
Although the e-Co-B hot rolled magnet has excellent magnetic anisotropy, the temperature coefficient of coercive force is increased as compared with a magnet in which the above-mentioned permanent magnet powder is hot pressed, and this R-Fe-
When a Co-B-based hot rolled magnet is incorporated in a motor or the like, there is a problem that the performance of the motor or the like changes due to a change in temperature and the stability is lacking.

【0006】また、R−Fe−Co−B系圧延磁石は、
場所による加工率のばらつきが磁気異方性のばらつきを
もたらし、それを防止するために、熱間塑性加工の工程
が複雑にならざるを得なかった。
[0006] The R-Fe-Co-B rolled magnet is
Variations in the working ratio depending on the location lead to variations in the magnetic anisotropy, and in order to prevent this, the process of hot plastic working had to be complicated.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者等は、
上記保磁力の温度係数の増大はホットプレス成形体を熱
間圧延することにより発生するものであるから、上記熱
間圧延することなく磁気的異方性の優れた磁石が得られ
るならば、上記保磁力の温度係数の増大は発生しないと
の認識のもとに研究を行った結果、 (1)R:10〜20%、 Co:0.1
〜50%、 B: 3〜20%、 を含有し、GaおよびZrの合計、GaおよびHfの合
計、またはGa、ZrおよびHfの合計:0.001〜
5.0%を含有し、残りがFeおよび不可避不純物から
なる組成と、HDDR処理して得られた正方晶構造をと
るR(Fe,Co)14B型金属間化合物相を主相と
する再結晶粒が相互に隣接して集合した再結晶粒集合組
織とを有し、上記再結晶粒集合組織は、個々の再結晶粒
の最短粒径aと最長粒径bの比b/aの値が2未満であ
る形状の再結晶粒が全再結晶粒の50容量%以上存在
し、かつ上記再結晶集合組織を構成する再結晶粒の平均
再結晶粒径が0.05〜20μmの寸法を有するホット
プレス成形体またはHIP成形体、または、 (2)R:10〜20%、 Co:0.1〜
50%、 B: 3〜20%、 を含有し、GaおよびZrの合計、GaおよびHfの合
計、またはGa、ZrおよびHfの合計:0.001〜
5.0%を含有し、さらに、Al,VおよびSiのうち
1種または2種以上の合計:0.01〜2.0%を含有
し、残りがFeおよび不可避不純物からなる組成と、
DDR処理して得られた正方晶構造をとるR(Fe,
Co)14B型金属間化合物相を主相とする再結晶粒が
相互に隣接して集合した再結晶粒集合組織とを有し、上
記再結晶粒集合組織は、個々の再結晶粒の最短粒径aと
最長粒径bの比b/aの値が2未満である形状の再結晶
粒が全再結晶粒の50容量%以上存在し、かつ上記再結
晶集合組織を構成する再結晶粒の平均再結晶粒径が0.
05〜20μmの寸法を有するホットプレス成形体また
はHIP成形体、で構成されたR−Fe−Co−B系異
方性磁石は、保磁力の温度係数の増大をもたらすことな
く優れた磁気的異方性を示すという知見を得たのであ
る。
Means for Solving the Problems Accordingly, the present inventors have
Since the increase in the temperature coefficient of the coercive force is caused by hot-rolling a hot-pressed product, if a magnet having excellent magnetic anisotropy can be obtained without performing the hot-rolling, As a result of conducting research based on the recognition that the temperature coefficient of coercive force does not increase, (1) R: 10 to 20%, Co: 0.1
5050%, B: 3-20%, and the total of Ga and Zr, the total of Ga and Hf, or the total of Ga, Zr and Hf: 0.001 to
The main phase is a composition containing 5.0%, the balance being Fe and unavoidable impurities, and an R 2 (Fe, Co) 14 B type intermetallic compound phase having a tetragonal structure obtained by HDDR treatment. A recrystallized grain texture in which recrystallized grains are aggregated adjacent to each other, and the recrystallized grain texture has a ratio b / a of the shortest grain size a to the longest grain size b of each recrystallized grain. Recrystallized grains having a shape having a value of less than 2 are present in an amount of 50% by volume or more of all recrystallized grains, and the recrystallized grains constituting the recrystallized texture have an average recrystallized grain size of 0.05 to 20 μm. (2) R: 10 to 20%, Co: 0.1 to
50%, B: 3 to 20%, and the total of Ga and Zr, the total of Ga and Hf, or the total of Ga, Zr and Hf: 0.001 to
Containing 5.0%, further, Al, 1 or two or more of the total of V and Si: contains 0.01% to 2.0%, the composition of the remainder being Fe and inevitable impurities, H
R 2 (Fe, having a tetragonal structure obtained by DDR processing)
A recrystallized grain texture in which recrystallized grains having a Co) 14 B type intermetallic compound phase as a main phase are aggregated adjacent to each other, and the recrystallized grain texture is the shortest of the individual recrystallized grains. Recrystallized grains having a shape in which the ratio b / a of the particle diameter a to the longest particle diameter b is less than 2 are present at 50% by volume or more of all the recrystallized grains, and the recrystallized grains constituting the recrystallized texture described above. Has an average recrystallized particle size of 0.
The R-Fe-Co-B-based anisotropic magnet composed of a hot-press molded body or a HIP molded body having a size of 0.5 to 20 µm has excellent magnetic properties without increasing the temperature coefficient of coercive force. They obtained the knowledge of showing anisotropy.

【0008】この発明はかかる知見にもとづいてなされ
たものであって、上記組成および再結晶粒集合組織を有
するホットプレス成形体またはHIP成形体からなる保
磁力の温度係数が小さいR−Fe−Co−B系異方性磁
石に特徴を有するものである。
The present invention has been made on the basis of this finding, and has a small temperature coefficient of coercive force of a hot-pressed or HIP compact having the above composition and recrystallized grain texture. -B-based anisotropic magnet has characteristics.

【0009】この発明の保磁力の温度係数が小さいR−
Fe−Co−B系異方性磁力は、従来の圧延磁石に比べ
て、場所による磁気異方性のばらつきもほとんどなく耐
食性も優れている。
According to the present invention, the temperature coefficient of coercive force of R-
The Fe-Co-B-based anisotropic magnetic force has little variation in magnetic anisotropy depending on the location and has excellent corrosion resistance as compared with a conventional rolled magnet.

【0010】また、この発明のR−Fe−B系異方性磁
石は、再結晶粒集合組織を有するために、R2 (F,C
o)14B型化合物組成付近、すなわちR11.8Febal
5.9組成付近でもすぐれた磁気異方性と高保磁力を有す
る。
Further, the R-Fe-B anisotropic magnet of the present invention has a recrystallized grain texture, so that R 2 (F, C
o) In the vicinity of the composition of the 14B type compound, that is, R 11.8 Fe bal B
5.9 Has excellent magnetic anisotropy and high coercive force even near the composition.

【0011】つぎに、この発明のR−Fe−Co−B系
異方性磁石の製造法を説明する。
Next, a method for producing the R-Fe-Co-B-based anisotropic magnet of the present invention will be described.

【0012】この発明のR−Fe−Co−B系異方性磁
石を製造するための原料粉末は、溶解鋳造してGaおよ
びZrの合計、GaおよびHfの合計、またはGa、Z
rおよびHfの合計が所定量となるように含有したR−
Fe−Co−B系母合金およびこの合金にさらに、A
l,V,Siのうち1種または2種以上を所定の成分組
成となるように含有したR−Fe−Co−B系母合金を
製造し、このR−Fe−Co−B系母合金を水素ガス雰
囲気中で昇温し、温度:500〜1000℃、水素ガス
雰囲気中または水素ガスと不活性ガスの混合ガス雰囲気
中で熱処理し、ついで、温度:500〜1000℃、水
素ガス圧力:1Torr以下の真空雰囲気または水素ガ
ス分圧:1Torr以下の不活性ガス雰囲気になるまで
脱水素処理したのち、冷却することにより製造される。
前記温度:500〜1000℃、水素ガス雰囲気中また
は水素ガスと不活性ガスの混合ガス雰囲気中で熱処理す
ることによりRH と(Fe,Co) Bと残部Feの
各相に相変態を促し、その後、温度:500〜1000
℃、水素ガス圧力:1Torr以下の真空雰囲気または
水素ガス分圧:1Torr以下の不活性ガス雰囲気にな
るまで脱水素処理することにより再び強磁性相であるR
(Fe,Co) 14 B型相を生成させると、平均粒
径:0.05〜20μmの極めて微細なR (Fe,C
o) 14 B型相の再結晶粒が相互に隣接して集合した再
結晶集合組織となるのである。
The raw material powder for producing the R-Fe-Co-B based anisotropic magnet of the present invention is melt-cast to obtain a total of Ga and Zr, a total of Ga and Hf, or a total of Ga and Z.
R- and Rf contained so that the total of r and Hf is a predetermined amount.
In addition to the Fe-Co-B-based master alloy and this alloy,
An R-Fe-Co-B-based mother alloy containing one or more of 1, V, and Si so as to have a predetermined component composition is manufactured, and this R-Fe-Co-B-based mother alloy is produced. The temperature is raised in a hydrogen gas atmosphere, and heat treatment is performed in a hydrogen gas atmosphere or a mixed gas atmosphere of a hydrogen gas and an inert gas at a temperature of 500 to 1000 ° C., and then a temperature of 500 to 1000 ° C. and a hydrogen gas pressure of 1 Torr. It is manufactured by performing a dehydrogenation treatment until the following vacuum atmosphere or an inert gas atmosphere of hydrogen gas partial pressure: 1 Torr or less and then cooling.
The temperature: 500 to 1000 ° C., in a hydrogen gas atmosphere or
Is heat-treated in a mixed gas atmosphere of hydrogen gas and inert gas.
RH X , (Fe, Co) 2 B and the balance of Fe
Promote phase transformation in each phase, then temperature: 500-1000
° C, hydrogen gas pressure: vacuum atmosphere of 1 Torr or less or
Hydrogen gas partial pressure: Establish an inert gas atmosphere of 1 Torr or less.
Dehydrogenation until the ferromagnetic phase R
When the 2 (Fe, Co) 14 B-type phase is formed,
Very fine R 2 (Fe, C
o) Re-aggregation of recrystallized grains of 14 B-type phase
It becomes a crystal texture.

【0013】上記GaおよびZrの合計、GaおよびH
fの合計、またはGa、ZrおよびHfの合計を所定量
含有したR−Fe−Co−B系母合金を温度:600〜
1200℃で均質化処理する工程および上記脱水素処理
したのち温度:300〜1000℃で熱処理する工程を
付加することにより一層優れた磁気的異方性を有するR
−Fe−Co−B系永久磁石粉末を製造することができ
る。
The sum of Ga and Zr, Ga and H
An R-Fe-Co-B-based master alloy containing a predetermined amount of the total of f or the total of Ga, Zr and Hf at a temperature of 600 to
By adding a step of homogenizing at 1200 ° C. and a step of heat-treating at a temperature of 300 to 1000 ° C. after the above dehydrogenation treatment, R having more excellent magnetic anisotropy can be obtained.
-Fe-Co-B permanent magnet powder can be manufactured.

【0014】上記GaおよびZrの合計、GaおよびH
fの合計、またはGa、ZrおよびHfの合計を所定量
含有し、さらにAl,V,Siのうち1種または2種以
上を所定量含有したR−Fe−Co−B系母合金を温
度:600〜1200℃で均質化処理する工程および上
記脱水素処理したのち温度:300〜1000℃で熱処
理する工程を付加することにより得られたR−Fe−C
o−B系永久磁石粉末は、優れた磁気的異方性のほか
に、一層優れた最大エネルギー積をもつようになる。
The sum of the above Ga and Zr, Ga and H
An R—Fe—Co—B-based master alloy containing a predetermined amount of the total of f or the total of Ga, Zr and Hf and further containing a predetermined amount of one or more of Al, V, and Si at a temperature: R-Fe-C obtained by adding a step of homogenizing at 600 to 1200 ° C and a step of heat treating at a temperature of 300 to 1000 ° C after the above dehydrogenation treatment.
The oB-based permanent magnet powder has an excellent maximum energy product in addition to the excellent magnetic anisotropy.

【0015】このようにして製造されたR−Fe−Co
−B系永久磁石粉末の組織は、粒内および粒界部に不純
物や歪がないR2 (Fe,Co)14B型金属間化合物相
の再結晶粒が相互に隣接して集合した再結晶集合組織か
ら構成されている。
The R-Fe-Co thus produced is
-B system tissues of the permanent magnet powder is intragranular and grain boundaries R 2 is not an impurity or strain (Fe, Co) 14 recrystallization recrystallized grains of B-type intermetallic compound phase are assembled adjacent to each other It is composed of a texture.

【0016】この再結晶集合組織を構成する再結晶粒の
平均再結晶粒径は0.05〜20μmの範囲内にあれば
十分であるが、単磁区粒径の寸法(約0.3μm)に近
い0.05〜3μmの範囲内にあることが一層好まし
い。
It is sufficient if the average recrystallized grain size of the recrystallized grains constituting the recrystallized texture is in the range of 0.05 to 20 μm. More preferably, it is within the range of 0.05 to 3 μm.

【0017】上記寸法を有する個々の再結晶粒は、最短
粒径aと最長粒径bの比がb/a<2の形状を有するこ
とが好ましく、この形状を有する再結晶粒は、全再結晶
粒の50容量%以上存在することが必要である。上記最
短粒径aと最長粒径bの比b/aが2より小さい再結晶
粒の形状を有することにより、R−Fe−Co−B系永
久磁石粉末の保磁力が改善されるとともに耐食性も向上
し、保磁力の25〜100℃における保磁力温度係数α
iHcが0.6%/℃より小さくなる。
Each of the recrystallized grains having the above-mentioned dimensions preferably has a shape in which the ratio of the shortest particle diameter a to the longest particle diameter b is b / a <2. It is necessary that 50% by volume or more of the crystal grains exist. By having a recrystallized grain shape in which the ratio b / a of the shortest particle diameter a to the longest particle diameter b is smaller than 2, the coercive force of the R-Fe-Co-B-based permanent magnet powder is improved and the corrosion resistance is also improved. The coercive force temperature coefficient α at 25 to 100 ° C.
iHc is smaller than 0.6% / ° C.

【0018】さらに、このようにして製造されたR−F
e−Co−B系永久磁石粉末の再結晶組織は、再結晶粒
が相互に隣接して集合して粒界相がほとんど存在しない
実質的にR2 (Fe,Co)14B型金属間化合物相だけ
から構成された再結晶集合組織を有しているために、粒
界相のない分だけ磁化の値を高めることができるととも
に、粒界相を介して進行する腐食を抑止し、さらに熱間
塑性加工による応力歪も存在しないことから応力腐食の
可能性も少なく、耐食性が向上する。
Further, the thus-produced RF
The recrystallized structure of the e-Co-B-based permanent magnet powder is such that recrystallized grains are aggregated adjacent to each other and substantially no R 2 (Fe, Co) 14 B type intermetallic compound has almost no grain boundary phase. Since it has a recrystallized texture composed solely of phases, the value of magnetization can be increased by the absence of the grain boundary phase, and corrosion that progresses through the grain boundary phase is suppressed, and heat Since there is no stress strain due to the inter-plastic working, the possibility of stress corrosion is small, and the corrosion resistance is improved.

【0019】上記再結晶集合組織を有するR−Fe−C
o−B系永久磁石粉末を磁場中プレス成形して圧粉体と
し、この圧粉体を温度:600〜900℃でホットプレ
スまたは熱間静水圧プレスすると、上記R−Fe−Co
−B系永久磁石粉末の組織がほぼそのまま保持されたこ
の発明のR−Fe−Co−B系異方性磁石を製造するこ
とができ、また必要に応じて300〜1000℃で熱処
理することにより保磁力を向上させることができる。上
記圧粉体を真空または非酸化性雰囲気中で通常の焼結を
行うと、焼結温度が高すぎて上記再結晶粒が成長し、大
きな再結晶粒となり、磁気特性、特に保磁力が低下する
ので好ましくない。また磁気的異方性の付与は磁場中成
形で行うため、ホットプレス、HIPの後に熱間塑性加
工を行う必要はない。
R-Fe-C having the above recrystallized texture
When the oB-based permanent magnet powder is pressed in a magnetic field to form a green compact, and the green compact is hot-pressed or hot isostatically pressed at a temperature of 600 to 900 ° C., the R-Fe-Co
The R-Fe-Co-B-based anisotropic magnet of the present invention, in which the structure of the -B-based permanent magnet powder is kept almost as it is, can be produced, and if necessary, heat-treated at 300 to 1000C. The coercive force can be improved. When normal sintering is performed on the green compact in a vacuum or a non-oxidizing atmosphere, the sintering temperature is too high, the recrystallized grains grow and become large recrystallized grains, and the magnetic properties, particularly the coercive force, decrease. Is not preferred. Since the application of magnetic anisotropy is performed by molding in a magnetic field, it is not necessary to perform hot plastic working after hot pressing and HIP.

【0020】つぎに、この発明のR−Fe−Co−B系
異方性磁石の成分組成、再結晶粒径および再結晶粒形状
を上記の如く限定した理由について説明する。
Next, the reason why the component composition, recrystallized grain size and recrystallized grain shape of the R-Fe-Co-B anisotropic magnet of the present invention are limited as described above will be described.

【0021】(a)R Rは、Nd,Pr,Tb,Dy,La,Ce,Ho,E
r,Eu,Sm,Gd,Tm,Yb,LuおよびYのう
ち1種または2種以上であり、一般にNdを主体とし、
これにその他の希土類元素を添加して用いられるが、特
にTb,DyおよびPrは保磁力iHcを向上させる効
果があり、Rの含有量が10%より低くても、また20
%より高くても異方性磁石の保磁力が低下し、優れた磁
気特性が得られない。したがって、Rの含有量は10〜
20%に定めた。
(A) R R is Nd, Pr, Tb, Dy, La, Ce, Ho, E
one or more of r, Eu, Sm, Gd, Tm, Yb, Lu, and Y, generally mainly Nd;
Tb, Dy, and Pr are particularly effective in improving the coercive force iHc, and may be used by adding other rare earth elements thereto, even if the R content is lower than 10% or 20%.
%, The coercive force of the anisotropic magnet decreases, and excellent magnetic properties cannot be obtained. Therefore, the content of R is 10 to
It was set to 20%.

【0022】(b)B Bの含有量が3%より低くても、また20%より高くて
も異方性磁石の保磁力が低下し、優れた磁気特性が得ら
れないので、B含有量は3〜20%と定めた。またBの
一部をC,N,O,Fで置換してもよい。
(B) BB If the B content is lower than 3% or higher than 20%, the coercive force of the anisotropic magnet is reduced, and excellent magnetic properties cannot be obtained. Was determined to be 3 to 20%. A part of B may be replaced with C, N, O, or F.

【0023】(c)Co Coを添加することにより異方性磁石の保磁力および磁
気的温度特性(例えば、キュリー点)が向上し、さらに
耐食性を向上させる効果があるが、その含有量が0.1
%未満では所望の効果が得られず、一方、50%を超え
て含有してもかえって磁気特性が低下するので好ましく
ない。したがって、Coの含有量は0.1〜50%に定
めた。Coの含有量は、0.1〜20%の間では、最も
保磁力が高くなるのでCo:0.1〜20%とするのが
一層好ましい。
(C) Co The addition of Co improves the coercive force and magnetic temperature characteristics (for example, Curie point) of the anisotropic magnet, and further has the effect of improving the corrosion resistance. .1
If the content is less than 50%, the desired effect cannot be obtained. On the other hand, if the content exceeds 50%, the magnetic properties are rather deteriorated. Therefore, the content of Co is set to 0.1 to 50%. When the content of Co is between 0.1 and 20%, the coercive force becomes highest, so that it is more preferable that the content of Co be 0.1 to 20%.

【0024】(d)Ga,ZrおよびHf これらの成分は、R−Fe−Co−B系異方性磁石の成
分として含有し、保磁力を向上させるとともに優れた磁
気的異方性および耐食性を安定的に付与する作用を有す
るが、GaおよびZrの合計、GaおよびHfの合計、
またはGa、ZrおよびHfの合計が0.001%未満
では所望の効果が得られず、一方、5.0%を超えて含
有すると磁気特性が低下する。したがって、Gaおよび
Zrの合計、GaおよびHfの合計、またはGa、Zr
およびHfの合計を0.001〜5.0%に定めた。
(D) Ga, Zr, and Hf These components are contained as components of the R-Fe-Co-B-based anisotropic magnet to improve coercive force and have excellent magnetic anisotropy and corrosion resistance. Has an effect of stably imparting, the total of Ga and Zr, the total of Ga and Hf,
Alternatively, if the total content of Ga, Zr and Hf is less than 0.001%, the desired effect cannot be obtained, while if the content exceeds 5.0%, the magnetic properties deteriorate. Therefore, the sum of Ga and Zr, the sum of Ga and Hf, or Ga, Zr
And Hf were determined to be 0.001 to 5.0%.

【0025】(e)Al,VおよびSi GaおよびZrの合計、GaおよびHfの合計、または
Ga、ZrおよびHfの合計を0.001〜5.0%含
有するR−Fe−Co−B系永久磁石合金に、Al,V
およびSiのうち1種または2種以上を添加することに
より最大エネルギー積を安定して高めることができる
が、その含有量が0.01%未満では所望の効果が得ら
れず、一方、2.0%を超えて添加しても、磁化の値を
高めることができないので好ましくない。
(E) Al, V and Si: R—Fe—Co—B system containing 0.001 to 5.0% of Ga, Zr and Hf, or Ga, Zr and Hf in total Al, V for permanent magnet alloy
The maximum energy product can be stably increased by adding one or more of Si and Si, but if the content is less than 0.01%, the desired effect cannot be obtained. Addition of more than 0% is not preferable because the value of magnetization cannot be increased.

【0026】したがって、Al,VおよびSiのうち1
種または2種以上は合計量で0.01〜2.0%に定め
た。
Therefore, one of Al, V and Si
The species or two or more species are determined in a total amount of 0.01 to 2.0%.

【0027】(f)平均再結晶粒径およびその形状 R−Fe−Co−B系異方性磁石の組織を構成するR2
(Fe,Co)14B型相再結晶粒の平均再結晶粒径が
0.05μmより小さいと着磁が困難になるので好まし
くなく、一方、20μmより大きいと保磁力や角型性が
低下し、高磁気特性が得られないので好ましくない。
(F) Average recrystallized grain size and its shape R 2 constituting the structure of the R—Fe—Co—B based anisotropic magnet
If the average recrystallized grain size of the (Fe, Co) 14 B-type phase recrystallized grains is smaller than 0.05 μm, magnetization becomes difficult, which is not preferable. On the other hand, if it is larger than 20 μm, coercive force and squareness are reduced. And high magnetic properties cannot be obtained.

【0028】したがって、平均再結晶粒径は0.05〜
20μmに定めた。この場合、平均再結晶粒径は単磁区
粒径の寸法(0.3μm)に近い0.05〜3μmとす
る方が一層好ましい。上記寸法を有する個々の再結晶粒
は、最短粒径aと最長粒径bの比が(b/a)<2の形
状を有することが好ましく、この形状を有する再結晶粒
は、全再結晶粒の50容量%以上存在することが必要で
ある。
Therefore, the average recrystallized grain size is 0.05 to
It was set to 20 μm. In this case, the average recrystallized grain size is more preferably 0.05 to 3 μm which is close to the size of the single magnetic domain grain size (0.3 μm). The individual recrystallized grains having the above dimensions preferably have a shape in which the ratio of the shortest particle size a to the longest particle size b is (b / a) <2. It is necessary that 50% by volume or more of the grains be present.

【0029】上記最短粒径aと最長粒径bの比b/aが
2より小さい再結晶粒形状を有することにより、R−F
e−Co−B系異方性磁石の保磁力が改善されると共に
耐食性も向上し、さらに保磁力の温度係数も小さくな
る。したがって上記個々の再結晶粒のb/aの値は2未
満に定めた。
By having a recrystallized grain shape in which the ratio b / a of the shortest particle diameter a to the longest particle diameter b is smaller than 2, R-F
The coercive force of the e-Co-B-based anisotropic magnet is improved, the corrosion resistance is improved, and the temperature coefficient of the coercive force is reduced. Therefore, the value of b / a of the individual recrystallized grains is set to less than 2.

【0030】[0030]

【実施例】この発明を実施例および比較例にもとづいて
具体的に説明する。
EXAMPLES The present invention will be specifically described based on Examples and Comparative Examples.

【0031】プラズマ溶解し鋳造して得られたCo、並
びにGaおよびZr、GaおよびHf、またはGa、Z
rおよびHfの組み合わせで含まれるR−Fe−Co−
B系各種合金インゴット、さらに、Ga,ZrおよびH
fを全く含まないR−Fe−Co−B系合金インゴット
を用意し、これら合金インゴットをそれぞれアルゴンガ
ス雰囲気中、温度:1120℃、40時間保持の条件で
均質化処理したのち、この均質化処理インゴットを約2
0mm角まで砕いて原料合金とした。この原料合金を1気
圧の水素雰囲気中で室温から830℃まで昇温し、83
0℃で4時間保持の水素雰囲気中熱処理を施し、つい
で、830℃、真空度:1×10-1Torr以下になるまで
脱水素を行った後、直ちにアルゴンガスを流入して急冷
した。
Co obtained by plasma melting and casting, and Ga and Zr, Ga and Hf, or Ga, Z
R-Fe-Co- contained in the combination of r and Hf
Various B-based alloy ingots, Ga, Zr and H
An R-Fe-Co-B alloy ingot containing no f is prepared, and these alloy ingots are homogenized in an argon gas atmosphere at a temperature of 1120 ° C. for 40 hours. About 2 ingots
It was crushed to 0 mm square to obtain a raw material alloy. This raw material alloy was heated from room temperature to 830 ° C. in a hydrogen atmosphere of 1 atm,
Heat treatment was performed in a hydrogen atmosphere maintained at 0 ° C. for 4 hours, and then dehydrogenation was performed at 830 ° C. and a degree of vacuum of 1 × 10 −1 Torr or less.

【0032】このような処理を施した各種合金インゴッ
トは崩壊しやすい状態にあるので乳鉢で軽く解砕し、平
均粒度:50μmの各種R−Fe−Co−B系永久磁石
粉末を得た。これら各種R−Fe−Co−B系永久磁石
粉末を、25KOeの磁場中でプレス成形して圧粉体を
作製し、これら圧粉体を温度:700℃、圧力:1.5
Ton/cm2 の条件でホットプレスした。なお、磁場中成
形した圧粉体は、配向方向がホットプレスのときのプレ
ス方向と一致するように配置してホットプレスした。さ
らにこのホットプレス成形体を620℃、2時間真空中
で熱処理した。このようにして得られた表1〜2に示さ
れる成分組成の本発明異方性磁石1〜6および比較異方
性磁石1〜10の密度はすべて7.5〜7.6g/cm3
で充分緻密化していた。
Since the various alloy ingots subjected to such treatment are in a state of being easily broken, they were lightly crushed in a mortar to obtain various R-Fe-Co-B permanent magnet powders having an average particle size of 50 μm. These various R-Fe-Co-B permanent magnet powders are press-molded in a magnetic field of 25 KOe to produce green compacts, and these green compacts are heated at a temperature of 700 ° C and a pressure of 1.5.
Hot pressing was performed under the condition of Ton / cm 2 . The green compact molded in the magnetic field was hot-pressed while being arranged so that the orientation direction coincided with the pressing direction at the time of hot pressing. Further, this hot press molded body was heat-treated in a vacuum at 620 ° C. for 2 hours. The anisotropic magnets 1 to 6 of the present invention and the comparative anisotropic magnets 1 to 10 having the component compositions shown in Tables 1 and 2 thus obtained all have a density of 7.5 to 7.6 g / cm 3.
It was dense enough.

【0033】さらに比較のために、Ga,Zr,Hfの
いずれをも含まない合金インゴットから製造されたR−
Fe−Co−B系永久磁石粉末を銅製缶に真空中で充填
封入し、700℃に加熱して圧延率80%になるまで数
回圧延を行い、表2に示される従来異方性磁石を作製し
た。
Further, for comparison, an R- alloy manufactured from an alloy ingot containing neither Ga, Zr, nor Hf was used.
The Fe-Co-B-based permanent magnet powder was filled and sealed in a copper can in a vacuum, heated to 700 ° C. and rolled several times until the rolling reduction reached 80%, and the conventional anisotropic magnet shown in Table 2 was obtained. Produced.

【0034】表1〜2の本発明異方性磁石1〜6、比較
異方性磁石1〜10および従来異方性磁石の組織を走査
電子顕微鏡により観察し、平均再結晶粒径、個々の再結
晶粒の最長粒径/最短粒径の値が2より小さい再結晶粒
の存在量(容量%)、保磁力温度係数αiHc、磁場中
プレスにより得られた圧粉体をホットプレスした磁石の
磁気特性を測定し、これらの測定値を表3〜4に示し
た。
The structures of the anisotropic magnets 1 to 6 of the present invention, comparative anisotropic magnets 1 to 10 and conventional anisotropic magnets shown in Tables 1 and 2 were observed with a scanning electron microscope, and the average recrystallized grain size and individual The abundance (volume%) of recrystallized grains having a value of (longest particle diameter / shortest particle diameter of recrystallized grains smaller than 2), temperature coefficient of coercive force αiHc, and magnet of hot pressed compact obtained by pressing in a magnetic field The magnetic properties were measured, and these measured values are shown in Tables 3 and 4.

【0035】上記保磁力温度係数αiHcは、25℃に
おける保磁力iHc25および100℃における保磁力α
iHc100 を測定し、上記保磁力の差の割合(iHc25
−iHc100 )/iHc25を温度差75℃で割った値で
ある。
The temperature coefficient of coercive force αiHc is determined by the coercive force iHc at 25 ° C. and the coercive force α at 100 ° C.
iHc 100 was measured, and the ratio of the difference in the coercive force (iHc 25
−iHc 100 ) / iHc 25 divided by a temperature difference of 75 ° C.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】表1〜4の結果から、この発明のGaおよ
びZr、GaおよびHf、またはGa、ZrおよびHf
の組み合わせの合計で含む本発明異方性磁石1〜6は磁
気特性、特に最大エネルギー積(BH)max および残留
磁束密度がすぐれており、磁気異方性にすぐれているこ
とがわかる。この本発明異方性磁石1〜6はGa,Z
r,Hfを全く含まない圧延磁石である従来異方性磁石
と比べて磁気特性はほぼ同等であるが、保磁力温度係数
はαiHcは−0.5%/℃程度と格段に小さく、さら
に、Ga,Zr,Hfを全く含まないもの、また含有量
がこの発明の条件から外れた比較異方性磁石1〜10
は、磁気特性および磁気的異方性が低下していることが
わかる。
From the results shown in Tables 1 to 4, it is found that Ga and Zr, Ga and Hf, or Ga, Zr and Hf of the present invention.
It can be seen that the anisotropic magnets 1 to 6 of the present invention, which are included in the total of the combinations, have excellent magnetic properties, particularly the maximum energy product (BH) max and residual magnetic flux density, and have excellent magnetic anisotropy. The anisotropic magnets 1 to 6 of the present invention are Ga, Z
The magnetic properties are almost the same as those of the conventional anisotropic magnet which is a rolled magnet containing no r and Hf, but the temperature coefficient of coercive force αiHc is remarkably small at about -0.5% / ° C. Comparative anisotropic magnets containing no Ga, Zr, or Hf at all, and whose contents deviate from the conditions of the present invention.
Indicates that the magnetic properties and magnetic anisotropy are reduced.

【0041】さらに、高周波溶解し鋳造して得られたG
aおよびZr、GaおよびHf、またはGa、Zrおよ
びHfの組み合わせで含まれるR−Fe−Co−B系合
金に、さらにAl,V,Siのうち1種または2種以上
含有する成分組成の各種合金インゴットを作製し、これ
らインゴットを先の本発明異方性磁石1〜6および比較
異方性磁石1〜10の場合と全く同じ条件で平均粒径:
40μmのR−Fe−Co−B系永久磁石粉末を製造
し、このR−Fe−Co−B系永久磁石粉末を磁場中お
よび無磁場中でプレス成形して圧粉体を作製し、これら
圧粉体を温度:710℃、圧力:1.7 Ton/cm2 の条
件で熱間静水圧プレスし、表5に示される成分組成の本
発明異方性磁石7および比較異方性磁石11〜13を作
製した。
Further, G obtained by high-frequency melting and casting.
a and Zr, Ga and Hf, or R-Fe-Co-B-based alloys contained in combination of Ga, Zr and Hf, and further various kinds of component compositions further containing one or more of Al, V, and Si Alloy ingots were prepared, and these ingots were subjected to the same average particle size as those of the anisotropic magnets 1 to 6 of the present invention and the comparative anisotropic magnets 1 to 10 under the same conditions as those described above.
A 40 μm R-Fe-Co-B permanent magnet powder was manufactured, and the R-Fe-Co-B permanent magnet powder was press-molded in a magnetic field and without a magnetic field to produce a green compact. The powder was hot isostatically pressed under the conditions of temperature: 710 ° C. and pressure: 1.7 Ton / cm 2 , and the anisotropic magnet 7 of the present invention and the comparative anisotropic magnets 11 to 11 having the component compositions shown in Table 5 13 was produced.

【0042】これら異方性磁石について、前述のように
して平均再結晶粒径、個々の再結晶粒の最長粒径/最短
粒径の値が2より小さい再結晶粒の存在量(容量%)お
よび保磁力温度係数αiHcを測定し、さらに磁気特性
も測定し、それらの測定値を表6に示した。
With respect to these anisotropic magnets, as described above, the average recrystallized grain size and the abundance (volume%) of recrystallized grains in which the value of the longest grain size / shortest grain size of each recrystallized grain is smaller than 2 And the coercive force temperature coefficient αiHc were measured, and the magnetic properties were also measured. The measured values are shown in Table 6.

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【表6】 [Table 6]

【0045】表5および表6の結果から、GaおよびZ
rの合計、GaおよびHfの合計、またはGa、Zrお
よびHfの合計:0.001〜5.0原子%に、さらに
Al,VおよびSiのうち1種または2種以上を0.0
1〜2.0原子%添加することにより最大エネルギー積
がさらに向上し、保磁力温度係数αiHcが小さくな
り、再結晶粒の寸法および形状も保磁力温度係数を小さ
くすることに大きな影響を与えていることがわかる。
From the results in Tables 5 and 6, Ga and Z
r, total of Ga and Hf, or total of Ga, Zr and Hf: 0.001 to 5.0 atomic%, and one or more of Al, V and Si are added to 0.0
By adding 1 to 2.0 atomic%, the maximum energy product is further improved, the temperature coefficient of coercive force αiHc is reduced, and the size and shape of the recrystallized grains have a great effect on reducing the temperature coefficient of coercive force. You can see that there is.

【0046】[0046]

【発明の効果】この発明は、CoとともにGaおよびZ
r、GaおよびHf、またはGa、ZrおよびHfの組
み合わせで含有せしめることにより熱間塑性加工を施す
ことなく水素処理粉末を用いるだけで顕著な磁気的異方
性を示すとともに保磁力温度係数の小さなR−Fe−C
o−B系磁石を得ることができ、モータ等の電動機器の
性能および安定性の向上に優れた効果をもたらすもので
ある。
According to the present invention, Ga and Z can be used together with Co.
By containing r, Ga and Hf, or a combination of Ga, Zr and Hf, a remarkable magnetic anisotropy is exhibited by using only the hydrogen-treated powder without performing hot plastic working, and the coercive force has a small temperature coefficient. R-Fe-C
An oB-based magnet can be obtained, which brings about an excellent effect of improving the performance and stability of an electric device such as a motor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 義成 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 中央研究所内 (72)発明者 小川 保 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 中央研究所内 (56)参考文献 特開 昭63−282239(JP,A) 特開 平2−263404(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshinari Ishii 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Real Co., Ltd. (72) Inventor Tamotsu Ogawa 1-2297 Kitabukurocho, Omiya City, Saitama Mitsubishi Materials Real (56) References JP-A-63-282239 (JP, A) JP-A-2-263404 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Yを含む希土類元素のうち少なくとも1
種(以下、Rで示す)とFeとCoとBを主成分とする
R−Fe−Co−B系異方性磁石であって、この異方性
磁石は、原子百分率で、 R:10〜20%、 Co:0.1〜50
%、 B: 3〜20%、 GaおよびZrの合計、GaおよびHfの合計、または
Ga、ZrおよびHfの合計:0.001〜5.0%、
を含有し、残りがFeおよび不可避不純物からなる組成
と、 雰囲気中で熱処理してRHxと(Fe,Co)
と残部Feの各相に相変態を促した後、脱H 工程でH
を取り去る処理(以下、この処理をHDDR処理とい
う)して得られた 正方晶構造をとるR(Fe,Co)
14B型金属間化合物相を主相とする再結晶粒が相互に
隣接して集合した再結晶粒集合組織とを有し、 上記再結晶粒集合組織は、個々の再結晶粒の最短粒径a
と最長粒径bの比b/aの値が2未満である形状の再結
晶粒が全再結晶粒の50容量%以上存在し、かつ上記再
結晶集合組織を構成する再結晶粒の平均再結晶粒径が
0.05〜20μmの寸法を有するホットプレス成形体
であることを特徴とする希土類−Fe−Co−B系異方
性磁石。
1. At least one of rare earth elements containing Y
An R-Fe-Co-B-based anisotropic magnet containing a seed (hereinafter, referred to as R), Fe, Co, and B as main components, wherein the anisotropic magnet has an atomic percentage of R: 10 to 10%. 20%, Co: 0.1-50
%, B: 3 to 20%, total of Ga and Zr, total of Ga and Hf, or total of Ga, Zr and Hf: 0.001 to 5.0%,
And RHx and (Fe, Co) 2 B by heat treatment in an H 2 atmosphere.
After prompting phase transformation to each phase of the balance Fe and, H with deionized H 2 steps
2 (hereinafter, this process is called HDDR process).
R 2 (Fe, Co) having a tetragonal structure obtained
14 a recrystallized grain texture in which recrystallized grains having a B-type intermetallic compound phase as a main phase are aggregated adjacent to each other, and the recrystallized grain texture is the shortest grain size of each recrystallized grain. a
Recrystallized grains having a ratio b / a of less than 2 with respect to the longest particle diameter b are present at 50% by volume or more of all recrystallized grains, and the average recrystallized grains constituting the recrystallized texture are recrystallized. A rare-earth-Fe-Co-B-based anisotropic magnet, which is a hot-press formed body having a crystal grain size of 0.05 to 20 µm.
【請求項2】 RとFeとCoとBを主成分とするR−
Fe−Co−B系異方性磁石であって、この異方性磁石
は、 原子百分率で、 R:10〜20%、 Co:0.1〜50%、 B: 3〜20%、 GaおよびZrの合計、GaおよびHfの合計、または
Ga、ZrおよびHfの合計:0.001〜5.0%、
を含有し、さらに、 Al,VおよびSiのうち1種または2種以上の合計:
0.01〜2.0%を含有し、残りがFeおよび不可避
不純物からなる組成と、HDDR処理して得られた 正方晶構造をとるR(F
e,Co)14B型金属間化合物相を主相とする再結晶
粒が相互に隣接して集合した再結晶粒集合組織とを有
し、 上記再結晶粒集合組織は、個々の再結晶粒の最短粒径a
と最長粒径bの比b/aの値が2未満である形状の再結
晶粒が全再結晶粒の50容量%以上存在し、かつ上記再
結晶集合組織を構成する再結晶粒の平均再結晶粒径が
0.05〜20μmの寸法を有するホットプレス成形体
であることを特徴とする希土類−Fe−Co−B系異方
性磁石。
2. An R-form containing R, Fe, Co and B as main components.
This is an Fe—Co—B based anisotropic magnet, and this anisotropic magnet is expressed as: atomic percentage: R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, Ga and Zr total, Ga and Hf total, or Ga, Zr and Hf total: 0.001 to 5.0%,
And a total of one or more of Al, V and Si:
A composition containing 0.01 to 2.0%, the balance being Fe and unavoidable impurities; and R 2 (F having a tetragonal structure obtained by HDDR treatment.
e, Co) 14 B-type intermetallic compound phase having a recrystallized grain having a main phase and a recrystallized grain texture in which the recrystallized grain texture is composed of individual recrystallized grains. Shortest particle size a
And the recrystallized grains having a ratio b / a of less than 2 with respect to the longest particle size b are present in 50% by volume or more of all the recrystallized grains, and the average recrystallized grains constituting the recrystallized texture are recrystallized. A rare earth-Fe-Co-B-based anisotropic magnet, which is a hot-press formed body having a crystal grain size of 0.05 to 20 µm.
【請求項3】 RとFeとCoとBを主成分とするR−
Fe−Co−B系異方性磁石であって、この異方性磁石
は、 原子百分率で、 R:10〜20%、 Co:0.1〜50%、 B: 3〜20%、 GaおよびZrの合計、GaおよびHfの合計、または
Ga、ZrおよびHfの合計:0.001〜5.0%、
を含有し、残りがFeおよび不可避不純物からなる組成
と、HDDR処理して得られた 正方晶構造をとるR(F
e,Co)14B型金属間化合物相を主相とする再結晶
粒が相互に隣接して集合した再結晶粒集合組織とを有
し、 上記再結晶粒集合組織は、個々の再結晶粒の最短粒径a
と最長粒径bの比b/aの値が2未満である形状の再結
晶粒が全再結晶粒の50容量%以上存在し、かつ上記再
結晶集合組織を構成する再結晶粒の平均再結晶粒径が
0.05〜20μmの寸法を有する熱間静水圧プレス成
形体であることを特徴とする希土類−Fe−Co−B系
異方性磁石。
3. An R-form containing R, Fe, Co, and B as main components.
This is an Fe—Co—B based anisotropic magnet, and this anisotropic magnet is expressed as: atomic percentage: R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, Ga and Zr total, Ga and Hf total, or Ga, Zr and Hf total: 0.001 to 5.0%,
And a balance consisting of Fe and unavoidable impurities, and R 2 (F 2) having a tetragonal structure obtained by HDDR treatment.
e, Co) 14 B-type intermetallic compound phase having a recrystallized grain having a main phase and a recrystallized grain texture in which the recrystallized grain texture is composed of individual recrystallized grains. Shortest particle size a
And the recrystallized grains having a ratio b / a of less than 2 with respect to the longest particle size b are present in 50% by volume or more of all the recrystallized grains, and the average recrystallized grains constituting the recrystallized texture are recrystallized. Hot isostatic pressing having a crystal grain size of 0.05 to 20 μm
A rare earth-Fe-Co-B-based anisotropic magnet, wherein the magnet is shaped .
【請求項4】 RとFeとCoとBを主成分とするR−
Fe−Co−B系異方性磁石であって、この異方性磁石
は、 原子百分率で、 R:10〜20%、 Co:0.1〜50%、 B: 3〜20%、 GaおよびZrの合計、GaおよびHfの合計、または
Ga、ZrおよびHfの合計:0.001〜5.0%、
を含有し、さらに、 Al,VおよびSiのうち1種または2種以上の合計:
0.01〜2.0%を含有し、残りがFeおよび不可避
不純物からなる組成と、HDDR処理して得られた 正方晶構造をとるR(F
e,Co)14B型金属間化合物相を主相とする再結晶
粒が相互に隣接して集合した再結晶粒集合組織とを有
し、 上記再結晶粒集合組織は、個々の再結晶粒の最短粒径a
と最長粒径bの比b/aの値が2未満である形状の再結
晶粒が全再結晶粒の50容量%以上存在し、かつ上記再
結晶集合組織を構成する再結晶粒の平均再結晶粒径が
0.05〜20μmの寸法を有する熱間静水圧プレス成
形体であることを特徴とする希土類−Fe−Co−B系
異方性磁石。
4. An R-form containing R, Fe, Co and B as main components.
This is an Fe—Co—B based anisotropic magnet, and this anisotropic magnet is expressed as: atomic percentage: R: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, Ga and Zr total, Ga and Hf total, or Ga, Zr and Hf total: 0.001 to 5.0%,
And a total of one or more of Al, V and Si:
A composition containing 0.01 to 2.0%, the balance being Fe and unavoidable impurities; and R 2 (F having a tetragonal structure obtained by HDDR treatment.
e, Co) 14 B-type intermetallic compound phase having a recrystallized grain having a main phase and a recrystallized grain texture in which the recrystallized grain texture is composed of individual recrystallized grains. Shortest particle size a
And the recrystallized grains having a ratio b / a of less than 2 with respect to the longest particle size b are present in 50% by volume or more of all the recrystallized grains, and the average recrystallized grains constituting the recrystallized texture are recrystallized. Hot isostatic pressing having a crystal grain size of 0.05 to 20 μm
A rare earth-Fe-Co-B-based anisotropic magnet, wherein the magnet is shaped .
【請求項5】 上記平均再結晶粒径は、0.05〜3μ
mであることを特徴とする請求項1、2、3または4
載の希土類−Fe−Co−B系異方性磁石。
5. The average recrystallized particle size is 0.05 to 3 μm.
The rare-earth-Fe-Co-B-based anisotropic magnet according to claim 1, 2 , 3, or 4, wherein m is m.
JP03060833A 1991-01-28 1991-01-30 Rare earth-Fe-Co-B anisotropic magnet Expired - Fee Related JP3092672B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP03060833A JP3092672B2 (en) 1991-01-30 1991-01-30 Rare earth-Fe-Co-B anisotropic magnet
DE69203405T DE69203405T3 (en) 1991-01-28 1992-01-28 Anisotropic rare earth magnet.
CA 2079223 CA2079223A1 (en) 1991-01-28 1992-01-28 Anisotropic rare earth-fe-b system and rare earth-fe-co-b system magnet
PCT/JP1992/000073 WO1992013353A1 (en) 1991-01-28 1992-01-28 Anisotropic rare earth-iron-boron and rare earth-iron-cobalt-boron magnet
EP92903728A EP0522177B2 (en) 1991-01-28 1992-01-28 Anisotropic Rare Earth Magnet
CN92100957A CN1045498C (en) 1991-01-30 1992-01-30 Rare earth-Fe-Co-B anisotropic magnet
TW81100775A TW227619B (en) 1991-01-30 1992-01-31
US08/021,187 US5395462A (en) 1991-01-28 1993-02-23 Anisotropic rare earth-Fe-B system and rare earth-Fe-Co-B system magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03060833A JP3092672B2 (en) 1991-01-30 1991-01-30 Rare earth-Fe-Co-B anisotropic magnet

Publications (2)

Publication Number Publication Date
JPH04245403A JPH04245403A (en) 1992-09-02
JP3092672B2 true JP3092672B2 (en) 2000-09-25

Family

ID=13153758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03060833A Expired - Fee Related JP3092672B2 (en) 1991-01-28 1991-01-30 Rare earth-Fe-Co-B anisotropic magnet

Country Status (3)

Country Link
JP (1) JP3092672B2 (en)
CN (1) CN1045498C (en)
TW (1) TW227619B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226814A1 (en) 2009-02-27 2010-09-08 MINEBEA Co., Ltd. Rare-earth iron -based magnet with self-recoverability
DE102010037838A1 (en) 2009-09-29 2011-03-31 Minebea Co., Ltd. Anisotropic resin bonded magnet based on rare earth iron

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047683C (en) * 1992-09-30 1999-12-22 上海申建冶金机电技术工程公司 Producing method for microcrystal rare-earth permanent-magnet with high performance
JPH06151132A (en) * 1992-10-29 1994-05-31 Mitsubishi Materials Corp Manufacture of powder of anisotropic magnet material and manufacture of magnet using anisotropic magnet material powder obtained by same manufacture
US5482575A (en) * 1992-12-08 1996-01-09 Ugimag Sa Fe-Re-B type magnetic powder, sintered magnets and preparation method thereof
FR2698999B1 (en) * 1992-12-08 1995-01-06 Ugimag Sa Magnetic powder of Fe-TR-B type and corresponding sintered magnets and their method of preparation.
WO2008020467A1 (en) * 2006-08-14 2008-02-21 Mitsubishi Materials Pmg Corporation Highly corrosion-resistant rare earth permanent magnet and process for producing the same
WO2008065903A1 (en) 2006-11-30 2008-06-05 Hitachi Metals, Ltd. R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
CN101240398B (en) * 2007-02-07 2010-12-29 罗阳 Intermetallic compound anisotropy magnetic powder, preparation method and special device
JP2011210879A (en) * 2010-03-29 2011-10-20 Hitachi Metals Ltd Method for manufacturing rare-earth magnet
CN102682945A (en) * 2012-05-11 2012-09-19 西北工业大学 Fe-Co-Si-B-Cu in-situ composite material with amorphous-crystalline double-layer structure and preparation method thereof
JP5751237B2 (en) * 2012-11-02 2015-07-22 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof
CN103247401A (en) * 2013-05-27 2013-08-14 江西江钨稀有金属新材料有限公司 Rare-earth permanent magnetic material
DE102015107486A1 (en) * 2015-05-12 2016-11-17 Technische Universität Darmstadt Artificial permanent magnet and method for producing the artificial permanent magnet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295342A (en) * 1985-06-24 1986-12-26 Hitachi Metals Ltd Manufacture of permanent magnet alloy
JPS6217149A (en) * 1985-07-16 1987-01-26 Sumitomo Special Metals Co Ltd Manufacture of sintered permanent magnet material
US4983232A (en) * 1987-01-06 1991-01-08 Hitachi Metals, Ltd. Anisotropic magnetic powder and magnet thereof and method of producing same
JPS63282239A (en) * 1987-05-13 1988-11-18 Hitachi Metals Ltd Permanent magnet alloy
DE3850001T2 (en) * 1987-08-19 1994-11-03 Mitsubishi Materials Corp Magnetic rare earth iron boron powder and its manufacturing process.
JPH02263404A (en) * 1989-04-04 1990-10-26 Hitachi Metals Ltd Rare earth group iron base permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226814A1 (en) 2009-02-27 2010-09-08 MINEBEA Co., Ltd. Rare-earth iron -based magnet with self-recoverability
DE102010037838A1 (en) 2009-09-29 2011-03-31 Minebea Co., Ltd. Anisotropic resin bonded magnet based on rare earth iron
US8329056B2 (en) 2009-09-29 2012-12-11 Minebea Co., Ltd. Anisotropic rare earth-iron based resin bonded magnet

Also Published As

Publication number Publication date
TW227619B (en) 1994-08-01
JPH04245403A (en) 1992-09-02
CN1065150A (en) 1992-10-07
CN1045498C (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US4601875A (en) Process for producing magnetic materials
US4975130A (en) Permanent magnet materials
US4684406A (en) Permanent magnet materials
JP3092672B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH01219143A (en) Sintered permanent magnet material and its production
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JPH045740B2 (en)
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JPH061726B2 (en) Method of manufacturing permanent magnet material
JP2773444B2 (en) Rare earth-Fe-B based anisotropic magnet
JPH045739B2 (en)
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP2001085256A (en) PRODUCTION OF RARE-EARTH-Fe-Co-B MAGNET
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH045738B2 (en)
JPH0320048B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980908

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070728

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees