JPH0475303B2 - - Google Patents

Info

Publication number
JPH0475303B2
JPH0475303B2 JP59261463A JP26146384A JPH0475303B2 JP H0475303 B2 JPH0475303 B2 JP H0475303B2 JP 59261463 A JP59261463 A JP 59261463A JP 26146384 A JP26146384 A JP 26146384A JP H0475303 B2 JPH0475303 B2 JP H0475303B2
Authority
JP
Japan
Prior art keywords
atomic
permanent magnet
magnet material
less
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59261463A
Other languages
Japanese (ja)
Other versions
JPS61139638A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59261463A priority Critical patent/JPS61139638A/en
Publication of JPS61139638A publication Critical patent/JPS61139638A/en
Publication of JPH0475303B2 publication Critical patent/JPH0475303B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、R(RはYを含む希土類元素のう
ち少なくとも1種)、B、Feを主成分とする焼結
永久磁石材料の製造方法に係り、高性能を目的と
した組成の合金鋳塊製造時の成分偏析に基づく磁
気特性の劣化を防止して磁石合金の配向性の改善
を計り、永久磁石材料を高密度化して、さらに磁
気特性の向上、機械的強度並びに耐食性の向上を
計つた高性能焼結永久磁石材料の製造方法に関す
る。 従来の技術 現在の代表的な永久磁石材料は、アルニコ、ハ
ードフエライトおよび希土類コバルト磁石であ
る。近年のコバルトの原料事情の不安定化に伴な
い、コバルトを20〜35wt%含むアルニコ磁石の
需要は減り、鉄の酸化物を主成分とする安価なハ
ードフエライトが磁石材料の主流を占めるように
なつた。 一方、希土類コバルト磁石はコバルトを50〜
60wt%も含むうえ、希土類鉱石中にあまり含ま
れていないSmを使用するため大変高価であるが、
他の磁石に比べて、磁気特性が格段に高いため、
主として小型で付加価値の高い磁気回路に多用さ
れるようになつた。 そこで、本発明者は先に、高価なSmやCoを含
有しない新しい高性能永久磁石としてFe−B−
R系(RはYを含む希土類元素のうち少なくとも
1種)永久磁石を提案(特願昭57−145072号)し
た。さらに、Fe−B−R系の磁気異方性焼結体
からなる永久磁石の温度特性を改善するために、
Feの一部をCoで置換することにより、生成合金
のキユリー点を上昇させて温度特性を改善した
Fe−Co−B−R系磁気異方性焼結体からなる永
久磁石を提案(特願昭57−166663号)した。 これらの永久磁石は、RとしてNdやPrを中心
とする資源的に豊富な軽希土類を用い、Feを主
成分として25MGOe以上の極めて高いエネルギ
ー積を示す、すぐれた永久磁石である。 上記の新規なFe−B−R系、Fe−Co−B−R
系永久磁石を、製造するための出発原料の希土類
金属は、一般にCa還元法、電解法により製造さ
れ、例えば、以下の工程により製造される。 出発原料として、前記希土類金属、電解鉄、
フエロボロン合金あるいはさらに電解Coを高
周波溶解して鋳塊を鋳造する。 鋳塊をスタンプミルにより粗粉砕後、ボール
ミルにより湿式粉砕して、1.5μm〜10μmの微
細粉とする。 磁界中配向にて成型する。 真空中にて焼結後放冷する。 Ar雰囲気中にて時効処理する。 発明が解決しようとする課題 上記の如く、この永久磁石用合金粉末は、所要
の組成の鋳塊を機械的粗粉砕及び微粉砕を行なつ
て得られるが、例えば、Fe−Nd−B鋳塊の場
合、その凝固時に組成偏析が起りやすく、Feや
Ndの金属相の析出した状態となり、このような
鋳塊を粉砕して磁界中で配向すると、これらの析
出相により、配向が邪魔され、また鋳塊の鋳型に
接触していた部分は、冷却速度が速いために微細
な結晶粒が生成しやすく、Fe−Nd−B正方晶は
結晶成長方向が磁化容易方向と一致ていないた
め、鋳造合金を粉砕し、磁界中配向すると、配向
方向が不規則な複数個の結晶粒を粉末中に含むた
めに配向度が低下する問題があつた。 また、上記のごとき製造方法にて得られたFe
−B−R系永久磁石材料は、密度が理論密度の96
%程度であり、有孔体であるため、磁気特性及び
機械的性質の向上に限度があり、また、該系永久
磁石合金は非常に酸化しやすいNdあるいはPrを
大量に含有するため、実用上、耐酸化性改善のた
めの磁石表面へのめつき層などの耐酸化性被膜を
施す必要がある。 しかし、前記した如く該系磁石は有孔体であ
り、微細孔に水分あるいは表面処理の下地処理用
酸性溶液やアルカリ溶液が残存し、時間経過とと
もに発錆の要因となるなどの問題があつた。 この発明は、合金鋳塊製造時の成分偏析に基づ
く磁気特性の劣化を防止して磁石合金の配向性の
改善を計り、さらに、永久磁石材料を高密度化し
て、磁気特性及び機械的強度の向上を計り、後続
工程での表面処理による耐酸化性向上を実現でき
る高性能焼結永久磁石材料の製造方法を目的とし
ている。 課題を解決するための手段 この発明は、Fe−B−R系永久磁石用合金鋳
塊内の成分偏析防止並びに磁石材料の高密度化を
目的に種々検討した結果、高磁気特性を目的とし
た合金鋳塊の焼鈍処理により成分偏析防止と結晶
粒の粗大化を計り、さらに当該合金鋳塊から得た
合金粉末を用い製造した一次焼結体を特定条件で
熱間静水圧プレス処理することにより、密度な理
論密度のほぼ100%とすることができ、磁気特性
の向上、機械的性質の向上が得られ、さらに磁石
材料の高密度無孔化により耐酸化性が改善される
ことを知見し、この発明を完成したものである。 すなわち、この発明は、 R(但しRはYを含む希土類元素のうち少なく
とも1種)12原子%〜16原子%、 B4原子%〜15原子%、 Fe70原子%〜85原子%を主成分とする焼結永
久磁石材料の製造方法において、 前記組成の合金鋳塊に1000℃〜1150℃で焼鈍処
理を施した後、 これを粉末化して製造した一次焼結体を密封容
器内で、不活性ガスを圧力媒体として、温度700
℃〜1100℃、圧力500気圧〜1300気圧にて熱間静
水圧プレス処理することを特徴とする高性能焼結
永久磁石材料の製造方法である。 さらに詳述すれば、この発明は、前記特性組成
を有する成型体を、例えば真空中、 900℃〜1200℃の焼結により一次焼結体となし、
この一次焼結体を例えば、金属チタン粉末等の酸
化防止剤中に埋入した密封容器内で、不活性ガス
を圧力媒体として、温度700℃〜1100℃、圧力500
気圧〜1300気圧にて熱間静水圧プレス処理し、さ
らに時効処理することにより、磁気特性、機械的
強度、耐食性のいずれも向上させた高性能焼結永
久磁石材料を得る製造方法である。 合金鋳塊の焼鈍処理条件 この発明において、合金鋳塊の焼鈍処理温度を
1000℃〜1150℃としたのは、1000℃未満では拡散
速度が非常に遅くなり、結晶粒の粗大化及び偏析
解消に多大の時間を要し、1150℃を越えると、鋳
塊が局部的に溶解し、FeまたはNdの偏析を防止
することができないためである。 また焼鈍処理時間は、0.5時間未満であると結
晶粒の粗大化及び偏析解消効果が十分得られな
く、50時間を越えると偏析防止、結晶粒の粗大化
に有効であるが、量産性が悪いため、0.5〜50時
間が好ましい。 一般に、希土類コバルト磁石合金の製造におい
て、鋳塊の溶体化処理が提案(特開昭58−126944
号公報)されているが、希土類コバルト磁石合金
鋳塊の溶体化処理の効果は、R2T17型化合物
(R;希土類元素、T;遷移金属)において、顕
著であり、R2T17型永久磁石鋳塊の溶体化処理の
目的は、室温で不安定相(RT7型構造)を形成さ
せることにあり、溶体化処理後、例えばオイルク
エンチや液化窒素中へ浸漬する急冷が必要であ
る。 しかし、この発明における鋳塊の焼鈍処理は、
上記の希土類コバルト磁石の場合と異なり、低温
で安定な化合物であるR2Fe14B化合物の単相状態
を得ることにあり、上記の如き焼鈍処理後の急冷
を必要としない。 この発明による製造方法において、出発原料を
所要量配合して、真空ないし不活性ガス雰囲気中
で溶解して合金化し、鋳塊となした後この発明の
特徴である焼鈍処理を施して粉砕することが好ま
しい。 粗粉砕はスタンプミル、ジヨークラツシヤー等
の機械的粉砕で行ない、さらにジエツトミル、ボ
ールミル等により微粉砕し、また、微粉砕は不活
性ガス雰囲気中で実施する乾式粉砕あるいはアセ
トン、トルエン等の有機溶媒を用いる湿式粉砕に
よつて行なうことが好ましい。 微粉砕によつて得られる合金紛末の平均粒度は
0.3μm〜80μmであり、すぐれた磁気特性を得る
ためには平均粒度1〜40μmの微紛末が好まし
く、最も好ましいのは平均粒度2〜2μmの微粉
末である。 焼結は、10-2Torr以下の真空中あるいは 1〜760Torrの圧力雰囲気などの少なくとも非
酸化性ないし純度99.9%以上の不活性あるいは還
元性雰囲気中で、900℃〜1200℃の温度で、0.5〜
4時間の条件で一次焼結するのが好ましい。 熱間静水圧プレス処理条件 一次焼結体を得るまでの永久磁石材料用合金粉
末の製造方法や成形体を得る方法、一次焼結方法
などには、前述の如く当該Fe−B−R系永久磁
石材料及び従来公知の永久磁石の製造方法を適宜
選定採用できる。 一次焼結体の密度は、熱間静水圧プレス処理に
よる密度を理論密度のほぼ100%とし、磁気特性
及び機械的強度並びに耐食性の向上を達成するた
めにも理論密度の90%以上が好ましい。 また、熱間静水圧プレス処理における温度条件
を700℃〜1100℃としたのは、700℃未満では高圧
にて熱間静水圧処理しても高密度化することがで
きず、1100℃を越えると、焼結体の溶融点近くに
なるため、焼結体の変形が甚しく好ましくないた
めである。 さらに、処理圧力が500気圧未満では焼結体を
高密度化することが困難であり、1300気圧を越え
ると高密度化は可能であるが、処理装置の耐久性
やコストの面で好ましくないため、500気圧〜
1300気圧とする。 この発明における熱間静水圧プレス処理後の時
効処理を施すことは、磁石体の結晶粒の過剰成長
を抑制してすぐれた磁気特性を発現させるのに有
効である。時効処理温度は450℃〜700℃の範囲が
好ましく、また、時効処理時間は5分〜40時間が
好ましい。時効処理時間は時効処理温度と密接に
関係するが、5分未満では時効処理効果が少な
く、得られる磁石材料の磁気特性のばらつきが大
きくなり、40時間を越えると工業的に長時間を要
しすぎ実用的でない。磁気特性の好ましい発現と
実用的な面から時効処理時間は30分から8時間が
好ましい。 また、時効処理は2段以上の多段時効処理を用
いることもできる。例えば、1060℃にて焼結した
焼結体を、温度900℃、圧力900気圧にて、熱間静
水圧プレス処理した後、1段目として750〜1000
℃で30分ないし6時間の初段時効処理し、さらに
2段目以降に、450℃〜750℃で2〜30時間の1段
以上の時効処理を行なうことにより、残留磁束密
度、保持力、減磁曲線の角形性のいずれにも極め
てすぐれた磁石特性を有する磁石材料を得ること
ができる。 また、多段時効処理に代えて、450℃〜700℃の
時効処理温度から室温までを空冷あるいは水冷な
どの冷却方法で、0.2℃/min〜20℃/minの冷却
速度で冷却する方法によつても、上記時効処理と
同等の磁気特性を有する永久磁石材料を得ること
ができる。 永久磁石材料組成の限定理由 この発明の永久磁石材料に用いる希土類元素R
は、12原子%〜16原子%のNd、Pr、Dy、Ho、
Tbのうち少なくとも1種、あるいはさらに、
La、Ce、Sm、Gd、Er、Eu、Pm、Tm、Yb、
Lu、Yのうち少なくとも1種を含むものが好ま
しい。 また、通例Rのうち1種をもつて足りるが、実
用上は2種以上の混合物(ミツシユメタル、ジジ
ム等)を入手上の便宜等の理由により用いること
ができる。 なお、このRは純希土類元素でなくてもよく、
工業上入手可能な範囲で製造上不可避な不純物を
含有するものでも差支えない。 R(Yを含む希土類元素のうち少なくとも1種)
は、新規な上記系永久磁石材料における必須元素
であつて、12原子%未満では結晶構造がα−鉄と
同一構造の立方晶組織となるため、高磁気特性、
特に高保持力が得られず、16原子%を越えるとR
リツチな非磁性相が多くなり、残留磁束密度
(Br)が低下して、すぐれた特性の永久磁石が得
られない。よつて、Rは12原子%〜16原子%の範
囲とする。 Bは、新規な上記系永久磁石材料における必須
元素であつて、4原子%未満では菱面体組織とな
り、高い保磁力(iHc)は得られず、15原子%を
越えるとBリツチな非磁性相が多くなり、残留磁
束密度(Br)が低下するため、すぐれた永久磁
石が得られない。よつて、Bは4原子%〜15原子
%の範囲とする。 Feは、新規な上記系永久磁石材料において必
須元素であり、70原子%未満では残留磁束密度
(Br)が低下し、85原子%を越えると高い保持力
が得られないので、Feは70原子%〜85原子%の
含有とする。 また、この発明による永久磁石材料において、
Feの一部をCoで置換することは得られる磁石の
磁気特性を損うことなく、温度特性を改善するこ
とができるが、Co置換量がFeの50%を越えると、
逆に磁気特性が劣化するため好ましくない。 この発明の永久磁石材料において、高い残留磁
束密度と高保磁力を得るためには、R12.5原子%
〜15原子%、B6原子%〜14原子%、Fe71原子%
〜82原子%が好ましい。 また、この発明による永久磁石材料は、R、
B、Feの他、工業的生産上不可避的不純物の存
在を許容できるが、Bの一部を20原子%以下の
C、2.0原子%以下のP、2.0原子%以下のS、2.0
原子%以下のCuのうち少なくとも1種、合計量
で2.0原子%以下で置換することにより、永久磁
石の製造性改善、低価格化が可能である。 また、下記添加元素のうち少なくとも1種は、
Fe−B−R系あるいはFe−Co−−B−R系永久
磁石に対してその保持力等を改善あるいは製造性
の改善、低価格化に効果があるため添加する。し
かし、保持力改善のための添加に伴ない残留磁束
密度(Br)の低下を招来するので、下記範囲で
の添加が望ましい。 5.0原子%以下のAl、3.0原子%以下のTi、5.5
原子%以下のV、4.5原子%以下のCr、5.0原子%
以下のMn、5原子%以下のBi、9.0原子%以下の
Nb、7.0原子%以下のTa、5.2原子%以下のMo、
5.0原子%以下のW、1.0原子%以下のSb、3.5原子
%以下のGe、1.5原子%以下のSn、3.3原子%以下
のZr、6.0原子%以下のNi、5.0原子%以下のSi、
3.3原子%以下のHfのうち少なくとも1種を添加
含有、但し、2種以上含有する場合は、その最大
含有量は当該添加元素のうち最大値を有するもの
の原子%以下の含有させることにより、永久磁石
の高保磁力化が可能になる。 この発明における合金粉末の結晶相は主相が少
なくとも50vol%以上の正方晶、少なくともlvol
%以上の非磁性金属間化合物であることが、すぐ
れた磁気特性を有する焼結永久磁石を作製するの
に不可欠である。 また、この発明による永久磁石材料は、磁場中
プレス成型することにより磁気的異方性磁石が得
られ、また、無磁界中でプレス成型することによ
り、磁気的等方性磁石を得ることができる。 この発明による永久磁石材料は、残留磁束密度
Br>10.5kG、を示し、最大エネルギー積(BH)
max≧25MGOeを示し、最大値は40MGOe以上
に達する。 また、この発明による永久磁石材料の組成が、
R12原子%〜16原子%、B4原子%〜15原子%、
Co45原子%以下、Fe残部の場合、得られる磁気
異方性永久磁石合金は、上記磁石合金と同等の磁
気特性を示し、残留磁束密度の温度係数が、0.1
%/℃以下となり、すぐれた特性が得られる。 また、この発明による永久磁石用合金粉末のR
の主成分がその50%以上を軽希土類金属が占める
場合で、R12.5原子%〜15原子%、B6原子%〜14
原子%、Fe71原子%〜82原子%の場合、あるい
はさらにCo5原子%〜45原子%、を主成分とする
とき、磁気的異方性焼結磁石の場合最もすぐれた
磁気特性を示し、特に軽希土類金属がNdの場合
には、(BH)maxはその最大値が40MGOe以上
に達する。 作 用 この発明は、Fe−B−R系永久磁石材料の磁
気特性の高性能化を目的とした特定組成の合金鋳
塊に1000℃〜1150℃の焼鈍処理を施すことによ
り、成分偏析防止と結晶粒の粗大化を計ることが
でき、さらにこれを粉末化して製造した一次焼結
体を前記特定条件で熱間静水圧プレス処理するこ
とにより、密度を理論密度のほぼ100%とするこ
とができ、磁気特性の向上並びに機械的性質の向
上が得られ、さらに磁石材料が高密度無孔化され
たことにより、耐酸化性表面処理が有効に機能
し、これによりすぐれた耐酸化性を有する高性能
焼結永久磁石材料を得ることができる。 実施例 実施例 1 原子百分率で、79.6Fe6.7B13.7Ndの組成から
なる1Kgの合金鋳塊を、出発原料をArガス中で
高周波溶解し、その後水冷銅鋳造して得た。 この合金鋳塊を、1070℃で40時間の焼鈍処理し
たのち、ジヨークラツシヤーにて40メツシユスル
ー以下に粗粉砕し、さらにボールミルにて微粉砕
した。 得られた平均粒度1〜20μmの合金粉末を、
10kOeの磁界中で、2ton/cm2の圧力で加圧成型し
たのち、1×10-4Torrの真空中で、1050℃、2
時間焼結して理論密度の96%密度を有する一次焼
結体を得た。 さらに、この一次焼結体を密封容器内で金属チ
タン粉末中に埋入し、Arガスを圧力媒体として、
温度880℃、圧力900気圧の熱間静水圧プレス処理
した。 ついで、600℃で1時間の時効処理を施したの
ち、磁気特性及び機械的性質を測定した。その結
果は第1表に示すとおりである。 また、比較のため、鋳塊に焼鈍処理を施さない
以外は上記製造方法で製造した比較磁石材料(比
較1)及び一次焼結体に熱間静水圧プレス処理を
施さない以外は上記製造方法で製造した比較磁石
材料(比較2)を作製し、同様に磁気特性及び機
械的性質を測定し、第1表にその結果を示す。 実施例 2 原子百分率で、79Fe7B0.5Dy13.5Ndの組成か
らなる1Kgの合金鋳塊を、出発原料をArガス中
で高周波溶解し、その後水冷銅鋳造して得た。 この合金鋳塊を、1080℃で20時間の焼鈍処理し
たのち、ジヨークラツシヤーにて40メツシユスル
ー以下に粗粉砕し、さらにボールミルにて微粉砕
した。 得られた平均粒度1〜20μmの合金粉末を、
10kOeの磁界中で、1.8ton/cm2の圧力で加圧成型
したのち、1×10-4Torrの真空中で、1040℃、
2時間焼結して理論密度の95%密度を有する一次
焼結体を得た。 この一次焼結体を密封容器内で金属チタン粉末
中に埋入し、Arガスを圧力媒体として、温度900
℃、圧力900気圧の熱間静水圧プレス処理した。 ついで、620℃で2時間の時効処理を施したの
ち、磁気特性及び機械的性質を測定した。その結
果は第2表に示すとおりである。 また、比較のため、鋳塊に焼鈍処理を施さない
以外は上記製造方法で製造した比較磁石材料(比
較3)及び一次焼結体に熱間静水圧プレス処理を
施さない以外は上記製造方法で製造した比較磁石
材料(比較4)を作製し、同様に磁気特性及び機
械的性質を測定し、第2表にその結果を示す。
Industrial Application Field The present invention relates to a method for manufacturing a sintered permanent magnet material whose main components are R (R is at least one rare earth element including Y), B, and Fe, and is intended for high performance. We aim to improve the orientation of the magnet alloy by preventing the deterioration of magnetic properties due to component segregation during production of alloy ingots, and by increasing the density of the permanent magnet material, further improving magnetic properties, mechanical strength, and corrosion resistance. The present invention relates to a method for producing high-performance sintered permanent magnet material that aims to improve the performance. BACKGROUND OF THE INVENTION Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. As the cobalt raw material situation has become unstable in recent years, the demand for alnico magnets containing 20 to 35 wt% cobalt has decreased, and inexpensive hard ferrite, whose main component is iron oxide, has become the mainstream magnet material. Summer. On the other hand, rare earth cobalt magnets contain cobalt from 50 to
It is very expensive because it contains 60wt% and uses Sm, which is not included in rare earth ores.
Compared to other magnets, the magnetic properties are much higher,
It has come to be used mainly for small, high value-added magnetic circuits. Therefore, the present inventor first developed Fe-B- as a new high-performance permanent magnet that does not contain expensive Sm or Co.
An R-based permanent magnet (R is at least one rare earth element including Y) was proposed (Japanese Patent Application No. 145072/1982). Furthermore, in order to improve the temperature characteristics of permanent magnets made of Fe-BR-based magnetically anisotropic sintered bodies,
By replacing a portion of Fe with Co, we raised the Curie point of the resulting alloy and improved its temperature characteristics.
We proposed a permanent magnet made of Fe-Co-B-R magnetically anisotropic sintered body (Japanese Patent Application No. 166663/1983). These permanent magnets use resource-rich light rare earths such as Nd and Pr as R, and are excellent permanent magnets that have Fe as their main component and exhibit an extremely high energy product of 25 MGOe or more. The above novel Fe-BR system, Fe-Co-BR
Rare earth metals as starting materials for producing permanent magnets are generally produced by a Ca reduction method or an electrolytic method, for example, by the following steps. As starting materials, the rare earth metals, electrolytic iron,
An ingot is cast by high-frequency melting of ferroboron alloy or electrolytic Co. The ingot is coarsely pulverized using a stamp mill, and then wet pulverized using a ball mill to obtain a fine powder of 1.5 μm to 10 μm. Molding with orientation in a magnetic field. After sintering in vacuum, let it cool. Aging treatment is performed in an Ar atmosphere. Problems to be Solved by the Invention As mentioned above, this alloy powder for permanent magnets can be obtained by mechanically crushing and finely crushing an ingot having a desired composition. In this case, compositional segregation is likely to occur during solidification, and Fe and
When such an ingot is crushed and oriented in a magnetic field, these precipitated phases interfere with the orientation, and the part of the ingot that was in contact with the mold is cooled. Due to the high speed, fine crystal grains are likely to be formed, and the crystal growth direction of Fe-Nd-B tetragonal crystals does not match the direction of easy magnetization. Therefore, when the cast alloy is crushed and oriented in a magnetic field, the orientation direction is inconsistent. There was a problem that the degree of orientation decreased because the powder contained a plurality of regular crystal grains. In addition, Fe obtained by the above manufacturing method
-B-R permanent magnet material has a theoretical density of 96
%, and since it is a porous material, there is a limit to the improvement of magnetic and mechanical properties.Also, this type of permanent magnet alloy contains a large amount of Nd or Pr, which is very easily oxidized, so it is not practical. In order to improve oxidation resistance, it is necessary to apply an oxidation-resistant coating such as a plating layer to the magnet surface. However, as mentioned above, this type of magnet is a porous material, and there have been problems such as moisture or acidic or alkaline solutions for surface treatment remaining in the micropores, which can cause rust over time. . This invention aims to improve the orientation of the magnetic alloy by preventing the deterioration of magnetic properties due to component segregation during the production of alloy ingots, and further improves the magnetic properties and mechanical strength by increasing the density of the permanent magnet material. The aim is to develop a method for manufacturing high-performance sintered permanent magnet materials that can improve oxidation resistance through surface treatment in subsequent processes. Means for Solving the Problems This invention was developed as a result of various studies aimed at preventing component segregation in an alloy ingot for Fe-B-R permanent magnets and increasing the density of magnet materials. By annealing the alloy ingot to prevent component segregation and coarsening the crystal grains, and by subjecting the primary sintered body produced using the alloy powder obtained from the alloy ingot to hot isostatic pressing under specific conditions. We found that the density can be almost 100% of the theoretical density, improving magnetic properties and mechanical properties, and that oxidation resistance is improved by making the magnetic material denser and non-porous. , this invention has been completed. That is, this invention has R (where R is at least one kind of rare earth elements including Y) 12 atomic % to 16 atomic %, B4 atomic % to 15 atomic %, and Fe 70 atomic % to 85 atomic % as main components. In the method for producing a sintered permanent magnet material, an alloy ingot having the above composition is annealed at 1000°C to 1150°C, and then the primary sintered body produced by pulverizing this is heated in a sealed container with an inert gas. as pressure medium, temperature 700
This is a method for producing a high-performance sintered permanent magnet material, characterized by hot isostatic pressing at a temperature of 1100°C to 1100°C and a pressure of 500 to 1300 atmospheres. More specifically, the present invention provides a method for forming a molded body having the above characteristic composition into a primary sintered body by sintering it at 900°C to 1200°C in a vacuum, for example,
For example, this primary sintered body is placed in a sealed container embedded in an antioxidant such as metal titanium powder at a temperature of 700°C to 1100°C and a pressure of 500°C using an inert gas as a pressure medium.
This is a manufacturing method for obtaining a high-performance sintered permanent magnet material with improved magnetic properties, mechanical strength, and corrosion resistance by hot isostatic pressing at a pressure of 1,300 to 1,300 atmospheres and further aging treatment. Annealing treatment conditions for alloy ingot In this invention, the annealing treatment temperature for alloy ingot is
The reason for setting the range from 1000℃ to 1150℃ is that below 1000℃, the diffusion rate becomes very slow, and it takes a long time to coarsen the crystal grains and eliminate segregation. This is because it is impossible to prevent Fe or Nd from dissolving and segregation. Furthermore, if the annealing treatment time is less than 0.5 hours, the effect of coarsening the crystal grains and eliminating segregation will not be sufficiently obtained, and if the annealing treatment time exceeds 50 hours, it is effective in preventing segregation and coarsening the crystal grains, but it is not suitable for mass production. Therefore, 0.5 to 50 hours is preferable. Generally, in the production of rare earth cobalt magnet alloys, solution treatment of ingots has been proposed (Japanese Patent Laid-Open No. 126944/1983).
However, the effect of solution treatment of rare earth cobalt magnet alloy ingots is remarkable for R 2 T 17 type compounds (R: rare earth element, T: transition metal). The purpose of solution treatment of permanent magnet ingots is to form an unstable phase (RT 7 type structure) at room temperature, and after solution treatment, rapid cooling is required, for example by oil quenching or immersion in liquid nitrogen. . However, the annealing treatment of the ingot in this invention is
Unlike the case of the rare earth cobalt magnet described above, the objective is to obtain a single-phase state of the R 2 Fe 14 B compound, which is a compound stable at low temperatures, and there is no need for rapid cooling after the above-mentioned annealing treatment. In the manufacturing method according to the present invention, starting materials are blended in required amounts, melted and alloyed in a vacuum or inert gas atmosphere to form an ingot, and then subjected to an annealing treatment, which is a feature of the present invention, and then pulverized. is preferred. Coarse pulverization is carried out by mechanical pulverization such as a stamp mill or geocrusher, and further finely pulverized by a jet mill or ball mill. Preferably, this is carried out by wet milling using a solvent. The average particle size of the alloy powder obtained by fine grinding is
In order to obtain excellent magnetic properties, a fine powder with an average particle size of 1 to 40 μm is preferable, and a fine powder with an average particle size of 2 to 2 μm is most preferable. Sintering is performed at a temperature of 900°C to 1200°C in an inert or reducing atmosphere of at least non-oxidizing or 99.9% purity, such as a vacuum of 10 -2 Torr or less or a pressure atmosphere of 1 to 760 Torr. ~
It is preferable to perform the primary sintering for 4 hours. Hot isostatic pressing treatment conditions As mentioned above, the Fe-B-R permanent Magnet materials and conventionally known permanent magnet manufacturing methods can be appropriately selected and employed. The density of the primary sintered body is preferably 90% or more of the theoretical density in order to make the density by hot isostatic pressing almost 100% of the theoretical density and to achieve improvements in magnetic properties, mechanical strength, and corrosion resistance. In addition, the temperature conditions for the hot isostatic pressing treatment were set at 700°C to 1100°C, because at temperatures below 700°C, high density cannot be achieved even with hot isostatic pressing at high pressure, and at temperatures exceeding 1100°C. This is because the temperature is close to the melting point of the sintered body, and deformation of the sintered body is extremely undesirable. Furthermore, if the processing pressure is less than 500 atm, it is difficult to increase the density of the sintered compact, and if it exceeds 1300 atm, it is possible to increase the density, but it is not desirable in terms of the durability and cost of the processing equipment. , 500 atm~
The pressure shall be 1300 atm. Performing the aging treatment after the hot isostatic pressing treatment in the present invention is effective in suppressing excessive growth of crystal grains in the magnet body and developing excellent magnetic properties. The aging treatment temperature is preferably in the range of 450°C to 700°C, and the aging treatment time is preferably 5 minutes to 40 hours. The aging treatment time is closely related to the aging treatment temperature, but if it is less than 5 minutes, the aging treatment effect will be small and the magnetic properties of the obtained magnet material will vary widely, and if it exceeds 40 hours, it will take a long time for industrial purposes. Too impractical. From the viewpoint of desirable development of magnetic properties and practical aspects, the aging treatment time is preferably 30 minutes to 8 hours. Moreover, multi-stage aging treatment of two or more stages can also be used for the aging treatment. For example, after hot isostatic pressing a sintered body sintered at 1060℃ at a temperature of 900℃ and a pressure of 900 atm,
By performing an initial aging treatment at ℃ for 30 minutes to 6 hours, and then performing one or more aging treatments at 450℃ to 750℃ for 2 to 30 hours, the residual magnetic flux density, coercive force, and It is possible to obtain a magnetic material having extremely excellent magnetic properties in all squareness of magnetic curves. In addition, instead of multi-stage aging treatment, a method of cooling from the aging treatment temperature of 450°C to 700°C to room temperature using a cooling method such as air cooling or water cooling at a cooling rate of 0.2°C/min to 20°C/min is used. Also, it is possible to obtain a permanent magnet material having magnetic properties equivalent to those obtained by the above-mentioned aging treatment. Reason for limiting the composition of the permanent magnet material Rare earth element R used in the permanent magnet material of this invention
is 12 at% to 16 at% Nd, Pr, Dy, Ho,
At least one of Tb, or in addition,
La, Ce, Sm, Gd, Er, Eu, Pm, Tm, Yb,
Those containing at least one of Lu and Y are preferred. Further, although it is usually sufficient to use one type of R, in practice, a mixture of two or more types (Mitsushimetal, didymium, etc.) can be used for reasons such as convenience of availability. Note that this R may not be a pure rare earth element,
It may contain impurities that are unavoidable during production within an industrially available range. R (at least one rare earth element including Y)
is an essential element in the new above-mentioned permanent magnet materials, and if it is less than 12 atomic %, the crystal structure becomes a cubic structure, which is the same as α-iron, so it has high magnetic properties,
Particularly high retention force cannot be obtained, and if it exceeds 16 atom%, R
The rich nonmagnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, R should be in the range of 12 at.% to 16 at.%. B is an essential element in the new above-mentioned permanent magnet materials. If it is less than 4 atomic %, it will form a rhombohedral structure and high coercive force (iHc) will not be obtained, and if it exceeds 15 atomic %, a B-rich nonmagnetic phase will occur. increases, and the residual magnetic flux density (Br) decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B should be in the range of 4 at.% to 15 at.%. Fe is an essential element in the new above-mentioned permanent magnet materials.If it is less than 70 atom%, the residual magnetic flux density (Br) decreases, and if it exceeds 85 atom%, high coercive force cannot be obtained. % to 85 atomic %. Further, in the permanent magnet material according to the present invention,
Substituting a portion of Fe with Co can improve the temperature characteristics of the resulting magnet without impairing its magnetic properties, but if the amount of Co substitution exceeds 50% of Fe,
On the contrary, it is not preferable because the magnetic properties deteriorate. In the permanent magnet material of this invention, in order to obtain high residual magnetic flux density and high coercive force, R12.5 atomic% is required.
~15 at%, B6 at% ~14 at%, Fe71 at%
~82 atom % is preferred. Further, the permanent magnet material according to the present invention has R,
In addition to B and Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a part of B can be replaced by 20 atom% or less of C, 2.0 atom% or less of P, 2.0 atom% or less of S, 2.0
By substituting at least one type of Cu in a total amount of 2.0 atomic % or less, it is possible to improve the manufacturability and lower the price of permanent magnets. In addition, at least one of the following additional elements is
It is added to Fe-BR-based or Fe-Co--BR-based permanent magnets because it is effective in improving the holding force, etc., improving manufacturability, and reducing costs. However, addition to improve coercive force causes a decrease in residual magnetic flux density (Br), so it is desirable to add in the following range. Al up to 5.0 at%, Ti up to 3.0 at%, 5.5
V at % or less, Cr at 4.5 atomic% or less, 5.0 atomic%
Mn below 5 atomic%, Bi below 9.0 atomic%
Nb, Ta below 7.0 atomic%, Mo below 5.2 atomic%,
5.0 atomic% or less W, 1.0 atomic% or less Sb, 3.5 atomic% or less Ge, 1.5 atomic% or less Sn, 3.3 atomic% or less Zr, 6.0 atomic% or less Ni, 5.0 atomic% or less Si,
Addition of at least one type of Hf of 3.3 atomic % or less; however, if two or more types are contained, the maximum content can be permanently maintained by containing atomic % or less of the one with the maximum value among the added elements. It becomes possible to increase the coercive force of the magnet. The crystalline phase of the alloy powder in this invention is tetragonal with a main phase of at least 50 vol%, at least lvol
% or more of non-magnetic intermetallic compounds is essential for producing sintered permanent magnets with excellent magnetic properties. Further, the permanent magnet material according to the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a no-magnetic field to obtain a magnetically isotropic magnet. . The permanent magnet material according to this invention has a residual magnetic flux density
Br>10.5kG, maximum energy product (BH)
Indicates max≧25MGOe, and the maximum value reaches 40MGOe or more. Further, the composition of the permanent magnet material according to the present invention is
R12 atomic% ~ 16 atomic%, B4 atomic% ~ 15 atomic%,
In the case of Co45 atomic% or less and the balance Fe, the resulting magnetically anisotropic permanent magnet alloy exhibits magnetic properties equivalent to the above magnet alloy, and the temperature coefficient of residual magnetic flux density is 0.1
%/℃ or less, and excellent characteristics can be obtained. Moreover, the R of the alloy powder for permanent magnets according to the present invention is
When the main component is 50% or more of light rare earth metals, R12.5 atomic% to 15 atomic%, B6 atomic% to 14 atomic%
Magnetically anisotropic sintered magnets exhibit the best magnetic properties when the main component is Fe71 to 82 at%, or even Co5 to 45 at%. When the rare earth metal is Nd, the maximum value of (BH)max reaches 40MGOe or more. Effect This invention prevents component segregation by subjecting an alloy ingot of a specific composition to annealing treatment at 1000°C to 1150°C for the purpose of improving the magnetic properties of Fe-BR permanent magnet materials. It is possible to measure the coarsening of crystal grains, and by subjecting the primary sintered body produced by powdering it to hot isostatic pressing under the above-mentioned specific conditions, the density can be made almost 100% of the theoretical density. It has improved magnetic properties and improved mechanical properties, and since the magnet material is made dense and non-porous, the oxidation-resistant surface treatment functions effectively, resulting in excellent oxidation resistance. High performance sintered permanent magnet material can be obtained. Examples Example 1 A 1 kg alloy ingot having a composition of 79.6Fe6.7B13.7Nd in atomic percentage was obtained by high-frequency melting of the starting material in Ar gas and subsequent water-cooled copper casting. This alloy ingot was annealed at 1070° C. for 40 hours, then coarsely crushed to a size of 40 mesh through or less using a geocrusher, and further finely crushed using a ball mill. The obtained alloy powder with an average particle size of 1 to 20 μm,
After pressure molding at a pressure of 2 ton/cm 2 in a magnetic field of 10 kOe, it was molded at 1050°C in a vacuum of 1 × 10 -4 Torr.
After time sintering, a primary sintered body having a density of 96% of the theoretical density was obtained. Furthermore, this primary sintered body was embedded in metal titanium powder in a sealed container, and Ar gas was used as a pressure medium.
Hot isostatic pressing was performed at a temperature of 880°C and a pressure of 900 atm. Then, after aging treatment at 600°C for 1 hour, magnetic properties and mechanical properties were measured. The results are shown in Table 1. For comparison, a comparative magnet material (Comparison 1) manufactured using the above manufacturing method except that the ingot was not annealed, and a comparative magnet material (Comparison 1) manufactured using the above manufacturing method except that the primary sintered body was not subjected to hot isostatic pressing treatment. A comparative magnet material (Comparison 2) was produced, and its magnetic properties and mechanical properties were similarly measured, and the results are shown in Table 1. Example 2 A 1 kg alloy ingot having a composition of 79Fe7B0.5Dy13.5Nd in atomic percentage was obtained by high frequency melting of the starting material in Ar gas and subsequent water-cooled copper casting. This alloy ingot was annealed at 1080° C. for 20 hours, then coarsely crushed to a size of 40 mesh through or less using a geocrusher, and further finely crushed using a ball mill. The obtained alloy powder with an average particle size of 1 to 20 μm,
After pressure molding at a pressure of 1.8 ton/cm 2 in a magnetic field of 10 kOe, it was molded at 1040°C in a vacuum of 1 × 10 -4 Torr.
After sintering for 2 hours, a primary sintered body having a density of 95% of the theoretical density was obtained. This primary sintered body was embedded in metal titanium powder in a sealed container, and heated to a temperature of 900°C using Ar gas as a pressure medium.
It was subjected to hot isostatic pressing at a temperature of 900 atm. Then, after aging treatment at 620°C for 2 hours, magnetic properties and mechanical properties were measured. The results are shown in Table 2. For comparison, a comparative magnet material (Comparison 3) manufactured using the above manufacturing method except that the ingot was not annealed, and a comparative magnet material (Comparison 3) manufactured using the above manufacturing method except that the primary sintered body was not subjected to hot isostatic pressing treatment. A comparative magnet material (Comparison 4) was produced, and its magnetic properties and mechanical properties were similarly measured, and the results are shown in Table 2.

【表】【table】

【表】 発明の効果 実施例の第1表及び第2表の結果から明らかな
ように、この発明の製造方法による永久磁石材料
は、合金鋳塊時の焼鈍処理、熱間静水圧プレス処
理を施さない比較磁石材料に対して、磁気特性及
び機械的性質が向上していることが分る。
[Table] Effects of the Invention As is clear from the results in Tables 1 and 2 of Examples, the permanent magnet material manufactured by the manufacturing method of the present invention can be manufactured without undergoing annealing treatment and hot isostatic pressing treatment at the time of alloy ingot. It can be seen that the magnetic properties and mechanical properties are improved compared to the comparative magnet material that is not coated.

Claims (1)

【特許請求の範囲】 1 R(但しRはYを含む希土類元素のうち少な
くとも1種)12原子%〜16原子%、B4原子%〜
15原子%、 Fe70原子%〜85原子%を主成分とする焼結永
久磁石材料の製造方法において、前記組成の合金
鋳塊に1000℃〜1150℃で焼鈍処理を施した後、こ
れを粉末化して製造した一次焼結体を密封容器内
で、不活性ガスを圧力媒体として、温度 700℃〜1100℃、圧力500気圧〜1300気圧にて熱間
静水圧プレス処理することを特徴とする高性能焼
結永久磁石材料の製造方法。
[Claims] 1 R (where R is at least one rare earth element including Y) 12 atomic % to 16 atomic %, B4 atomic % to
In a method for producing a sintered permanent magnet material whose main components are 15 at% Fe and 70 at% to 85 at% Fe, an alloy ingot having the above composition is annealed at 1000°C to 1150°C, and then pulverized. A high-performance product characterized by hot isostatic pressing of the primary sintered body produced by the process in a sealed container at a temperature of 700°C to 1100°C and a pressure of 500 atm to 1300 atm using an inert gas as a pressure medium. Method for manufacturing sintered permanent magnet material.
JP59261463A 1984-12-10 1984-12-10 Manufacture of sintered permanent magnet material Granted JPS61139638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261463A JPS61139638A (en) 1984-12-10 1984-12-10 Manufacture of sintered permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261463A JPS61139638A (en) 1984-12-10 1984-12-10 Manufacture of sintered permanent magnet material

Publications (2)

Publication Number Publication Date
JPS61139638A JPS61139638A (en) 1986-06-26
JPH0475303B2 true JPH0475303B2 (en) 1992-11-30

Family

ID=17362243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261463A Granted JPS61139638A (en) 1984-12-10 1984-12-10 Manufacture of sintered permanent magnet material

Country Status (1)

Country Link
JP (1) JPS61139638A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242403A (en) * 1985-08-19 1987-02-24 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JP3092673B2 (en) * 1991-01-31 2000-09-25 三菱マテリアル株式会社 Rare earth-Fe-B based anisotropic magnet
JP3196224B2 (en) * 1991-02-01 2001-08-06 三菱マテリアル株式会社 Rare earth-Fe-Co-B anisotropic magnet
CN103680918B (en) * 2013-12-11 2016-08-17 烟台正海磁性材料股份有限公司 A kind of method preparing high-coercivity magnet

Also Published As

Publication number Publication date
JPS61139638A (en) 1986-06-26

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JP2727505B2 (en) Permanent magnet and manufacturing method thereof
JPH01219143A (en) Sintered permanent magnet material and its production
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JPH0518895B2 (en)
JP3594084B2 (en) Rare earth alloy ribbon manufacturing method, rare earth alloy ribbon and rare earth magnet
JPH045740B2 (en)
JPH0475303B2 (en)
JPH0445573B2 (en)
JPH0461042B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH045739B2 (en)
JPH0146574B2 (en)
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JPH0320048B2 (en)
JPH0477066B2 (en)
JPH045738B2 (en)
JPH05182813A (en) Manufacture of rare earth permanent magnet
JP6773150B2 (en) RTB-based rare earth sintered magnet alloy, RTB-based rare earth sintered magnet
JP3254232B2 (en) Manufacturing method of rare earth permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees