JPH0518895B2 - - Google Patents
Info
- Publication number
- JPH0518895B2 JPH0518895B2 JP60157362A JP15736285A JPH0518895B2 JP H0518895 B2 JPH0518895 B2 JP H0518895B2 JP 60157362 A JP60157362 A JP 60157362A JP 15736285 A JP15736285 A JP 15736285A JP H0518895 B2 JPH0518895 B2 JP H0518895B2
- Authority
- JP
- Japan
- Prior art keywords
- atomic
- permanent magnet
- less
- isostatic pressing
- magnet material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 32
- 238000001513 hot isostatic pressing Methods 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 8
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 7
- 229910052779 Neodymium Inorganic materials 0.000 claims description 6
- 229910052772 Samarium Inorganic materials 0.000 claims description 6
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 229910052693 Europium Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- 229910052765 Lutetium Inorganic materials 0.000 claims description 4
- 229910052775 Thulium Inorganic materials 0.000 claims description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 102100036439 Amyloid beta precursor protein binding family B member 1 Human genes 0.000 claims description 3
- 101000928670 Homo sapiens Amyloid beta precursor protein binding family B member 1 Proteins 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 230000032683 aging Effects 0.000 description 20
- 239000000203 mixture Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 230000004907 flux Effects 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 150000002910 rare earth metals Chemical class 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 230000005347 demagnetization Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229910001047 Hard ferrite Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- -1 tetragonal compound Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
産業上の利用分野
この発明は、R(RはYを含む希土類元素のう
ち少なくとも1種)B,Feを主成分とする焼結
永久磁石材料の製造方法に係り、特に、熱間静水
圧プレス処理により、永久磁石材料を高密度化し
て、磁気特性及び機械的強度の向上を図つた焼結
永久磁石材料の製造方法に関する。
従来の技術
現在の代表的な永久磁石材料は、アルニコ、ハ
ードフエライトおよび希土類コバルト磁石であ
る。このうち希土類コバルト磁石は、磁気特性が
格段にすぐれているため、多種用途に利用されて
いるが、主成分のSm,Coは共に資源的に不足
し、かつ高価であり、今後長期間にわたつて、安
定して多量に供給されることは困難である。
そのため、磁気特性がすぐれ、かつ安価で、さ
らに資源的に豊富で今後の安定供給が可能な組成
元素からなる永久磁石材料が切望されてきた。
本出願人は先に、高価なSmやCoを含有しない
新しい高性能永久磁石としてFe−B−R系(R
はYを含む希土類元素のうち少なくとも1種)永
久磁石を提案した(特開昭59−46008号、特開昭
59−64733号、特開昭59−89401号1特開昭59−
132104号)。
この永久磁石は、RとしてNdやPrを中心とす
る資源的に豊富な軽希土類を用い、Feを主成分
として25MGOe以上の極めて高いエネルギー積
を示す、すぐれた永久磁石である。
発明が解決しようとする課題
かかるFe−B−R系異方性永久磁石材料は、
密度が理論密度の96%程度であり、有孔体である
ため、磁気特性及び機械的性質の向上に限度があ
り、また、該系永久磁石合金は非常に酸化しやす
いNdあるいはPrを大量に含有するため、実用
上、耐酸化性改善のための磁石表面へのめつき層
などの耐酸化性被膜を施す必要がある。
しかし、前記した如く該系磁石は有孔体であ
り、微細孔に水分あるいは表面処理の下地処理用
酸性溶液やアルカリ溶液が残存し、時間経過とと
もに発錆の要因となるなどの問題があつた。
このため発明者は、先に、熱間静水圧プレス処
理によつて、Fe−B−R系永久磁石材料を高密
度化して、磁気特性及び機械的強度の向上を計
り、後続工程での表面処理により耐酸化性を向上
させた焼結永久磁石材料の製造方法(特願昭59−
259761号)を提案した。
しかしながら、前記製造方法では、Fe−B−
R系永久磁石材料の組成、特に、Rの組成によつ
ては、熱間静水圧プレス処理を行なつても、焼結
体の高密度化が得られない問題があつた。
この発明は、永久磁石磁石材料を高密度化し
て、磁気特性及び機械的強度の向上を計り、後続
工程での表面処理による耐酸化性向上を実効せし
めた焼結永久磁石材料の製造方法を目的とし、特
に、Fe−B−R系永久磁石材料のR組成の如何
に関わらず、熱間静水圧プレス処理による焼結磁
石体の高密度化が得られる高性能焼結永久磁石材
料の製造方法を目的としている。
課題を解決するための手段
この発明は、Fe−B−R系永久磁石材料の高
密度化を目的に種々検討した結果、一次焼結にて
特定密度を有する焼結体となし、その後特定条件
で熱間静水圧プレス処理し、時効処理することに
より、密度を理論密度のほぼ100%とすることが
でき、磁気特性の向上、機械的性質の向上が得ら
れ、磁石材料の高密度無孔化により、耐酸化性表
面処理が有効に機能し、耐酸化性改善に実効ある
ことを知見したが、さらに、熱間静水圧プレス処
理時に、Rリツチな液相が多くでる組成では、熱
間静水圧プレス処理がかからずに、焼結体内部に
空孔が発生するなど、密度の低下が起ることを知
見し、上記の特定条件の熱間静水圧プレス処理よ
りも、さらに低い温度条件で熱間静水圧プレス処
理すると、Rリツチな液相が多くでる組成であつ
ても、焼結体に均一に熱間静水圧プレス処理で
き、理論密度のほぼ100%の高密度化が達成でき
ることが分つた。
すなわち、この発明は、
R10原子%〜30原子%(RはNd,Pr,Dy,
Ho,Tbのうち少なくとも1種あるいはさらに、
La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Y
のうち少なくとも1種からなる)、
B2原子%〜28原子%、
Fe65原子%〜80原子%
を主成分とする焼結永久磁石材料の製造方法にお
いて、
一次焼結体を、必要に応じて焼結体を
700℃〜1000℃にて時効処理した後、
金属チタン粉末等の酸化防止剤中に埋入した密
閉容器内で不活性ガスを圧力媒体として、温度
400℃〜700℃、圧力500気圧〜1300気圧にて熱間
静水圧プレス処理を施し、
必要に応じて時効処理することを特徴とする高
性能焼結永久磁石材料の製造方法である。
この発明の熱間静水圧プレス処理前に行う一次
焼結工程において、得られる一次焼結体の密度
は、磁気特性、機械的強度及び耐酸化性を向上さ
せるために理論密度の90%以上とすることが好ま
しい。一次焼結体の密度が理論密度の90%未満で
は、熱間静水圧プレス処理によつて密度を理論密
度の98.5%以上とすることができないためであ
る。
また、熱間静水圧プレス処理における温度条件
を400℃〜700℃としたのは、400℃未満では高圧
にて熱間静水圧処理しても高密度化することがで
きず、700℃を越えると、Rリツチな液相ができ
るため、組成によつては、熱間静水圧プレス処理
がかからなくなるため好ましくない。
さらに、処理圧力が500気圧未満では焼結体を
高密度化することが困難であり、1300気圧を越え
ると高密度化は可能であるが、処理装置の耐久性
やコストの面で好ましくないため、500気圧〜
1300気圧とする。
この発明において、熱間静水圧プレス処理前に
行なう前工程として、熱間静水圧プレス処理後の
磁石体の残留磁束密度、保磁力、減磁曲線の角型
性を改善向上させるため、必要に応じて、時効処
理するが、処理温度700℃未満では保磁力の低下
が起り、1000℃を越えると同様に保磁力が低下す
るので、時効処理温度は700℃〜1000℃の範囲が
好ましく、また、時効処理時間は30分〜6時間が
好ましい。30分未満では時効処理効果が少なく、
得られる磁石材料の磁気特性のばらつきが大きく
なり、6時間を越えるとその効果が飽和して実用
的でない。
この発明において、保磁力と減磁曲線の角型性
を改善のために、熱間静水圧プレス処理後の時効
処理するのもよく、その時効処理温度は
450℃〜700℃の範囲が好ましく、また、時効処
理時間は5分〜40時間が好ましい。5分未満では
時効処理効果が少なく、得られる磁石材料の磁気
特性のばらつきが大きくなり、40時間を越えると
工業的に長時間を要しすぎ実用的でない。磁気特
性の好ましい発現と実用的な面から時効処理時間
は30分〜8時間が好ましい。また、時効処理は2
段以上の多段時効処理を用いることもできる。
また、多段時効処理に代えて、450℃〜700℃の
時効処理温度から室温までを空冷あるいは水冷な
どの冷却方法で、0.2℃/min〜20℃/minの冷却
速度で冷却する方法によつても、上記時効処理と
同等の磁気特性を有する永久磁石材料を得ること
ができる。
永久磁石材料の限定理由
この発明の希土類合金粉末中の希土類元素R
は、組成の12原子%〜20原子%を占めるが、
Nd,Pr,Dy,Ho,Tbのうち少なくとも1
種、あるいはさらに、La,Ce,Sm,Gd,Er,
Eu,Tm,Yb,Lu,Yのうち少なくとも1種を
含むものからなる。
また、通常Rのうち1種をもつて足りるが、実
用上は2種以上の混合物(ミツシユメタル,ジジ
ム等)を入手上の適宜等の理由により用いること
ができる。
なお、このRは純希土類元素ではなくてもよ
く、工業上入手可能な範囲で製造上不可避な不純
物を含有するものでも差支えない。
Rは、新規なFe−B−R系永久磁石における
必須元素であつて、10原子%未満では結晶構造が
α−鉄と同一構造の立方晶組織となるため、高磁
気特性、特に高保磁力が得られず、30原子%を越
えるとRリツチな非磁性相が多くなり、保磁力は
10kOe以上であるが、残留磁束密度Brが低下し
てすぐれた特性の永久磁石が得られない。よつ
て、Rは10原子%〜30原子%の範囲とする。
Bは、Fe−B−R系永久磁石における必須元
素であつて、2原子%未満では菱面体晶構造が主
相となり、高い保磁力iHcは得られず、10kOe以
下となり、28原子%を越えるとBリツチな非磁性
相が多くなり、残留磁束密度Brが低下し、(BH)
maxが20MGOe未満となり、すぐれた永久磁石
が得られない。よつて、Bは2原子%〜28原子%
の範囲とする。
Feは、新規な上記系永久磁石において必須元
素であり、65原子%未満では残留磁束密度Brが
低下し、80原子%を越えると高い保磁力が得られ
ないので、Feは65原子%〜80原子%の含有とす
る。
また、この発明による永久磁石材料において、
Feの一部をCoで置換することは、得られる磁石
の磁気特性を損うことなく、温度特性を改善する
ことができるが、Co置換量がFeの30%を越える
と、逆に磁気特性が劣化するため好ましくなく、
さらに置換量の好ましい量は20%以下である。
また、この発明による永久磁石は、R,B,
Feの他、工業的生産上不可避的不純物の存在を
許容できるが、Bの一部を4.0原子%以下のC、
3.5原子%以下のP、2.5原子%以下のS、1.5原子
%以下のCu、5原子%以下のSiのうち少なくと
も1種、合計量で5.0原子%以下で置換すること
により、永久磁石の製造性改善、低価格化が可能
である。
また、下記添加元素のうち少なくとも1種は、
Fe−B−R系永久磁石に対してその保磁力、減
磁曲線の角型性を改善あるいは製造性の改善、低
価格化の効果があるため添加することができる。
しかし、保磁力改善のための添加に伴ない残留
磁束密度(Br)の低下を招来するので、従来の
ハードフエライト磁石の残留磁束密度と同等以上
となる範囲での添加が望ましい。
5.0原子%以下のAl3.0原子%以下のTi、
5.5原子%以下のV、4.5原子%以下のCr、
5.0原子%以下のMn、5.0原子%以下のBi、
9.0原子%以下のNb、7.0原子%以下のTa、
5.2原子%以下のMo、5.0原子%以下のW、
1.0原子%以下のSb、3.5原子%以下のGe、
1.5原子%以下のSn、3.3原子%以下のZr、
6.0原子%以下のNi、1.1原子%以下のZn、
3.3原子%以下のHf、
のうち少なくとも1種を添加含有、但し、2種以
上含有する場合は、その最大含有量は当該添加元
素のうち最大値を有するものの原子%以下の含有
させることにより、永久磁石の高保磁力化が可能
になる。また、特に好ましい添加元素は、V,
Nb,Ta,Mo,W,Cr,Alであり、含有量は少
量が好ましく、3原子%以下が有効であり、Al
は0.1〜3原子%、望ましくは0.2〜2原子%であ
る。
結晶相は主相(特定の相が80%以上)が正方晶
であることが、磁石として高い磁気特性を発現し
得るのに不可欠である。この磁性相はFeBR正方
晶化合物結晶で構成され、非磁性相により粒界を
囲まれている。非磁性相は主としてRリツチ相か
らなり、Bの多い場合、Bリツチ相も部分的に存
在し得る。非磁性相粒界域の存在は高保磁力に寄
与するものと考えられ、本発明合金の重要な組織
上の特徴をなし、ほんの僅かな量でも有効であ
り、例えば1vol%以上は充分な量である。
また、この発明の永久磁石は、磁場中プレス成
型することにより磁気的異方性磁石が得られ、ま
た、無磁界中でプレス成型することにより、磁気
的等方性磁石を得ることができる。
原料粉末中に、TiB2,BN,ZrB2,ZrB12,
HfB2,VB2,NbB,NbB2,TaB,TaB2,
CrB2,MoB,MoB2,Mo2B,WB,W2B等の
硼化物のうち少なくとも1種を0.05原子%〜3.0
原子%含有させることにより、磁石体の焼結時の
結晶粒の成長を抑制することができる。
この発明による永久磁石は、保磁力
iHc≧10kOe、残留磁束密度Br>9kGを示し、
最大エネルギー積(BH)maxは、最も好ましい
組成範囲では、(BH)max≧25MGOeを示し、
最大値は50MGOe以上に達する。
また、この発明の永久磁石材料の組成が、R11
原子%〜16原子%、B2原子%〜15原子%、Co45
原子%以下、Fe残部の場合、得られる磁気異方
性永久磁石合金は、上記磁石合金と同等の磁気特
性を示し、残留磁束密度の温度係数が、0.1%/
℃以下となり、すぐれた特性が得られる。
また、この発明永久磁石用合金粉末のRの主成
分がその50%以上をNb及びPrを主とする軽希土
類金属で占める場合で、R12原子%〜15原子%、
B5.5原子%〜10原子%、Feを主成分とするとき、
あるいはさらにFeの一部を20%以下のCoで置換
したとき、磁気的異方性焼結磁石の場合、最もす
ぐれた磁気特性を示し、特に軽希土類金属がNd
の場合には、その最大値が50MGOe以上に達す
る。
作 用
この発明は、Fe−B−R系永久磁石材料の磁
気特性の高性能化を目的とした特定組成の一次焼
結体を前記特定条件で熱間静水圧プレス処理する
ことにより、密度を理論密度のほぼ100%とする
ことができ、磁気特性の向上並びに機械的性質の
向上が得られ、さらに磁石材料が高密度無孔化さ
れたことにより、耐酸化性表面処理が有効に機能
し、これによりすぐれた耐酸化性を有する高性能
焼結永久磁石材料を得ることができる。
実施例
原子百分率で、第1表に示す組成からなる平均
粒度4μmの合金粉末(本発明No.1〜4)を、
10kOeの磁界中で、2ton/cm2の圧力で加圧成型し
たのち、1×10-7Torrの真空中で、1060℃、2
時間焼結して理論密度の96%密度を有する一次焼
結体を得、この一次焼結体を密閉容器内で金属チ
タン粉末中に埋入し、Arガスを圧力媒体として、
温度600℃、圧力900気圧の熱間静水圧プレス処理
した。
ついで、660℃で1時間の時効処理を施したの
ち、磁気特性及び機械的性質を測定した。その結
果は第2表に示すとおりである。
また、比較のため、一次焼結体に温度800℃、
圧力900気圧の熱間静水圧プレス処理と600℃、1
時間の時効処理を施す以外は上記製造方法で製造
した比較磁石材料(No.5〜8)を作製し、同様に
磁気特性及び機械的性質を測定し、第2表にその
結果を示す。
INDUSTRIAL APPLICATION FIELD This invention relates to a method for producing a sintered permanent magnet material mainly composed of R (R is at least one rare earth element including Y) B, Fe, and in particular, hot isostatic pressing. The present invention relates to a method of manufacturing a sintered permanent magnet material in which the permanent magnet material is densified through processing to improve magnetic properties and mechanical strength. BACKGROUND OF THE INVENTION Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. Among these, rare earth cobalt magnets have exceptionally excellent magnetic properties and are used for a variety of purposes, but the main components, Sm and Co, are both scarce and expensive, and will continue to be used for a long time. Therefore, it is difficult to stably supply it in large quantities. Therefore, there has been a strong desire for a permanent magnet material that has excellent magnetic properties, is inexpensive, and is composed of constituent elements that are abundant in resources and can be stably supplied in the future. The applicant has previously proposed a new high-performance permanent magnet that does not contain expensive Sm or Co.
proposed a permanent magnet (at least one rare earth element containing Y) (Japanese Patent Application Laid-Open No. 59-46008,
No. 59-64733, JP-A No. 59-89401 1 JP-A-59-
No. 132104). This permanent magnet is an excellent permanent magnet that uses resource-rich light rare earths such as Nd and Pr as R, and has Fe as its main component and exhibits an extremely high energy product of 25 MGOe or more. Problems to be Solved by the Invention This Fe-BR-based anisotropic permanent magnet material is
Since the density is about 96% of the theoretical density and it is a porous material, there is a limit to the improvement of magnetic and mechanical properties.In addition, this type of permanent magnet alloy does not contain a large amount of Nd or Pr, which is very easily oxidized. Therefore, in practice, it is necessary to apply an oxidation-resistant coating such as a plating layer to the magnet surface to improve oxidation resistance. However, as mentioned above, this type of magnet is a porous material, and there have been problems such as moisture or acidic or alkaline solutions for surface treatment remaining in the micropores, which can cause rust over time. . For this reason, the inventor first densified the Fe-BR-based permanent magnet material by hot isostatic pressing to improve its magnetic properties and mechanical strength, and then Manufacturing method of sintered permanent magnet material with improved oxidation resistance through treatment (Patent application 1983-
259761). However, in the above manufacturing method, Fe-B-
Depending on the composition of the R-based permanent magnet material, particularly the composition of R, there has been a problem in that even if hot isostatic pressing is performed, the sintered body cannot be densified. The purpose of this invention is to provide a method for manufacturing a sintered permanent magnet material, which improves magnetic properties and mechanical strength by increasing the density of the permanent magnet material, and improves oxidation resistance through surface treatment in the subsequent process. In particular, a method for producing a high-performance sintered permanent magnet material that can increase the density of a sintered magnet body by hot isostatic pressing regardless of the R composition of the Fe-B-R permanent magnet material. It is an object. Means for Solving the Problems As a result of various studies aimed at increasing the density of Fe-B-R permanent magnet materials, the present invention has been made by primary sintering to obtain a sintered body having a specific density, and then under specific conditions. By hot isostatic pressing and aging, the density can be made almost 100% of the theoretical density, improving magnetic properties and mechanical properties, and making the magnetic material highly dense and non-porous. It was found that the oxidation-resistant surface treatment functions effectively and is effective in improving oxidation resistance. It was discovered that a decrease in density occurs, such as the generation of pores inside the sintered body, without isostatic pressing, and the temperature was lower than that of hot isostatic pressing under the above specific conditions. When subjected to hot isostatic pressing under these conditions, even if the composition has a large R-rich liquid phase, the sintered body can be uniformly hot isostatically pressed, achieving a high density of almost 100% of the theoretical density. I found out what I can do. That is, in this invention, R is 10 atomic % to 30 atomic % (R is Nd, Pr, Dy,
At least one of Ho, Tb or further,
La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y
(consisting of at least one of the following), B2 at % to 28 at %, and Fe65 at % to 80 at %, the primary sintered body is sintered as necessary. After aging the aggregate at 700°C to 1000°C, the temperature is increased using an inert gas as a pressure medium in a sealed container embedded in an antioxidant such as metallic titanium powder.
This is a method for producing a high-performance sintered permanent magnet material, which is characterized by subjecting it to hot isostatic pressing at 400°C to 700°C and a pressure of 500 to 1300 atmospheres, and subjecting it to aging treatment if necessary. In the primary sintering process performed before the hot isostatic pressing process of this invention, the density of the primary sintered body obtained is 90% or more of the theoretical density in order to improve magnetic properties, mechanical strength, and oxidation resistance. It is preferable to do so. This is because if the density of the primary sintered body is less than 90% of the theoretical density, the density cannot be increased to 98.5% or more of the theoretical density by hot isostatic pressing. In addition, the temperature conditions for the hot isostatic pressing treatment were set at 400°C to 700°C, because if the temperature is below 400°C, even if hot isostatic pressing is performed at high pressure, high density cannot be obtained, and if the temperature exceeds 700°C, This is not preferable because a R-rich liquid phase is formed, and depending on the composition, the hot isostatic pressing process cannot be applied. Furthermore, if the processing pressure is less than 500 atm, it is difficult to increase the density of the sintered compact, and if it exceeds 1300 atm, it is possible to increase the density, but it is not desirable in terms of the durability and cost of the processing equipment. , 500 atm~
The pressure shall be 1300 atm. In this invention, as a pre-process performed before hot isostatic pressing, necessary steps are taken to improve the residual magnetic flux density, coercive force, and squareness of the demagnetization curve of the magnet after hot isostatic pressing. Depending on the condition, aging treatment is performed, but if the treatment temperature is less than 700℃, the coercive force will decrease, and if it exceeds 1000℃, the coercive force will similarly decrease, so the aging treatment temperature is preferably in the range of 700℃ to 1000℃, and The aging treatment time is preferably 30 minutes to 6 hours. If it is less than 30 minutes, the effect of aging treatment will be small;
Variations in the magnetic properties of the obtained magnet material become large, and if the time exceeds 6 hours, the effect will be saturated, making it impractical. In this invention, in order to improve the coercive force and the squareness of the demagnetization curve, aging treatment may be performed after hot isostatic pressing, and the aging treatment temperature is preferably in the range of 450°C to 700°C. Moreover, the aging treatment time is preferably 5 minutes to 40 hours. If the aging treatment is carried out for less than 5 minutes, the effect of the aging treatment will be small and the magnetic properties of the obtained magnet material will vary widely, and if it exceeds 40 hours, it will take too long for industrial use to be practical. From the viewpoint of desirable development of magnetic properties and practical aspects, the aging treatment time is preferably 30 minutes to 8 hours. In addition, the aging process is 2
It is also possible to use a multi-stage aging treatment. In addition, instead of multi-stage aging treatment, a method of cooling from the aging treatment temperature of 450°C to 700°C to room temperature using a cooling method such as air cooling or water cooling at a cooling rate of 0.2°C/min to 20°C/min is used. Also, it is possible to obtain a permanent magnet material having magnetic properties equivalent to those obtained by the above-mentioned aging treatment. Reason for limitation of permanent magnet material Rare earth element R in rare earth alloy powder of this invention
accounts for 12 to 20 at% of the composition, but at least one of Nd, Pr, Dy, Ho, and Tb
Species, or even La, Ce, Sm, Gd, Er,
Contains at least one of Eu, Tm, Yb, Lu, and Y. Furthermore, although it is usually sufficient to use one type of R, in practice, a mixture of two or more types (mitsumetal, dididium, etc.) may be used depending on the availability of the material. Note that R does not need to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range. R is an essential element in new Fe-B-R permanent magnets, and if it is less than 10 atomic %, the crystal structure becomes cubic, which is the same structure as α-iron, so it has high magnetic properties, especially high coercive force. If it is not obtained and exceeds 30 atom%, the R-rich nonmagnetic phase increases and the coercive force decreases.
Although it is 10 kOe or more, the residual magnetic flux density Br decreases and a permanent magnet with excellent characteristics cannot be obtained. Therefore, R should be in the range of 10 atomic % to 30 atomic %. B is an essential element in Fe-B-R permanent magnets, and if it is less than 2 atom%, the rhombohedral crystal structure will be the main phase, and high coercive force iHc will not be obtained, and the coercive force will be less than 10 kOe, and if it exceeds 28 atom%. and B-rich nonmagnetic phase increases, the residual magnetic flux density Br decreases, and (BH)
max is less than 20MGOe, making it impossible to obtain an excellent permanent magnet. Therefore, B is 2 atom% to 28 atom%
The range shall be . Fe is an essential element in the new above-mentioned permanent magnets.If it is less than 65 at%, the residual magnetic flux density Br decreases, and if it exceeds 80 at%, high coercive force cannot be obtained. The content is atomic%. Further, in the permanent magnet material according to the present invention,
Replacing a portion of Fe with Co can improve the temperature characteristics of the resulting magnet without impairing its magnetic properties, but if the amount of Co substitution exceeds 30% of Fe, the magnetic properties will be adversely affected. is undesirable because it deteriorates
Further, the preferred amount of substitution is 20% or less. Further, the permanent magnet according to the present invention has R, B,
In addition to Fe, the presence of unavoidable impurities in industrial production can be tolerated, but a portion of B can be replaced with 4.0 atomic % or less of C,
Production of permanent magnets by substituting at least one of 3.5 atomic % or less P, 2.5 atomic % or less S, 1.5 atomic % or less Cu, and 5 atomic % or less Si, in a total amount of 5.0 atomic % or less. It is possible to improve performance and reduce costs. In addition, at least one of the following additional elements is
It can be added to Fe-BR-based permanent magnets because it has the effect of improving the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing costs. However, addition to improve coercive force causes a decrease in residual magnetic flux density (Br), so it is desirable to add in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets. 5.0 atomic% or less Al3.0 atomic% or less Ti, 5.5 atomic% or less V, 4.5 atomic% or less Cr, 5.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.0 atomic% or less Nb, 7.0 Ta less than 5.2 atom%, Mo less than 5.0 atom%, W less than 5.0 atom%, Sb less than 1.0 atom%, Ge less than 3.5 atom%, Sn less than 1.5 atom%, Zr less than 3.3 atom%, 6.0 atom % or less Ni, 1.1 atomic % or less Zn, 3.3 atomic % or less Hf. However, if two or more types are contained, the maximum content is the maximum value of the added elements. By containing atomic percent or less of a material having the following, it becomes possible to increase the coercive force of the permanent magnet. Particularly preferable additive elements include V,
Nb, Ta, Mo, W, Cr, Al, the content is preferably a small amount, 3 at% or less is effective, and Al
is 0.1 to 3 atomic %, preferably 0.2 to 2 atomic %. It is essential that the main crystalline phase (80% or more of a specific phase) be tetragonal in order for the magnet to exhibit high magnetic properties. This magnetic phase is composed of FeBR tetragonal compound crystals, and the grain boundaries are surrounded by a nonmagnetic phase. The non-magnetic phase mainly consists of an R-rich phase, and if there is a large amount of B, a B-rich phase may also be partially present. The presence of non-magnetic phase grain boundary regions is thought to contribute to high coercive force, and is an important structural feature of the alloy of the present invention, and even a small amount is effective; for example, 1 vol% or more is a sufficient amount. be. Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet. In the raw material powder, TiB 2 , BN, ZrB 2 , ZrB 12 ,
HfB 2 , VB 2 , NbB, NbB 2 , TaB, TaB 2 ,
At least one of borides such as CrB 2 , MoB, MoB 2 , Mo 2 B, WB, W 2 B, etc. in an amount of 0.05 at % to 3.0
By containing atomic percent, growth of crystal grains during sintering of the magnet body can be suppressed. The permanent magnet according to the present invention exhibits a coercive force iHc≧10kOe, a residual magnetic flux density Br>9kG,
The maximum energy product (BH)max shows (BH)max≧25MGOe in the most preferred composition range,
The maximum value reaches over 50MGOe. Further, the composition of the permanent magnet material of this invention is R11
atomic% ~ 16 atomic%, B2 atomic% ~ 15 atomic%, Co45
In the case of atomic% or less Fe balance, the obtained magnetically anisotropic permanent magnet alloy exhibits magnetic properties equivalent to the above magnet alloy, and the temperature coefficient of residual magnetic flux density is 0.1%/
℃ or less, and excellent characteristics can be obtained. In addition, when the main component of R in the alloy powder for permanent magnets of this invention is light rare earth metals mainly consisting of Nb and Pr, R12 atomic % to 15 atomic %,
B5.5 atomic% to 10 atomic%, when Fe is the main component,
Alternatively, when some of the Fe is replaced with 20% or less Co, magnetically anisotropic sintered magnets exhibit the best magnetic properties, especially when the light rare earth metal is Nd
In this case, the maximum value reaches 50MGOe or more. Function This invention is capable of increasing the density by subjecting a primary sintered body of a specific composition to hot isostatic pressing under the aforementioned specific conditions to improve the magnetic properties of Fe-B-R permanent magnet materials. It is possible to achieve almost 100% of the theoretical density, resulting in improved magnetic and mechanical properties.Furthermore, because the magnet material is made highly dense and non-porous, the oxidation-resistant surface treatment works effectively. As a result, a high-performance sintered permanent magnet material having excellent oxidation resistance can be obtained. Example In terms of atomic percentage, alloy powders (invention Nos. 1 to 4) with an average particle size of 4 μm consisting of the composition shown in Table 1,
After pressure molding at a pressure of 2 ton/cm 2 in a magnetic field of 10 kOe, it was molded at 1060°C in a vacuum of 1 × 10 -7 Torr.
A primary sintered body having a density of 96% of the theoretical density was obtained by sintering for a period of time, and this primary sintered body was embedded in metal titanium powder in a closed container, and Ar gas was used as a pressure medium.
Hot isostatic pressing was performed at a temperature of 600°C and a pressure of 900 atm. After aging at 660° C. for 1 hour, magnetic properties and mechanical properties were measured. The results are shown in Table 2. For comparison, the temperature of the primary sintered body was 800℃.
Hot isostatic pressing treatment at a pressure of 900 atm and 600℃, 1
Comparative magnet materials (Nos. 5 to 8) were manufactured using the above manufacturing method except that they were subjected to a time aging treatment, and their magnetic properties and mechanical properties were similarly measured, and the results are shown in Table 2.
【表】【table】
【表】【table】
【表】
発明の効果
実施例の第1表及び第2表の結果から明らかな
ように、この発明の製造方法による永久磁石材料
は、熱間静水圧プレス処理を施さない比較磁石材
料に対して、磁気特性及び機械的性質が向上して
いることが分る。[Table] Effects of the Invention As is clear from the results in Tables 1 and 2 of Examples, the permanent magnet material produced by the manufacturing method of the present invention has a higher It can be seen that the magnetic properties and mechanical properties are improved.
Claims (1)
Ho,Tbのうち少なくとも1種あるいはさらに、
La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Y
のうち少なくとも1種からなる)、B2原子%〜28
原子%、Fe65原子%〜80原子%を主成分とする
焼結永久磁石材料の製造方法において、 一次焼結体を密封容器内で、不活性ガスを圧力
媒体として、温度400℃〜700℃、圧力500気圧〜
1300気圧にて熱間静水圧プレス処理を施すことを
特徴とする高性能焼結永久磁石材料の製造方法。 2 R10原子%〜30原子%(RはNd,Pr,Dy,
Ho,Tbのうち少なくとも1種あるいはさらに、
La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Y
のうち少なくとも1種からなる)、B2原子%〜28
原子%、Fe65原子%〜80原子%を主成分とする
焼結永久磁石材料の製造方法において、 一次焼結体を700℃〜1000℃にて時効処理した
後、密封容器内で不活性ガスを圧力媒体として、
温度400℃〜700℃、圧力500気圧〜1300気圧にて
熱間静水圧プレス処理を施すことを特徴とする高
性能焼結永久磁石材料の製造方法。[Claims] 1 R 10 atomic % to 30 atomic % (R is Nd, Pr, Dy,
At least one of Ho, Tb or further,
La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y
), B2 atomic% ~ 28
In a method for producing a sintered permanent magnet material whose main component is Fe65 to 80 atom%, the primary sintered body is placed in a sealed container at a temperature of 400℃ to 700℃ using an inert gas as a pressure medium. Pressure 500 atm ~
A method for producing a high-performance sintered permanent magnet material, which is characterized by hot isostatic pressing at 1300 atm. 2 R10 atomic% to 30 atomic% (R is Nd, Pr, Dy,
At least one of Ho, Tb or further,
La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y
), B2 atomic% ~ 28
In the method for manufacturing sintered permanent magnet materials whose main components are Fe65 to 80 at%, the primary sintered body is aged at 700 to 1000 degrees Celsius, and then an inert gas is blown in a sealed container. As a pressure medium,
A method for producing a high-performance sintered permanent magnet material, characterized by performing hot isostatic pressing at a temperature of 400°C to 700°C and a pressure of 500 to 1300 atmospheres.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60157362A JPS6217149A (en) | 1985-07-16 | 1985-07-16 | Manufacture of sintered permanent magnet material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60157362A JPS6217149A (en) | 1985-07-16 | 1985-07-16 | Manufacture of sintered permanent magnet material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6217149A JPS6217149A (en) | 1987-01-26 |
JPH0518895B2 true JPH0518895B2 (en) | 1993-03-15 |
Family
ID=15647997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60157362A Granted JPS6217149A (en) | 1985-07-16 | 1985-07-16 | Manufacture of sintered permanent magnet material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6217149A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6350444A (en) * | 1986-08-20 | 1988-03-03 | Mitsubishi Metal Corp | Manufacture of nd-fe-b sintered alloy magnet |
JPS6448405A (en) * | 1987-08-19 | 1989-02-22 | Mitsubishi Metal Corp | Manufacture of rare earth-iron-boron magnet |
JP2643267B2 (en) * | 1988-03-29 | 1997-08-20 | 大同特殊鋼株式会社 | Method for producing R-Fe-B anisotropic magnet |
JPH023212A (en) * | 1988-06-20 | 1990-01-08 | Seiko Epson Corp | Permanent magnet |
JPH023208A (en) * | 1988-06-20 | 1990-01-08 | Seiko Epson Corp | Permanent magnet |
US5080731A (en) * | 1988-08-19 | 1992-01-14 | Hitachi Metals, Ltd. | Highly oriented permanent magnet and process for producing the same |
WO1992013353A1 (en) * | 1991-01-28 | 1992-08-06 | Mitsubishi Materials Corporation | Anisotropic rare earth-iron-boron and rare earth-iron-cobalt-boron magnet |
JP3092672B2 (en) * | 1991-01-30 | 2000-09-25 | 三菱マテリアル株式会社 | Rare earth-Fe-Co-B anisotropic magnet |
CN106816249B (en) * | 2017-01-06 | 2019-09-03 | 北京工业大学 | A kind of preparation method of the nanocrystalline permanent magnet of cheap light rare earth lanthanum ferrocerium boron |
CN106847457A (en) * | 2017-01-09 | 2017-06-13 | 浙江大学 | A kind of rare-earth permanent magnet and the method for preparing rare-earth permanent magnet |
CN111161949B (en) * | 2019-12-31 | 2022-02-11 | 浙江大学 | YCe co-doped nanocrystalline rare earth permanent magnet and preparation method thereof |
-
1985
- 1985-07-16 JP JP60157362A patent/JPS6217149A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6217149A (en) | 1987-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0510806B2 (en) | ||
JPH0374012B2 (en) | ||
JPH0510807B2 (en) | ||
JPH0518895B2 (en) | ||
JPH0316761B2 (en) | ||
JP3540438B2 (en) | Magnet and manufacturing method thereof | |
JPH01219143A (en) | Sintered permanent magnet material and its production | |
JPH0616445B2 (en) | Permanent magnet material and manufacturing method thereof | |
JPS63313807A (en) | Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof | |
JPH045740B2 (en) | ||
JPH0445573B2 (en) | ||
JP2610798B2 (en) | Permanent magnet material | |
JPH0561345B2 (en) | ||
JPH0422008B2 (en) | ||
JPH045739B2 (en) | ||
JPH0536495B2 (en) | ||
KR100204344B1 (en) | Rare-earth-element-fe-co-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom | |
JPH0422006B2 (en) | ||
JPH0475303B2 (en) | ||
JP2720039B2 (en) | Rare earth magnet material with excellent corrosion resistance | |
JPS6247455A (en) | Permanent magnet material having high performance | |
JPH0560241B2 (en) | ||
JPH0536494B2 (en) | ||
JPS6250437A (en) | Permanent magnet material superior in corrosion resistance | |
JP2000252108A (en) | Rare-earth sintered magnet and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |