JPH0445573B2 - - Google Patents

Info

Publication number
JPH0445573B2
JPH0445573B2 JP59259761A JP25976184A JPH0445573B2 JP H0445573 B2 JPH0445573 B2 JP H0445573B2 JP 59259761 A JP59259761 A JP 59259761A JP 25976184 A JP25976184 A JP 25976184A JP H0445573 B2 JPH0445573 B2 JP H0445573B2
Authority
JP
Japan
Prior art keywords
atomic
permanent magnet
less
atom
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59259761A
Other languages
Japanese (ja)
Other versions
JPS61136656A (en
Inventor
Yutaka Matsura
Masato Sagawa
Setsuo Fujimura
Hitoshi Yamamoto
Satoru Hirozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59259761A priority Critical patent/JPS61136656A/en
Publication of JPS61136656A publication Critical patent/JPS61136656A/en
Publication of JPH0445573B2 publication Critical patent/JPH0445573B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、R(RはYを含む希土類元素のう
ち少なくとも1種)、B,Feを主成分とする焼結
永久磁石材料の製造方法に係り、高性能を目的と
した組成の永久磁石材料を高密度化して、さらに
磁気特性の向上、機械的強度並びに耐食性の向上
を計つた高性能焼結永久磁石材料の製造方法に関
する。 従来の技術 現在の代表的な永久磁石材料は、アルニコ、ハ
ードフエライトおよび希土類コバルト磁石であ
る。近年のコバルトの原料事情の不安定化に伴な
い、コバルトを20〜35wt%含むアルニコ磁石の
需要は減り、鉄の酸化物を主成分とする安価なハ
ードフエライトが磁石材料の主流を占めるように
なつた。 一方、希土類コバルト磁石はコバルトを50〜
60wt%も含むうえ、希土類鉱石中にあまり含ま
れていないSmを使用するため大変高価であるが、
他の磁石に比べて、磁気特性が格段に高いため、
主として小型で付加価値の高い磁気回路に多用さ
れるようになつた。 そこで、本発明者は先に、高価なSmやCoを含
有しない新しい高性能永久磁石としてFe−B−
R系(RはYを含む希土類元素のうち少なくとも
1種)永久磁石を提案(特願昭57−145072号)し
た。 さらに、Fe−B−R系の磁気異方性焼結体か
らなる永久磁石の温度特性を改善するために、
Feの一部をCoで置換することにより、生成合金
のキユリー点を上昇させて温度特性を改善した
Fe−Co−B−R系磁気異方性焼結体からなる永
久磁石を提案(特願昭57−166663号)した。 これらの永久磁石は、RとしてNdやPrを中心
とする資源的に豊富な軽希土類を用い、Feを主
成分として25MGOe以上の極めて高いエネルギ
ー積を示す、すぐれた永久磁石である。 上記の新規なFe−B−R系、Fe−Co−B−R
系永久磁石を、製造するための出発原料の希土類
金属は、一般にCa還元法、電解法により製造さ
れ、例えば、以下の工程により製造される。 出発原料として、前記希土類金属、電解鉄、
フエロボロン合金あるいはさらに電解Coを高
周波溶解して鋳塊を鋳造する。 鋳塊をスタンプミルにより粗粉砕後、ボール
ミルにより湿式粉砕して、1.5μm〜10μmの微
細粉とする。 磁界中配向にて成型する。 真空中にて焼結後放冷する。 Ar雰囲気中にて時効処理する。 発明が解決しようとする課題 上記のごとき製造方法にて得られたFe−B−
R系異方性永久磁石材料は、密度が理論密度の96
%程度であり、有孔体であるため、磁気特性及び
機械的性質の向上に限度があり、また、該系永久
磁石合金は非常に酸化しやすいNdあるいはPrを
大量に含有するため、実用上、耐酸化性改善のた
めの磁石表面へのめつき層などの耐酸化性被膜を
施す必要がある。 しかし、前記した如く該系磁石は有孔体であ
り、微細孔に水分あるいは表面処理の下地処理用
酸性溶液やアルカリ溶液が残存し、時間経過とと
もに発錆の要因となるなどの問題があつた。 この発明は、永久磁石材料を高密度化して、磁
気特性及び機械的強度の向上を計り、後続工程で
の表面処理による耐酸化性向上を実現できる高性
能焼結永久磁石材料の製造方法の提供を目的とし
ている。 課題を解決するための手段 この発明は、Fe−B−R系永久磁石材料の磁
気特性及び機械的強度並びに耐食性の向上を目的
に高密度化について種々検討した結果、高性能を
目的とした特定組成からなる一次焼結体を特定条
件で熱間静水圧プレス処理することにより、密度
を理論密度のほぼ100%とすることができ、磁気
特性の向上、機械的性質の向上が得られ、さらに
磁石材料の高密度無孔化により耐酸化性が改善さ
れることを知見し、この発明を完成したものであ
る。 すなわち、この発明は、 R(但しRはYを含む希土類元素のうち少なく
とも1種)11原子%〜16原子%、 B4原子%〜15原子%、 Fe70原子%〜85原子%を主成分とする焼結永
久磁石材料の製造方法において、 一次焼結体を密封容器内で、不活性ガスを圧力
媒体として、温度700℃〜1100℃、圧力500気圧〜
1300気圧にて熱間静水圧プレス処理することを特
徴とする高性能焼結永久磁石材料の製造方法であ
る。 さらに詳述すれば、この発明は、前記特定組成
を有する成型体を、例えば真空中、 900℃〜1200℃の焼結により一次焼結体となし、
この一次焼結体を例えば、金属チタン粉末等の酸
化防止剤中に埋入した密封容器内で、不活性ガス
を圧力媒体として、温度700℃〜1100℃、圧力500
気圧〜1300気圧にて熱間静水圧プレス処理し、さ
らに時効処理することにより、磁気特性、機械的
強度、耐食性のいずれも向上させた高性能焼結永
久磁石材料を得る製造方法である。 熱間静水圧プレス処理条件 一次焼結体を得るまでの永久磁石材料用合金粉
末の製造方法や成形体を得る方法、一次焼結方法
などには、当該Fe−B−R系永久磁石材料及び
従来公知の永久磁石の製造方法を適宜選定採用で
きる。 一次焼結体の密度は、熱間静水圧プレス処理に
よる密度を理論密度のほぼ100%とし、磁気特性
及び機械的強度並びに耐食性の向上を達成するた
めにも理論密度の90%以上が好ましい。 また、熱間静水圧プレス処理における温度条件
は、700℃未満では高圧にで熱間静水圧処理して
も高密度化することができず、1100℃を越えると
焼結体の溶融点近くになるため、焼結体の変形が
甚しく好ましくないため、700℃〜1100℃の範囲
とする。 さらに、処理圧力が500気圧未満では焼結体を
高密度化することが困難であり、1300気圧を越え
ると高密度化は可能であるが、処理装置の耐久性
やコストの面で好ましくないため、500気圧〜
1300気圧とする。 この発明における熱間静水圧プレス処理後に時
効処理を施すことは、磁石体の結晶粒の過剰成長
を抑制してすぐれた磁気特性を発現させるのに有
効である。時効処理温度は450℃〜700℃の範囲が
好ましく、また、時効処理時間は5分〜40時間が
好ましい。時効処理時間は時効処理温度と密接に
関係するが、5分未満では時効処理効果が少な
く、得られる磁石材料の磁気特性のばらつきが大
きくなり、40時間を越えると工業的に長時間を要
しすぎ実用的でない。磁気特性の好ましい発現と
実用的な面から時効処理時間は30分から8時間が
好ましい。 また、時効処理は2段以上の多段時効処理を用
いることもできる。例えば、1060℃にて焼結した
焼結体を、温度900℃、圧力900気圧にて、熱間静
水圧プレス処理した後、1段目として、 750℃〜1000℃で30分ないし6時間の初段時効
処理し、さらに、2段目以降に、450℃〜700℃で
2〜30時間の1段以上の時効処理を行なうことに
より、残留磁束密度、保磁力、減磁曲線の角形性
のいずれにも極めてすぐれた磁石特性を有する磁
石材料を得ることができる。 また、多段時効処理に代えて、450℃〜700℃の
時効処理温度から室温までを空冷あるいは水冷な
どの冷却方法で、0.2℃/min〜20℃/minの冷却
速度で冷却する方法によつても、上記時効処理と
同等の磁気特性を有する永久磁石材料を得ること
ができる。 永久磁石材料組成の限定理由 この発明の永久磁石材料に用いる希土類元素R
は、11原子%〜16原子%のNd,Pr,Ho,Tbの
うち少なくとも1種、あるいはさらに、La,
Sm,Ce,Gd,Er,Eu,Pm,Tm,Yb,Lu,
Yのうち少なくとも1種を含むものが好ましい。 また、通例Rのうち1種をもつて足りるが、実
用上は2種以上の混合物(ミツシユメタル、ジジ
ム等)を入手上の便宜等の理由により用いること
ができる。 なお、このRは純希土類元素でなくてもよく、
工業上入手可能な範囲で製造上不可避な不純物を
含有するものでも差支えない。 R(Yを含む希土類元素のうち少なくとも1種)
は、新規な上記系永久磁石材料における必須元素
であつて、11原子%未満では結晶構造がα−鉄と
同一構造の立方晶組織となるため、高磁気特性、
特に高保磁力が得られず、16原子%を越えるとR
リツチな非磁性相が多くなり、残留磁束密度Br
が低下して、すぐれた特性の永久磁石が得られな
い。よつて、Rは11原子%〜16原子%の範囲とす
る。 Bは、新規な上記系永久磁石材料における必須
元素であつて、4原子%未満では菱面体組織とな
り、高い保磁力iHcは得られず、15原子%を越え
るとBリツチな非磁性相が多くなり、残留磁束密
度Brが低下するため、すぐれた永久磁石が得ら
れない。よつて、Bは4原子%〜15原子%の範囲
とする。 Feは、新規な上記系永久磁石材料における必
須元素であつて、70原子%未満では残留磁束密度
Brが低下し、85原子%を越えると高い保磁力が
得られないので、Feは70原子%〜85原子%の含
有とする。 また、この発明による永久磁石材料において、
Feの一部をCoで置換することは得られる磁石の
磁気特性を損うことなく、温度特性を改善するこ
とができるが、Co置換量がFeの50%を越えると、
逆に磁気特性を劣化するため好ましくない。 この発明の永久磁石材料において、高い残留磁
束密度と高保磁力を得るためには、R12原子%〜
15原子%、B6原子%〜14原子%、Fe71原子%〜
82原子%が好ましい。 また、この発明による永久磁石材料は、R,
B,Feの他、工業的生産上不可避的不純物の存
在を許容できるが、Bの一部を4.0原子%以下の
C、3.5原子%以下のP、2.5原子%以下のS、3.5
原子%以下のCuのうち少なくとも1種、合計量
で4.0原子%以下で置換することにより、永久磁
石の製造性改善、低価格化が可能である。 また、下記添加元素のうち少なくとも1種は、
R−B−Fe系あるいはR−B−Co−Fe系永久磁
石に対してその保磁力等を改善あるいは製造性の
改善、低価格化に効果があるため添加する。しか
し、保磁力改善のための添加に伴い残留磁束密度
Brの低下を招来するので、下記範囲での添加が
望ましい。 5.0原子%以下のAl、3.0原子%以下のTi、 5.5原子%以下のV、4.5原子%以下のCr、 5.0原子%以下のMn、5原子%以下のBi、 9.0原子%以下のNb、7.0原子%以下のTa、 5.2原子%以下のMo、5.0原子%以下のW、 1.0原子%以下のSb、3.5原子%以下のGe、 1.5原子%以下のSn、3.3原子%以下のZr、 6.0原子%以下のNi、5.0原子%以下のSi、 3.3原子%以下のHfのうち少なくとも1種を添加
含有、但し、2種以上含有する場合は、その最大
含有量は当該添加元素のうち最大値を有するもの
の原子%以下の含有させることにより、永久磁石
の高保磁力化が可能になる。 この発明における合金粉末の結晶相は主相が少
なくとも50vol%以上の正方晶、少なくとも1vol
%以上の非磁性金属間化合物であることが、すぐ
れた磁気特性を有する焼結永久磁石を作製するの
に不可欠である。 また、この発明の永久磁石は、磁場中プレス成
型することにより磁気的異方性磁石が得られ、ま
た、無磁界中でプレス成型することにより、磁気
的方性磁石を得ることができる。 この発明による永久磁石材料は、残留磁束密度
Br>10.5kGを示し、最大エネルギー積(BH)
max≧25MGOeを示し、最大値は40MGOe以上
に達する。 また、この発明の永久磁石材料の組成が、R11
原子%〜16原子%、B4原子%〜15原子%、Co45
原子%以下、Fe残部の場合、得られる磁気異方
性永久磁石合金は上記磁石合金と同等の磁気特性
を示し、残留磁束密度の温度係数が0.1%/℃以
下となり、すぐれた特性が得られる。 また、この発明の永久磁石材料のRの主成分が
その50%以上を軽希土類金属が占める場合で、
R12原子%〜15原子%、B6原子%〜14原子%、
Fe71原子%〜82原子%の場合、あるいはさらに
Co5原子%〜45原子%を主成分とするとき、磁気
異方性焼結磁石の場合最もすぐれた磁気特性を示
し、特に軽希土類金属がNdの場合には、(BH)
maxはその最大値が40MGOe以上に達する。 作 用 この発明は、Fe−B−R系永久磁石材料の磁
気特性の高性能化を目的とした特性組成の一次焼
結体を前記特定条件で熱間静水圧プレス処理する
ことにより、密度を理論密度のほぼ100%とする
ことができ、磁気特性の向上並びに機械的性質の
向上が得られ、さらに磁石材料が高密度無孔化さ
れたことにより、耐酸化性表面処理が有効に機能
し、これによりすぐれた耐酸化性を有する高性能
焼結永久磁石材料を得ることができる。 実施例 実施例 1 原子百分率で、79Fe7B14Ndの組成からなる平
均粒度4μmの合金粉末を、10kOeの磁界中で、
2ton/cm2の圧力で加圧成型したのち、1×10-7
Torrの真空中で、1060℃、2時間焼結して理論
密度の96%密度を有する一次焼結体を得た。 この一次焼結体を密封容器内で金属チタン粉末
中に埋入し、Arガスを圧力媒体として、温度900
℃、圧力900気圧の熱間静水圧プレス処理した。 ついで、600℃で1時間の時効処理を施したの
ち、磁気特性及び機械的性質を測定した。その結
果は第1表に示すとおりである。 また、比較のため、一次焼結体に熱間静水圧プ
レス処理を施さない以外は上記製造方法で製造し
た比較磁石材料を作製し、同様に磁気特性及び機
械的性質を測定し、第1表にその結果を示す。 実施例 2 原子百分率で、71.5Fe8B6Co14.5Ndの組成か
らなる平均粒度5μmの合金粉末を、10kOeの磁界
中で、2ton/cm2の圧力で加圧成型したのち、1×
10-4Torrの真空中で、1040℃、2時間焼結して
理論密度の95%密度を有する一次焼結体を得た。 この一次焼結体を密封容器内で金属チタン粉末
中に埋入し、Arガスを圧力媒体として、温度800
℃、圧力900気圧の熱間静水圧プレス処理した。 ついで、600℃で1時間の時効処理を施したの
ち、磁気特性及び機械的性質を測定した。その結
果は第2表に示すとおりである。 また、比較のため、一次焼結体に熱間静水圧プ
レス処理を施さない以外は上記製造方法で製造し
た比較磁石材料を作製し、同様に磁気特性及び機
械的性質を測定し、第2表にその結果を示す。
Industrial Application Field The present invention relates to a method for producing a sintered permanent magnet material whose main components are R (R is at least one rare earth element including Y), B, and Fe, and is intended for high performance. The present invention relates to a method for producing a high-performance sintered permanent magnet material that has a high density composition and further improves magnetic properties, mechanical strength, and corrosion resistance. BACKGROUND OF THE INVENTION Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. As the cobalt raw material situation has become unstable in recent years, the demand for alnico magnets containing 20 to 35 wt% cobalt has decreased, and inexpensive hard ferrite, whose main component is iron oxide, has become the mainstream magnet material. Summer. On the other hand, rare earth cobalt magnets contain cobalt from 50 to
It is very expensive because it contains 60wt% and uses Sm, which is not included in rare earth ores.
Compared to other magnets, the magnetic properties are much higher,
It has come to be used mainly for small, high value-added magnetic circuits. Therefore, the present inventor first developed Fe-B- as a new high-performance permanent magnet that does not contain expensive Sm or Co.
An R-based permanent magnet (R is at least one rare earth element including Y) was proposed (Japanese Patent Application No. 145072/1982). Furthermore, in order to improve the temperature characteristics of permanent magnets made of Fe-BR-based magnetically anisotropic sintered bodies,
By replacing a portion of Fe with Co, we raised the Curie point of the resulting alloy and improved its temperature characteristics.
We proposed a permanent magnet made of Fe-Co-B-R magnetically anisotropic sintered body (Japanese Patent Application No. 166663/1983). These permanent magnets use resource-rich light rare earths such as Nd and Pr as R, and are excellent permanent magnets that have Fe as their main component and exhibit an extremely high energy product of 25 MGOe or more. The above novel Fe-BR system, Fe-Co-BR
Rare earth metals as starting materials for producing permanent magnets are generally produced by a Ca reduction method or an electrolytic method, for example, by the following steps. As starting materials, the rare earth metals, electrolytic iron,
An ingot is cast by high-frequency melting of ferroboron alloy or electrolytic Co. The ingot is coarsely pulverized using a stamp mill, and then wet pulverized using a ball mill to form a fine powder of 1.5 μm to 10 μm. Molding with orientation in a magnetic field. After sintering in vacuum, let it cool. Aging treatment is performed in an Ar atmosphere. Problem to be solved by the invention Fe-B- obtained by the above manufacturing method
The R-based anisotropic permanent magnet material has a density of 96, which is the theoretical density.
%, and since it is a porous material, there is a limit to the improvement of magnetic and mechanical properties.Also, this type of permanent magnet alloy contains a large amount of Nd or Pr, which is very easily oxidized, so it is not practical. In order to improve oxidation resistance, it is necessary to apply an oxidation-resistant coating such as a plating layer to the magnet surface. However, as mentioned above, this type of magnet is a porous material, and there have been problems such as moisture or acidic or alkaline solutions for surface treatment remaining in the micropores, which can cause rust over time. . The present invention provides a method for producing high-performance sintered permanent magnet material, which improves magnetic properties and mechanical strength by increasing the density of permanent magnet material, and improves oxidation resistance through surface treatment in subsequent steps. It is an object. Means for Solving the Problems This invention was developed as a result of various studies on densification for the purpose of improving the magnetic properties, mechanical strength, and corrosion resistance of Fe-BR permanent magnet materials. By hot isostatic pressing the primary sintered body consisting of the composition under specific conditions, the density can be made almost 100% of the theoretical density, improving magnetic properties and mechanical properties. This invention was completed based on the finding that oxidation resistance is improved by making the magnetic material highly dense and non-porous. That is, this invention mainly consists of R (wherein R is at least one kind of rare earth elements including Y) 11 atomic % to 16 atomic %, B4 atomic % to 15 atomic %, and Fe 70 atomic % to 85 atomic %. In the method for manufacturing sintered permanent magnet materials, the primary sintered body is placed in a sealed container using an inert gas as a pressure medium at a temperature of 700°C to 1100°C and a pressure of 500 atm to
This is a method for producing a high-performance sintered permanent magnet material, which is characterized by hot isostatic pressing at 1300 atmospheres. More specifically, the present invention provides a method for forming a molded body having the specific composition into a primary sintered body by sintering the molded body having the specific composition, for example, at 900°C to 1200°C in a vacuum,
For example, this primary sintered body is placed in a sealed container embedded in an antioxidant such as metal titanium powder at a temperature of 700°C to 1100°C and a pressure of 500°C using an inert gas as a pressure medium.
This is a manufacturing method for obtaining a high-performance sintered permanent magnet material with improved magnetic properties, mechanical strength, and corrosion resistance by hot isostatic pressing at a pressure of 1,300 to 1,300 atmospheres and further aging treatment. Hot isostatic pressing treatment conditions The method for producing alloy powder for permanent magnet material until obtaining a primary sintered body, the method for obtaining a compact, the primary sintering method, etc. Conventionally known permanent magnet manufacturing methods can be appropriately selected and employed. The density of the primary sintered body is preferably 90% or more of the theoretical density in order to make the density by hot isostatic pressing almost 100% of the theoretical density and to achieve improvements in magnetic properties, mechanical strength, and corrosion resistance. In addition, the temperature conditions for hot isostatic pressing treatment are such that if the temperature is less than 700℃, high pressure and hot isostatic pressure treatment cannot increase the density, and if the temperature exceeds 1100℃, the temperature will be close to the melting point of the sintered body. As a result, the deformation of the sintered body is extremely undesirable, so the temperature is set in the range of 700°C to 1100°C. Furthermore, if the processing pressure is less than 500 atm, it is difficult to increase the density of the sintered compact, and if it exceeds 1300 atm, it is possible to increase the density, but it is not desirable in terms of the durability and cost of the processing equipment. , 500 atm~
The pressure shall be 1300 atm. Performing the aging treatment after the hot isostatic pressing treatment in the present invention is effective in suppressing excessive growth of crystal grains in the magnet body and developing excellent magnetic properties. The aging treatment temperature is preferably in the range of 450°C to 700°C, and the aging treatment time is preferably 5 minutes to 40 hours. The aging treatment time is closely related to the aging treatment temperature, but if it is less than 5 minutes, the aging treatment effect will be small and the magnetic properties of the obtained magnet material will vary widely, and if it exceeds 40 hours, it will take a long time for industrial purposes. Too impractical. From the viewpoint of desirable development of magnetic properties and practical aspects, the aging treatment time is preferably 30 minutes to 8 hours. Moreover, multi-stage aging treatment of two or more stages can also be used for the aging treatment. For example, a sintered body sintered at 1060°C is subjected to hot isostatic pressing at a temperature of 900°C and a pressure of 900 atm, and then, as the first stage, it is heated at 750°C to 1000°C for 30 minutes to 6 hours. By performing the first stage aging treatment and then performing one or more stages of aging treatment at 450°C to 700°C for 2 to 30 hours, the residual magnetic flux density, coercive force, and squareness of the demagnetization curve can be improved. It is also possible to obtain a magnetic material having extremely excellent magnetic properties. In addition, instead of multi-stage aging treatment, a method of cooling from the aging treatment temperature of 450°C to 700°C to room temperature using a cooling method such as air cooling or water cooling at a cooling rate of 0.2°C/min to 20°C/min is used. Also, it is possible to obtain a permanent magnet material having magnetic properties equivalent to those obtained by the above-mentioned aging treatment. Reason for limiting the composition of the permanent magnet material Rare earth element R used in the permanent magnet material of this invention
is at least one of Nd, Pr, Ho, and Tb in an amount of 11 atomic % to 16 atomic %, or in addition, La,
Sm, Ce, Gd, Er, Eu, Pm, Tm, Yb, Lu,
Those containing at least one type of Y are preferred. Further, although it is usually sufficient to use one type of R, in practice, a mixture of two or more types (Mitsushimetal, didymium, etc.) can be used for reasons such as convenience of availability. Note that this R may not be a pure rare earth element,
It may contain impurities that are unavoidable during production within an industrially available range. R (at least one rare earth element including Y)
is an essential element in the new above-mentioned permanent magnet materials, and if it is less than 11 atomic %, the crystal structure becomes cubic, which is the same structure as α-iron, so it has high magnetic properties,
Particularly high coercive force cannot be obtained, and if it exceeds 16 atomic%, R
The rich nonmagnetic phase increases, and the residual magnetic flux density Br
decreases, making it impossible to obtain a permanent magnet with excellent characteristics. Therefore, R should be in the range of 11 atomic % to 16 atomic %. B is an essential element in the above-mentioned new permanent magnet materials.If it is less than 4 at%, a rhombohedral structure will result and a high coercive force iHc cannot be obtained, and if it exceeds 15 at%, a B-rich nonmagnetic phase will form. As a result, the residual magnetic flux density Br decreases, making it impossible to obtain an excellent permanent magnet. Therefore, B should be in the range of 4 at % to 15 at %. Fe is an essential element in the new above-mentioned permanent magnet materials, and if it is less than 70 at%, the residual magnetic flux density
If Br decreases and exceeds 85 atom%, a high coercive force cannot be obtained, so Fe is contained in a range of 70 atom% to 85 atom%. Further, in the permanent magnet material according to the present invention,
Substituting a portion of Fe with Co can improve the temperature characteristics of the resulting magnet without impairing its magnetic properties, but if the amount of Co substitution exceeds 50% of Fe,
On the contrary, it is not preferable because it deteriorates the magnetic properties. In the permanent magnet material of this invention, in order to obtain high residual magnetic flux density and high coercive force, R12 atomic % ~
15 atomic%, B6 atomic% ~ 14 atomic%, Fe71 atomic% ~
82 atom % is preferred. Further, the permanent magnet material according to the present invention has R,
In addition to B and Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a part of B can be replaced by 4.0 atom% or less of C, 3.5 atom% or less of P, 2.5 atom% or less of S, 3.5
By substituting at least one type of Cu in a total amount of 4.0 atomic % or less, it is possible to improve the manufacturability and lower the price of permanent magnets. In addition, at least one of the following additional elements is
It is added to R-B-Fe or R-B-Co-Fe permanent magnets because it is effective in improving the coercive force, etc., improving manufacturability, and reducing costs. However, due to the addition to improve coercive force, the residual magnetic flux density
Since it causes a decrease in Br, it is desirable to add it in the following range. Al less than 5.0 atom%, Ti less than 3.0 atom%, V less than 5.5 atom%, Cr less than 4.5 atom%, Mn less than 5.0 atom%, Bi less than 5 atom%, Nb less than 9.0 atom%, 7.0 Ta less than 5.2 atom%, Mo less than 5.0 atom%, W less than 5.0 atom%, Sb less than 1.0 atom%, Ge less than 3.5 atom%, Sn less than 1.5 atom%, Zr less than 3.3 atom%, 6.0 atom % or less Ni, 5.0 atomic % or less Si, and 3.3 atomic % or less Hf. However, if two or more types are contained, the maximum content is the maximum value of the added elements. By containing less than atomic % of the above, it becomes possible to increase the coercive force of the permanent magnet. The crystalline phase of the alloy powder in this invention is tetragonal with a main phase of at least 50 vol% or more, and at least 1 vol.
% or more of non-magnetic intermetallic compounds is essential for producing sintered permanent magnets with excellent magnetic properties. Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically anisotropic magnet. The permanent magnet material according to this invention has a residual magnetic flux density
Shows Br>10.5kG, maximum energy product (BH)
Indicates max≧25MGOe, and the maximum value reaches 40MGOe or more. Further, the composition of the permanent magnet material of this invention is R11
atomic% ~ 16 atomic%, B4 atomic% ~ 15 atomic%, Co45
In the case of atomic% or less and Fe balance, the resulting magnetically anisotropic permanent magnet alloy exhibits magnetic properties equivalent to the above magnet alloys, and the temperature coefficient of residual magnetic flux density is 0.1%/℃ or less, providing excellent properties. . In addition, when the main component of R in the permanent magnet material of the present invention is a light rare earth metal that accounts for 50% or more,
R12 atomic% to 15 atomic%, B6 atomic% to 14 atomic%,
For Fe71 atomic% to 82 atomic%, or even
Magnetic anisotropic sintered magnets exhibit the best magnetic properties when the main component is Co5 atomic% to 45 atomic%, and especially when the light rare earth metal is Nd, (BH)
The maximum value reaches 40MGOe or more. Function This invention is capable of increasing the density by hot isostatic pressing a primary sintered body having a characteristic composition for the purpose of improving the magnetic properties of Fe-B-R based permanent magnet materials under the above-mentioned specific conditions. It is possible to achieve almost 100% of the theoretical density, resulting in improved magnetic and mechanical properties.Furthermore, because the magnet material is made highly dense and non-porous, the oxidation-resistant surface treatment works effectively. As a result, a high-performance sintered permanent magnet material having excellent oxidation resistance can be obtained. Examples Example 1 An alloy powder having a composition of 79Fe7B14Nd in atomic percentage and having an average particle size of 4 μm was heated in a magnetic field of 10 kOe.
After pressure molding at a pressure of 2ton/ cm2 , 1×10 -7
A primary sintered body having a density of 96% of the theoretical density was obtained by sintering in a Torr vacuum at 1060°C for 2 hours. This primary sintered body was embedded in metal titanium powder in a sealed container, and heated to a temperature of 900°C using Ar gas as a pressure medium.
It was subjected to hot isostatic pressing at a temperature of 900 atm. Then, after aging treatment at 600°C for 1 hour, magnetic properties and mechanical properties were measured. The results are shown in Table 1. In addition, for comparison, a comparative magnet material was manufactured using the above manufacturing method except that the primary sintered body was not subjected to hot isostatic pressing treatment, and its magnetic properties and mechanical properties were similarly measured. The results are shown below. Example 2 An alloy powder having a composition of 71.5Fe8B6Co14.5Nd in atomic percentage and having an average particle size of 5 μm was press-molded in a magnetic field of 10 kOe at a pressure of 2 ton/cm 2 and then 1×
A primary sintered body having a density of 95% of the theoretical density was obtained by sintering at 1040°C for 2 hours in a vacuum of 10 -4 Torr. This primary sintered body was embedded in metal titanium powder in a sealed container, and heated to a temperature of 800°C using Ar gas as a pressure medium.
It was subjected to hot isostatic pressing at a temperature of 900 atm. Then, after aging treatment at 600°C for 1 hour, magnetic properties and mechanical properties were measured. The results are shown in Table 2. In addition, for comparison, a comparative magnet material was manufactured using the above manufacturing method except that the primary sintered body was not subjected to hot isostatic pressing treatment, and its magnetic properties and mechanical properties were similarly measured. The results are shown below.

【表】【table】

【表】 発明の効果 実施例の第1表及び第2表の結果から明らかな
ように、この発明の製造方法による永久磁石材料
は、熱間静水圧プレス処理を施さない比較磁石材
料に対して、磁気特性及び機械的性質が向上して
いることが分る。
[Table] Effects of the Invention As is clear from the results in Tables 1 and 2 of Examples, the permanent magnet material produced by the manufacturing method of the present invention has a higher It can be seen that the magnetic properties and mechanical properties are improved.

Claims (1)

【特許請求の範囲】[Claims] 1 R(但しRはYを含む希土類元素のうち少な
くとも1種)11原子%〜16原子%、B4原子%〜
15原子%、Fe70原子%〜85原子%を主成分とす
る焼結永久磁石材料の製造方法において、一次焼
結体を密封容器内で、不活性ガスを圧力媒体とし
て、温度700℃〜1100℃、圧力500気圧〜1300気圧
にて熱間静水圧プレス処理することを特徴とする
高性能焼結永久磁石材料の製造方法。
1 R (R is at least one rare earth element including Y) 11 atomic% to 16 atomic%, B4 atomic% to
In a method for manufacturing a sintered permanent magnet material whose main components are 15 at% Fe and 70 at% to 85 at% Fe, the primary sintered body is heated in a sealed container at a temperature of 700°C to 1100°C using an inert gas as a pressure medium. A method for producing a high-performance sintered permanent magnet material, characterized by hot isostatic pressing at a pressure of 500 atm to 1300 atm.
JP59259761A 1984-12-07 1984-12-07 Production of sintered material for permanent magnet Granted JPS61136656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59259761A JPS61136656A (en) 1984-12-07 1984-12-07 Production of sintered material for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59259761A JPS61136656A (en) 1984-12-07 1984-12-07 Production of sintered material for permanent magnet

Publications (2)

Publication Number Publication Date
JPS61136656A JPS61136656A (en) 1986-06-24
JPH0445573B2 true JPH0445573B2 (en) 1992-07-27

Family

ID=17338590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259761A Granted JPS61136656A (en) 1984-12-07 1984-12-07 Production of sintered material for permanent magnet

Country Status (1)

Country Link
JP (1) JPS61136656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013115325A1 (en) * 2012-02-03 2015-05-11 日産自動車株式会社 Method and apparatus for manufacturing sintered magnet
JP2015113525A (en) * 2013-12-11 2015-06-22 ▲煙▼台正海磁性材料股▲ふん▼有限公司 Method for preparing high coercive force magnet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242404A (en) * 1985-08-20 1987-02-24 Toshiba Corp Manufacture of rare-earh iron permanent magnet
JPS6350444A (en) * 1986-08-20 1988-03-03 Mitsubishi Metal Corp Manufacture of nd-fe-b sintered alloy magnet
EP0277416A3 (en) * 1987-02-04 1990-05-16 Crucible Materials Corporation Permanent magnet alloy for elevated temperature applications
JPS6448405A (en) * 1987-08-19 1989-02-22 Mitsubishi Metal Corp Manufacture of rare earth-iron-boron magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013115325A1 (en) * 2012-02-03 2015-05-11 日産自動車株式会社 Method and apparatus for manufacturing sintered magnet
JP2015113525A (en) * 2013-12-11 2015-06-22 ▲煙▼台正海磁性材料股▲ふん▼有限公司 Method for preparing high coercive force magnet

Also Published As

Publication number Publication date
JPS61136656A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
JPH0374012B2 (en)
JPH0319296B2 (en)
JPH03236202A (en) Sintered permanent magnet
JPH0316761B2 (en)
JPH0518895B2 (en)
JPH01219143A (en) Sintered permanent magnet material and its production
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0616445B2 (en) Permanent magnet material and manufacturing method thereof
JPH0445573B2 (en)
JP2610798B2 (en) Permanent magnet material
JPH0422008B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
KR100204344B1 (en) Rare-earth-element-fe-co-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JPH045739B2 (en)
JPH0475303B2 (en)
JPH0422006B2 (en)
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JPH04247604A (en) Rare earth-fe-co-b anisotropic magnet
JPH0536494B2 (en)
JP3736830B2 (en) Rare earth-Fe-Co-B magnet powder and bonded magnet excellent in squareness and thermal stability
JPH0633444B2 (en) Permanent magnet alloy
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH0346963B2 (en)
JPH04246803A (en) Rare earth-fe-b anisotropic magnet
JPH0477066B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term