JPS6217149A - Manufacture of sintered permanent magnet material - Google Patents

Manufacture of sintered permanent magnet material

Info

Publication number
JPS6217149A
JPS6217149A JP60157362A JP15736285A JPS6217149A JP S6217149 A JPS6217149 A JP S6217149A JP 60157362 A JP60157362 A JP 60157362A JP 15736285 A JP15736285 A JP 15736285A JP S6217149 A JPS6217149 A JP S6217149A
Authority
JP
Japan
Prior art keywords
density
permanent magnet
atomic
sintered
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60157362A
Other languages
Japanese (ja)
Other versions
JPH0518895B2 (en
Inventor
Yutaka Matsuura
裕 松浦
Setsuo Fujimura
藤村 節夫
Hitoshi Yamamoto
日登志 山本
Satoru Hirozawa
哲 広沢
Masato Sagawa
佐川 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60157362A priority Critical patent/JPS6217149A/en
Publication of JPS6217149A publication Critical patent/JPS6217149A/en
Publication of JPH0518895B2 publication Critical patent/JPH0518895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a high-density sintered permanent magnet material by subjecting an alloy powder composed essentially of rare earth elements, B and Fe reach having a specific composition to compacting in a magnetic field, primary sintering and then hot hydraulic pressing treatment under proper conditions. CONSTITUTION:The alloy powder composed essentially of by atom, 10-30% R (where R consists of at least one element among Nd, Pr, Dy, Ho and Tb or further consists of at least one element among La, Ce, Sm, Cd, Er, Eu, Tm, Yb, Lu and Y), 2-28% B and 65-80% Fe is compacted in a magnetic field. Subsequently, the resulting green compact is subjected to primary sintering to be formed into a sintered compact having a density of >=90% of theoretical density. This sintered compact is further age-treated at 700-1,000 deg.C, as necessary, and then subjected to hot hydraulic pressing treatment in a hermetically sealed vessel by the use of an inert gas as a pressure medium, at 400-700 deg.C under the pressure of 500-1,300atm. In this way, the sintered permanent magnet material is made high-density, so that magnetic properties and mechanical strengths can be improved and, by the succeeding surface treatment stage, oxidation resistance can be effectively improved.

Description

【発明の詳細な説明】 利用産業分野 この発明は、R(RはYを含む希土類元素のうち少なく
とも1種>、B、Feを主成分とする焼結永久la′E
J材料の製造方法に係り、特に、熱間静水圧プレス処理
により、永久磁石材料を高密度化して、磁気特性及び機
械的強度の向上を計った焼結永久FB5材料の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application This invention relates to a sintered permanent la'E material mainly composed of R (R is at least one rare earth element including Y), B, and Fe.
The present invention relates to a method for manufacturing J material, and in particular to a method for manufacturing sintered permanent FB5 material in which permanent magnet material is densified by hot isostatic pressing to improve magnetic properties and mechanical strength.

背景技術 現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバルト磁石である。
BACKGROUND ART Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets.

このうち希土類コバルト磁石は、磁気特性が格段にすぐ
れているため、多種用途に利用されているが、主成分の
SNd、 Cot、を共に資源的に不足し、かつ高価で
あり、今後長期間にわたって、安定して多量に供給され
ることは困難である。そのため、磁気特性がすぐれ、か
つ安価で、さらに資源的に豊富で今後の安定供給が可能
な組成元素からなる永久磁石材料が切望されてきた。
Among these, rare earth cobalt magnets have extremely excellent magnetic properties and are used for a variety of purposes, but their main components, SNd and Cot, are both in short supply and expensive. , it is difficult to stably supply it in large quantities. Therefore, there has been a strong desire for a permanent magnet material that has excellent magnetic properties, is inexpensive, and is composed of constituent elements that are abundant in resources and can be stably supplied in the future.

本出願人は先に、高価なSmやらを含有しない新しい高
性能永久磁石としてFe−B−R系(RはYを含む希土
類元素のうち少なくとも1種)永久磁石を提案した(特
開昭59−46008号、特開昭59−64733号、
特開昭59−89401号、特開昭59−132104
号)。
The present applicant previously proposed a Fe-BR-based permanent magnet (R is at least one of rare earth elements including Y) as a new high-performance permanent magnet that does not contain expensive Sm (Japanese Patent Application Laid-Open No. 59-1991). -46008, JP-A-59-64733,
JP-A-59-89401, JP-A-59-132104
issue).

この永久磁石は、Rとして陶や円を中心とする資源的に
豊富な軽希土類を用い、Faを主成分として25MGO
8以上の極めて高いエネルギー積を示す、すぐれた永久
vi1石である。
This permanent magnet uses resource-rich light rare earths such as ceramics and circles as R, and has 25MGO as the main component.
It is an excellent permanent VI1 stone that shows an extremely high energy product of 8 or more.

かかるFa −B −R系異方性永久磁石材料は、密度
が理論密度の96%程度であり、有孔体であるため、磁
気特性及び機械的性質の向上に限度があり、また、該系
永久磁石合金は非常に酸化しやすいNdあるいは門を大
量に含有するため、実用上、耐酸化性改善のためのIa
石衣表面のめつき層などの耐酸化性被膜を施す必要があ
る。しかし、前記した如く該系磁石は有孔体であり、微
細孔に水分あるいは表面処理の下地処理用酸性溶液やア
ルカリ溶液が残存し、時間経過とともに発錆の要因とな
るなどの問題があった。
Such Fa-B-R based anisotropic permanent magnet material has a density of about 96% of the theoretical density and is a porous material, so there is a limit to the improvement of magnetic properties and mechanical properties. Permanent magnet alloys contain a large amount of Nd or Nd, which is highly oxidizable, so in practice, Ia is used to improve oxidation resistance.
It is necessary to apply an oxidation-resistant coating such as a plating layer on the surface of the stone garment. However, as mentioned above, this type of magnet is a porous material, and there have been problems such as moisture or acidic or alkaline solutions for surface treatment remaining in the micropores, which can cause rust over time. .

このため発明者は、先に、熱間静水圧プレス処理によっ
て、Fa  B  R系永久磁石材料を高密度化して、
磁気特性及び機械的強度の向上を計り、後続工程での表
面処理による耐酸化性向上を実効せしめた焼結永久磁石
材料の製造方法(特願昭59−259761@)を提案
した。
For this reason, the inventor first densified the Fa BR permanent magnet material by hot isostatic pressing,
We have proposed a manufacturing method for sintered permanent magnet materials (Japanese Patent Application No. 59-259761@) that aims to improve magnetic properties and mechanical strength, and improves oxidation resistance through surface treatment in subsequent steps.

しかしながら、前記’:”! ′)Q方法では、Fe−
BRR系永久磁石材料組成、特に、Rの組成によっては
、熱間静水圧プレス処理を行なっても、焼結体の高密度
化が得られない問題があった。
However, in the above ':''!')Q method, Fe-
Depending on the composition of the BRR permanent magnet material, particularly the composition of R, there is a problem in that even if hot isostatic pressing is performed, the sintered body cannot be densified.

発明の目的 この発明は、永久Ia5ia石材料を高材料化して、磁
気特性及び機械的強度の向上を計り、後続工程での表面
処理による耐酸化性向上を実効せしめた焼結永久磁石材
料の製造方法を目的とし、特に、Fe −B −R系永
久磁石材料のR組成の如何に関わらず、熱間静水圧プレ
ス処理による焼結磁石体の高密度化が得られる焼結永久
磁石材料の製造方法を目的としている。
Purpose of the Invention The present invention is directed to the production of a sintered permanent magnet material that improves magnetic properties and mechanical strength by increasing the quality of permanent Ia5ia stone material, and improves oxidation resistance through surface treatment in subsequent steps. A method for producing a sintered permanent magnet material, in particular, in which a sintered magnet body can be densified by hot isostatic pressing, regardless of the R composition of the Fe-B-R permanent magnet material. Aimed at method.

発明の構成と効果 この発明は、Fe−BRR系永久磁石材料高密度化を目
的に種々検討した結果、一次焼結にて特定密度を有する
焼結体となし、その後特定条件で熱間静水圧プレス処理
し、時効処理することにより、密度を理論密度のほぼ1
00%とすることができ、磁気特性の向上、機械的性質
の向上が得られ、磁石材料の高密度無孔化により、耐酸
化性表面処理が有効に機能し、耐酸化性改善に実効ある
ことを知見したが、さらに、熱間静水圧プレス処理時に
、Rr i chな液相が多くでる組成では、熱間静水
圧プレス処理がかからずに、焼結体内部に空孔が発生す
るなど、密度の低下が起ることを知見し、上記の特定条
件の熱間静水圧プレス処理よりも、さらに低い温度条件
で熱間静水圧プレス処理すると、Rrichな液相が多
くでる組成であっても、焼結体に均一に熱間静水圧プレ
ス処理でき、理論密度のほぼ100%の高密度化が達成
できることが分った。
Structure and Effects of the Invention As a result of various studies aimed at increasing the density of Fe-BRR permanent magnet materials, the present invention has been made into a sintered body having a specific density through primary sintering, and then subjected to hot isostatic pressure under specific conditions. By pressing and aging, the density is almost 1 of the theoretical density.
00%, improved magnetic properties and improved mechanical properties can be obtained, and by making the magnet material dense and non-porous, the oxidation-resistant surface treatment functions effectively and is effective in improving oxidation resistance. However, in addition, in a composition in which a large amount of Rr i ch liquid phase appears during hot isostatic pressing, pores are generated inside the sintered body without hot isostatic pressing. We found that a decrease in density occurs, and that when hot isostatic pressing is performed at a lower temperature than the hot isostatic pressing under the specific conditions mentioned above, it is possible to obtain a composition with a large amount of rich liquid phase. However, it was found that the sintered body could be uniformly subjected to hot isostatic pressing, and a high density of almost 100% of the theoretical density could be achieved.

すなわち、この発明は、 R10原子%〜30原子%、(RはNd、 Pr、 D
y、 )to。
That is, in this invention, R10 atomic % to 30 atomic %, (R is Nd, Pr, D
y, )to.

Tbのうち少なくとも1種あるいはさらに、La、Co
At least one of Tb or in addition La, Co
.

SNd、 Ca、 Er、 EDy、丁Nd、 Yb、
 La、 Yのうち少なくとも1種からなる) B2原子%〜28原子%、 Fe65原子%〜80原子% を主成分とする合金粉末を、 磁場成型後、一次焼結により理論密度の90%以上の密
度を有する焼結体となし、必要に応じて焼結体を700
’C〜1000’Cにて時効処理した後、金属チタン粉
末等の酸化防止剤中に埋入した密封容器内で不活性ガス
を圧力媒体として、温度400’C〜700℃)圧力5
00気圧〜1300気圧にて熱間静水圧プレス処理を施
し、必要に応じて時効処理することを特徴とする焼結永
久磁石材料の製造方法である。
SNd, Ca, Er, EDy, Ding Nd, Yb,
An alloy powder whose main components are B2 at % to 28 at % and Fe65 at % to 80 at % (consisting of at least one of La and Y) is formed into a powder with a theoretical density of 90% or more by primary sintering after magnetic field molding. The sintered body has a density, and if necessary, the sintered body is
After aging at a temperature of 400°C to 1000°C, inert gas is used as a pressure medium in a sealed container embedded in an antioxidant such as metallic titanium powder (temperature 400°C to 700°C), pressure 5
This is a method for producing a sintered permanent magnet material, which is characterized by subjecting the material to hot isostatic pressing at a pressure of 00 to 1300 atmospheres, and subjecting it to an aging treatment if necessary.

この発明において、永久磁石用合金粉末の限定理由は後
)ホするとおりであり、一次焼結体の密度を理論密度の
90%以上としたのは、90%未満では、熱間静水圧プ
レス処理によって密度を理論密度の98.5%以上とす
ることができないためである。
In this invention, the reasons for limiting the alloy powder for permanent magnets are as described below.The density of the primary sintered body is set to be 90% or more of the theoretical density. This is because the density cannot be made 98.5% or more of the theoretical density.

また、熱間静水圧プレス処理における温度条件を400
°C〜700°Cとしたのは、400’C未満では高圧
にて熱間静水圧処理しても高密度化することができず、
700℃を越えると、Rrichな液相ができるため、
組成によっては、熱間静水圧プレス処理がかからなくな
るため好ましくない。
In addition, the temperature conditions in the hot isostatic pressing treatment were set to 400℃.
°C to 700 °C is because at temperatures below 400'C, high-pressure hot isostatic pressure treatment cannot increase the density.
When the temperature exceeds 700℃, a rich liquid phase is formed.
Depending on the composition, hot isostatic pressing may not be applied, which is not preferable.

さらに、処理圧力が500気圧未満では焼結体を高密度
化することが困難でおり、1300気圧を越えると高密
度化は可能であるが、処理装置の耐久性やコストの面で
好ましくないため、500気圧〜1300気圧とする。
Furthermore, if the processing pressure is less than 500 atm, it is difficult to increase the density of the sintered compact, and if the processing pressure exceeds 1300 atm, it is possible to increase the density, but this is not desirable in terms of the durability and cost of the processing equipment. , 500 atm to 1300 atm.

この発明において、熱間静水圧プレス処理前に行なう前
工程として、熱間静水圧プレス処理後の磁石体の残留磁
束密度、保磁力、減磁曲線の角型性を改善向上させるた
め、必要に応じて、時効処理するが、処理温度700’
C未満では保磁力の低下が起り、1000℃を越えると
同様に保磁力か低下するので、時効処理温度は700°
C〜1000’Cの範囲が好ましく、また、時効処理時
間は30分〜6時間が好ましい。30分未満では時効処
理効果が少なく、1qられる磁石材料の磁気特性のばら
つきが大きくなり、6時間を越えるとその効果が飽和し
て実用的でない。
In this invention, as a pre-process performed before hot isostatic pressing, necessary steps are taken to improve the residual magnetic flux density, coercive force, and squareness of the demagnetization curve of the magnet after hot isostatic pressing. Accordingly, aging treatment is performed at a treatment temperature of 700'.
If the temperature is less than C, the coercive force will decrease, and if it exceeds 1000℃, the coercive force will also decrease, so the aging treatment temperature should be 700℃.
The range of C to 1000'C is preferable, and the aging treatment time is preferably 30 minutes to 6 hours. If the aging treatment is carried out for less than 30 minutes, the effect of the aging treatment will be small and variations in the magnetic properties of the magnet material subjected to 1q will become large, and if it exceeds 6 hours, the effect will be saturated and it is not practical.

この発明において、保磁力と減磁曲線の角型性の改善の
ために、熱間静水圧プレス処理後の時効処理するのもよ
く、その時効処理温度は450’C:〜700’Cの範
囲が好ましく、また、時効処理時間は5分〜40時間が
好ましい。5分未満では時効処理効果が少なく、得られ
る磁石材料の磁気特性のばらつきが大きくなり、40時
間を越えると工業的に長時間を要しすぎ実用的でない。
In this invention, in order to improve the coercive force and the squareness of the demagnetization curve, aging treatment may be performed after hot isostatic pressing, and the aging treatment temperature is in the range of 450'C to 700'C. is preferable, and the aging treatment time is preferably 5 minutes to 40 hours. If it is less than 5 minutes, the effect of the aging treatment will be small and the magnetic properties of the obtained magnet material will vary widely, and if it exceeds 40 hours, it will take an industrially too long time to be practical.

磁気特性の好ましい発現と実用的な面から時効処理時間
は30分から8時間が好ましい。また、時効処理は2段
以上の多段時効処理を用いることもできる。
From the viewpoint of desirable development of magnetic properties and practical aspects, the aging treatment time is preferably 30 minutes to 8 hours. Moreover, multi-stage aging treatment of two or more stages can also be used for the aging treatment.

また、多段時効処理に代えて、450°C−700℃の
時効処理温度から空温までを空冷あるいは水冷などの冷
却方法で、0.2℃/min 〜20℃/minの冷却
速度で冷却する方法によっても、上記時効処理と同等の
磁気特性を有する永久fj1′EJ材料を得ることがで
きる。
In addition, instead of multi-stage aging treatment, cooling from the aging treatment temperature of 450°C to 700°C to air temperature is performed using a cooling method such as air cooling or water cooling at a cooling rate of 0.2°C/min to 20°C/min. By this method, it is also possible to obtain a permanent fj1'EJ material having magnetic properties equivalent to those obtained by the above-mentioned aging treatment.

永久磁石用合金粉末の限定理由 この発明の希土類合金粉末中の希土類元素Rは、組成の
12原子%〜20原子%を占めるが、Nd、 Pr。
Reasons for limiting the alloy powder for permanent magnets The rare earth element R in the rare earth alloy powder of the present invention accounts for 12 at % to 20 at % of the composition, and Nd, Pr.

Dy、 Ho、 Tbのうち少なくとも1種、おるいは
さらに、La、 Ce、 SNd、 Gd、 Er、 
EDy、 TNd、 Yb、 La、 Yのうち少なく
とも1種を含むものからなる。
At least one of Dy, Ho, Tb, or further, La, Ce, SNd, Gd, Er,
Contains at least one of EDy, TNd, Yb, La, and Y.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミツシュメタル、ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, normally one type of R is sufficient, but in practice two types are sufficient.
A mixture of more than one species (Mitushmetal, Didim, etc.) can be used for reasons such as availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rは、新規なFe−B−R系永久磁石における、必須元
素で市って、10原子%未満では、結晶構造がα−鉄と
同一構造の立方晶組織となるため、高磁気特性、特に高
保磁力が得られず、30原子%を越えると、Rリッチな
非磁性相が多くなり、保磁力は10 koa以上である
が、残留磁束密度3rが低下して、すぐれた特性の永久
磁石が得られない。
R is an essential element in the new Fe-B-R permanent magnet, and if it is less than 10 atomic %, the crystal structure becomes cubic, which is the same structure as α-iron, so it has high magnetic properties, especially If a high coercive force cannot be obtained and the content exceeds 30 at%, the R-rich nonmagnetic phase increases, and although the coercive force is 10 koa or more, the residual magnetic flux density 3r decreases, making it impossible to create a permanent magnet with excellent characteristics. I can't get it.

よって、希土類元素は、10原子%〜30原子%の範囲
とする。
Therefore, the rare earth element is in the range of 10 atomic % to 30 atomic %.

Bは、Fa−BR系永久磁石における、必須元素であっ
て、2原子%未満では、菱面体晶構造が主相となり、高
い保磁力1l−1cは得られず、10 k08以下とな
り、28原子%を越えると、8リツチな非磁性相が多く
なり、残留磁束密度B「が低下し、(B H)maX 
 20HGOe未満となり、t りtL だ永久Wi石
が得られない。よって、Bは、2原子%〜28原子%の
範囲とする。
B is an essential element in Fa-BR permanent magnets, and if it is less than 2 atomic %, the rhombohedral crystal structure becomes the main phase, and a high coercive force of 1l-1c cannot be obtained, and the coercive force is less than 10 k08, which is 28 atoms. %, the 8-rich nonmagnetic phase increases, the residual magnetic flux density B' decreases, and (B H) maX
It becomes less than 20HGOe, and no permanent Wi stone can be obtained. Therefore, B is in the range of 2 atomic % to 28 atomic %.

Feは、新規な上記系永久磁石において、必須元素であ
り、(35原子%未満では残留磁束密度Brが低下し、
80原子%を越えると、高い保磁力が得られないので、
Feは65原子%〜80原子%の含有とする。
Fe is an essential element in the new above-mentioned permanent magnet, and (if it is less than 35 atomic %, the residual magnetic flux density Br decreases,
If it exceeds 80 atom%, high coercive force cannot be obtained.
The content of Fe is 65 atomic % to 80 atomic %.

また、この発明による永久磁石材料において、Feの一
部をCOで置換することは、得られる磁石の磁気特性を
損うことなく、温度特性を改善することができるが、6
置換量がFeの30%を越えると、逆に磁気特性が劣化
するため、好ましくなく、さらに置換量の好ましい量は
20%以下である。
In addition, in the permanent magnet material according to the present invention, replacing a part of Fe with CO can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet.
If the amount of substitution exceeds 30% of Fe, the magnetic properties will deteriorate, which is undesirable, and the preferable amount of substitution is 20% or less.

また、この発明による永久磁石は、R,B、Feの他、
工業的生産上不可避的不純物の存在を許容できるが、B
の一部を4.0原子%以下のC,3,5原子%以下のP
、2.5原子%以下のS、1.5原子%以下の伍、5原
子%以下のSLのうち少なくとも1種、合計量で5.0
原子%以下で置換することにより、永久磁石の製造性改
善、低価格化が可能である。
In addition to R, B, and Fe, the permanent magnet according to the present invention also includes
Although the presence of unavoidable impurities in industrial production can be tolerated, B
A part of C is 4.0 atomic% or less, P is 3.5 atomic% or less
, at least one of the following: 2.5 atomic % or less S, 1.5 atomic % or less 5, 5 atomic % or less SL, the total amount is 5.0
By substituting at atomic % or less, it is possible to improve the manufacturability and reduce the cost of permanent magnets.

また、下記添加元素のうち少なくとも1種は、RB  
Fe系永久磁石に対してその保磁力、減磁曲線の角型性
を改善あるいは製造性の改善、低価格化に効果があるた
め添加することができる。しかし、保磁力改善のための
添加に伴ない残留磁束密度(Br)の低下を招来するの
で、従来のハードフェライト磁石の残留磁束密度と同等
以上となる範囲での添加が望ましい。
In addition, at least one of the following additional elements is RB
It can be added to Fe-based permanent magnets because it is effective in improving the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing costs. However, addition to improve coercive force causes a decrease in residual magnetic flux density (Br), so it is desirable to add in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets.

5.0原子%以下のへ1.3.0原子%以下のTi、5
.5原子%以下のV、  4.5原子%以下のcr15
.0原子%以下のHn、5.0原子%以下のBi、9.
0原子%以下のNb、7.0原子%以下のTa、5.2
原子%以下のNo、  5.0原子%以下の賛、1.0
原子%以下のSb、  3゜5原子%以下のGe。
5.0 at% or less Ti, 1.3.0 at% or less Ti, 5
.. 5 at% or less V, 4.5 at% or less cr15
.. Hn of 0 atomic % or less, Bi of 5.0 atomic % or less, 9.
Nb of 0 atomic% or less, Ta of 7.0 atomic% or less, 5.2
No less than 5.0 atom%, 1.0 less than 5.0 atom%
Sb below 3.5 atomic %, Ge below 3.5 atomic %.

1.5原子%以下の釦、3.3原子%以下のl「、6.
0原子%以下のNi、  1.1原子%以下のZn。
Button of 1.5 atomic % or less, l'' of 3.3 atomic % or less, 6.
Ni of 0 atomic % or less, Zn of 1.1 atomic % or less.

3.3原子%以下のHf。3.3 atomic % or less of Hf.

のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。また、特に好まし
い添加元素は、V 、 Nb。
At least one of these elements is added and contained; however, when two or more types are contained, the maximum content is less than or equal to the atomic percent of the element having the maximum value among the added elements.
It becomes possible to increase the coercive force of permanent magnets. Particularly preferable additive elements are V and Nb.

丁a、 No、 I 、 Cr、 Mであり、含有量は
少量が好ましく、3原子%以下が有効であり、〃は0.
1〜3原子%、望ましくは0.2〜2原子%である。
D, No, I, Cr, M, the content is preferably a small amount, 3 atomic % or less is effective, and 〃 is 0.
The amount is 1 to 3 at%, preferably 0.2 to 2 at%.

結晶相は主相(特定の相が80%以上)が正方晶である
ことが、磁石として高い磁気特性を発現し)qるのに不
可欠である。この磁性相はFeBR正方品化合物結晶で
構成され、非磁性相により粒界を囲まれている。非磁性
相は主としてRリッチ相からなり、Bの多い場合、Bリ
ッチ相も部分的に存在し得る。非磁性相粒界域の存在は
高保磁力に寄与するものと考えられ、本発明合金の重要
な組織上の特徴をなし、はんの僅かな量でも有効であり
、例えばIVOI%以上は充分な量である。
It is essential that the main crystalline phase (80% or more of a specific phase) be tetragonal in order to exhibit high magnetic properties as a magnet. This magnetic phase is composed of FeBR tetragonal compound crystals, and the grain boundaries are surrounded by a non-magnetic phase. The nonmagnetic phase mainly consists of an R-rich phase, and if there is a large amount of B, a B-rich phase may also be partially present. The existence of non-magnetic phase grain boundary regions is thought to contribute to high coercive force, and is an important structural feature of the alloy of the present invention, and even a small amount of solder is effective; for example, IVOI% or more is sufficient It's the amount.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet.

原料粉末中に、TLB2 、BN 、ZrB2、ZrB
rz、HfBz 、VB2 、NbB、NbB2、Ta
B、TaB2、CrB2、MoB、 MOB2 、MO
2BSW B、 W2 B等の硼化物のうち少なくとも
1種を0.05原子%〜3.0原子%含有させることに
より、磁石体の焼結時の結品粒の成長を抑制することが
できる。          1′この発明による永久
磁石は、保磁力iHc≧10k        :Qa
、残留磁束密度Br> 9kG、を示し、最大エネ  
      :ルギーM(BH)maxは、最も好まし
い組成範囲では、       [(8N )max≧
258GOeを示し、最大値は508GOa以上に  
      1達する。
In the raw material powder, TLB2, BN, ZrB2, ZrB
rz, HfBz, VB2, NbB, NbB2, Ta
B, TaB2, CrB2, MoB, MOB2, MO
By containing at least one of borides such as 2BSW B and W2 B in an amount of 0.05 atomic % to 3.0 atomic %, growth of compact grains during sintering of the magnet body can be suppressed. 1' The permanent magnet according to the present invention has a coercive force iHc≧10k:Qa
, the residual magnetic flux density Br>9kG, and the maximum energy
: Lugie M(BH)max is [(8N)max≧] in the most preferable composition range.
It shows 258 GOe, and the maximum value is 508 GOa or more.
Reach 1.

、。1.。えIIJI&aユ5ヨ。□ヵ。エフ3、  
1゜R11原子%〜16原子%、B22原子〜15原子
%、        i′Co45原子%以下、Fa 
 残部の場合、得られる磁気異方性永久磁石合金は、上
記磁石合金と同等の磁気特性を示し、残留磁束密度の温
度係数が、0.1%/℃以下となり、すぐれた特性が得
られる。
,. 1. . EIIJI&a Yu5yo. □Ka. F3,
1゜R11 atomic% to 16 atomic%, B22 atomic% to 15 atomic%, i'Co45 atomic% or less, Fa
In the case of the remainder, the obtained magnetically anisotropic permanent magnet alloy exhibits magnetic properties equivalent to those of the above-mentioned magnet alloy, and has a temperature coefficient of residual magnetic flux density of 0.1%/° C. or less, resulting in excellent properties.

また、この発明永久磁石用合金粉末のRの主成分がその
50%以上を動及び円を主とする軽希土類金属で占める
場合で、R12原子%〜15原子%、B5.5@子%〜
10原子%、Fs残部、を主成分とするとき、あるいは
さらにFθの一部を20%以下の6で置換したとき、焼
結Ia5の場合量もすぐれた磁気特性を示し、特に軽希
土類金属が陶の場合には、その最大値が508GOθ以
上に達する。
In addition, in the case where the main component of R in the alloy powder for permanent magnets of this invention is 50% or more of the light rare earth metal mainly composed of dynamic and circular metals, R12 at % to 15 at %, B5.5 @ child % to
When the main component is 10 atomic % with the remainder being Fs, or when a part of Fθ is further replaced with 20% or less of 6, sintered Ia5 exhibits excellent magnetic properties, especially when light rare earth metals are used. In the case of ceramic, the maximum value reaches 508 GOθ or more.

実施例 原子百分率で、第1表に示す組成からなる平均粒度4ρ
の合金粉末(不発明陽1〜4)を、10kOθの磁界中
で、2 ton4の圧力で加圧成型したのち、lX10
−7丁orrの真空中で、1060°C,2時間焼結し
て理論密度の96%密度を有する一次焼結体を得、この
一次焼結体を密封容器内で金属チタン粉末中に埋入し、
Arガスを圧力媒体として、温度600℃、圧力900
気圧の熱間静水圧プレス処理した。
Example average particle size 4ρ consisting of the composition shown in Table 1 in atomic percentage
After pressure molding the alloy powders (uninvention positive 1 to 4) at a pressure of 2 tons in a magnetic field of 10 kOθ,
A primary sintered body having a density of 96% of the theoretical density was obtained by sintering at 1060°C for 2 hours in a vacuum of -7 orr, and this primary sintered body was embedded in metallic titanium powder in a sealed container. Enter,
Using Ar gas as pressure medium, temperature 600℃, pressure 900℃
Hot isostatic pressing at atmospheric pressure.

ついで、660℃で1時間の時効処理を施したのち、磁
気特性及び機械的性質を測定した。その結果は第2表に
示すとおりである。
Then, after performing an aging treatment at 660° C. for 1 hour, the magnetic properties and mechanical properties were measured. The results are shown in Table 2.

また、比較のため、一次焼結体に温度800℃。For comparison, the temperature of the primary sintered body was 800°C.

圧力900気圧の熱間静水圧プレス処理と600℃。Hot isostatic pressing at a pressure of 900 atm and 600°C.

1時間の時効処理を施す以外は上記製造方法で製造した
比較磁石材料(No、5〜8)を作製し、同様に磁気特
性及び機械的性質を測定し、第2表にその結果を示す。
Comparative magnet materials (Nos. 5 to 8) were produced using the above production method except that they were subjected to an aging treatment for 1 hour, and their magnetic properties and mechanical properties were similarly measured, and the results are shown in Table 2.

第1表及び第2表の結果から明らかなように、この発明
の製造方法による永久磁石材料は、磁気特性及び機械的
性質が向上していることが分る。
As is clear from the results in Tables 1 and 2, it can be seen that the permanent magnet material manufactured by the manufacturing method of the present invention has improved magnetic properties and mechanical properties.

以下余白Below margin

Claims (1)

【特許請求の範囲】  R10原子%〜30原子%、 (RはNd、Pr、Dy、Ho、Tbのうち少なくとも
1種あるいはさらに、La、Ce、Sm、Gd、Er、
Eu、Tm、Yb、La、Yのうち少なくとも1種から
なる)B2原子%〜28原子%、 Fe65原子%〜80原子% を主成分とする合金粉末を、 磁場成型後、一次焼結により理論密度の90%以上の密
度を有する焼結体となし、この焼結体を密封容器内で、
不活性ガスを圧力媒体として、温度400℃〜700℃
)圧力500気圧〜1300気圧にて熱間静水圧プレス
処理を施すことを特徴とする焼結永久磁石材料の製造方
法。 R10原子%〜30原子%、 (RはNd、Pr、Dy、Ho、Tbのうち少なくとも
1種あるいはさらに、La、Ca、Sm、Cd、Er、
Eu、Tm、Yb、La、Yのうち少なくとも1種から
なる)B2原子%〜28原子%、 Fe65原子%〜80原子% を主成分とする合金粉末を、 磁場成型後、一次焼結により理論密度の90%以上の密
度を有する焼結体となし、さらに焼結体を700℃〜1
000℃にて時効処理した後、密封容器内で不活性ガス
を圧力媒体として、温度400℃〜700℃、圧力50
0気圧〜1300気圧にて熱間静水圧プレス処理を施す
ことを特徴とする焼結永久磁石材料の製造方法。
[Claims] 10 at % to 30 at % of R, (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Gd, Er,
An alloy powder containing at least one of Eu, Tm, Yb, La, and Y) B2 to 28 atom% and Fe65 to 80 atom% is formed by magnetic field molding and then primary sintering. A sintered body having a density of 90% or more of the density is formed, and this sintered body is placed in a sealed container,
Temperature: 400°C to 700°C using inert gas as pressure medium
) A method for producing a sintered permanent magnet material, which comprises performing hot isostatic pressing at a pressure of 500 atm to 1300 atm. R 10 atomic % to 30 atomic %, (R is at least one of Nd, Pr, Dy, Ho, Tb, or in addition, La, Ca, Sm, Cd, Er,
An alloy powder containing at least one of Eu, Tm, Yb, La, and Y) B2 to 28 atom% and Fe65 to 80 atom% is formed by magnetic field molding and then primary sintering. The sintered body is made into a sintered body having a density of 90% or more, and the sintered body is further heated at 700°C to 1
After aging at 000°C, the temperature is 400°C to 700°C and the pressure is 50°C using an inert gas as a pressure medium in a sealed container.
A method for producing a sintered permanent magnet material, the method comprising performing hot isostatic pressing at 0 atm to 1300 atm.
JP60157362A 1985-07-16 1985-07-16 Manufacture of sintered permanent magnet material Granted JPS6217149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60157362A JPS6217149A (en) 1985-07-16 1985-07-16 Manufacture of sintered permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60157362A JPS6217149A (en) 1985-07-16 1985-07-16 Manufacture of sintered permanent magnet material

Publications (2)

Publication Number Publication Date
JPS6217149A true JPS6217149A (en) 1987-01-26
JPH0518895B2 JPH0518895B2 (en) 1993-03-15

Family

ID=15647997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60157362A Granted JPS6217149A (en) 1985-07-16 1985-07-16 Manufacture of sintered permanent magnet material

Country Status (1)

Country Link
JP (1) JPS6217149A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350444A (en) * 1986-08-20 1988-03-03 Mitsubishi Metal Corp Manufacture of nd-fe-b sintered alloy magnet
JPS6448405A (en) * 1987-08-19 1989-02-22 Mitsubishi Metal Corp Manufacture of rare earth-iron-boron magnet
JPH01248504A (en) * 1988-03-29 1989-10-04 Daido Steel Co Ltd Manufacture of r-fe-b family anisotropy magnet
JPH023208A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Permanent magnet
JPH023212A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Permanent magnet
EP0355741A2 (en) * 1988-08-19 1990-02-28 Hitachi Metals, Ltd. Highly oriented permanent magnet and process for producing the same
WO1992013353A1 (en) * 1991-01-28 1992-08-06 Mitsubishi Materials Corporation Anisotropic rare earth-iron-boron and rare earth-iron-cobalt-boron magnet
CN1045498C (en) * 1991-01-30 1999-10-06 三菱麻铁里亚尔株式会社 Rare earth-Fe-Co-B anisotropic magnet
CN106816249A (en) * 2017-01-06 2017-06-09 北京工业大学 A kind of preparation method of the nanocrystalline permanent magnet of cheap light rare earth lanthanum ferrocerium boron
CN106847457A (en) * 2017-01-09 2017-06-13 浙江大学 A kind of rare-earth permanent magnet and the method for preparing rare-earth permanent magnet
CN111161949A (en) * 2019-12-31 2020-05-15 浙江大学 YCe co-doped nanocrystalline rare earth permanent magnet and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350444A (en) * 1986-08-20 1988-03-03 Mitsubishi Metal Corp Manufacture of nd-fe-b sintered alloy magnet
JPS6448405A (en) * 1987-08-19 1989-02-22 Mitsubishi Metal Corp Manufacture of rare earth-iron-boron magnet
JPH01248504A (en) * 1988-03-29 1989-10-04 Daido Steel Co Ltd Manufacture of r-fe-b family anisotropy magnet
JPH023208A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Permanent magnet
JPH023212A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Permanent magnet
EP0355741A2 (en) * 1988-08-19 1990-02-28 Hitachi Metals, Ltd. Highly oriented permanent magnet and process for producing the same
WO1992013353A1 (en) * 1991-01-28 1992-08-06 Mitsubishi Materials Corporation Anisotropic rare earth-iron-boron and rare earth-iron-cobalt-boron magnet
CN1045498C (en) * 1991-01-30 1999-10-06 三菱麻铁里亚尔株式会社 Rare earth-Fe-Co-B anisotropic magnet
CN106816249A (en) * 2017-01-06 2017-06-09 北京工业大学 A kind of preparation method of the nanocrystalline permanent magnet of cheap light rare earth lanthanum ferrocerium boron
CN106847457A (en) * 2017-01-09 2017-06-13 浙江大学 A kind of rare-earth permanent magnet and the method for preparing rare-earth permanent magnet
CN111161949A (en) * 2019-12-31 2020-05-15 浙江大学 YCe co-doped nanocrystalline rare earth permanent magnet and preparation method thereof

Also Published As

Publication number Publication date
JPH0518895B2 (en) 1993-03-15

Similar Documents

Publication Publication Date Title
JPH0510806B2 (en)
JPH0374012B2 (en)
JP4702548B2 (en) Functionally graded rare earth permanent magnet
JPH0663086B2 (en) Permanent magnet material and manufacturing method thereof
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JPS6217149A (en) Manufacture of sintered permanent magnet material
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JPH01219143A (en) Sintered permanent magnet material and its production
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH045740B2 (en)
JPS61136656A (en) Production of sintered material for permanent magnet
JPH045739B2 (en)
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH0536495B2 (en)
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPS6230846A (en) Production of permanent magnet material
JPS6247455A (en) Permanent magnet material having high performance
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH0475303B2 (en)
JP2940623B2 (en) Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties
JPS6250437A (en) Permanent magnet material superior in corrosion resistance
JPS6230845A (en) Production of anisotropic permanent magnet material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term