JPS6247455A - Permanent magnet material having high performance - Google Patents

Permanent magnet material having high performance

Info

Publication number
JPS6247455A
JPS6247455A JP60188761A JP18876185A JPS6247455A JP S6247455 A JPS6247455 A JP S6247455A JP 60188761 A JP60188761 A JP 60188761A JP 18876185 A JP18876185 A JP 18876185A JP S6247455 A JPS6247455 A JP S6247455A
Authority
JP
Japan
Prior art keywords
phase
atomic
permanent magnet
less
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60188761A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamamoto
日登志 山本
Satoru Hirozawa
哲 広沢
Yutaka Matsuura
裕 松浦
Setsuo Fujimura
藤村 節夫
Masato Sagawa
佐川 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60188761A priority Critical patent/JPS6247455A/en
Publication of JPS6247455A publication Critical patent/JPS6247455A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide ferromagnetism to an Fe-B-R type permanent magnet material by making the C and O2 contents in the material as low as possible, forming tetragonal principal phases of a specified grain size having body- centered cubic lattices of a specified uniform thickness in the surface part and holding a nonmagnetic phase between the principal phases. CONSTITUTION:The composition of a permanent magnet material is composed of 12-15 atomic% R (R is Nd and/or Pr and <=1 atomic% heavy rare earth element may be substituted for part of Nd and/or Pr), 5.5-8 atomic% B, <2,000ppm O2, <800ppm C and the balance Fe with inevitable impurities. The tetragonal principal phases of <=10mum grain size having body-centered cubic lattices of 5-500Angstrom uniform thickness are formed in the surface part of the material, and a nonmagnetic phase consisting of an R-rich metallic phase, a B-rich metallic phase and an oxide phase is held between the principal phases. The resulting permanent magnet material has sich high performande as >=40 MGO8 (BH)max.

Description

【発明の詳細な説明】 利用産業分野 この発明は、Fa−B−R系永久磁石材料の改良に係り
、最大エネルギー積が (BH)maX≧45HGOeの高性fJIFe  B
  R系永久磁石材料に関する。
Detailed Description of the Invention Field of Application This invention relates to the improvement of Fa-B-R permanent magnet materials, including high-performance fJIFe B with a maximum energy product of (BH)maX≧45HGOe.
This invention relates to R-based permanent magnet materials.

背景技術 現在の代表的な永久!1nEI材料は、アルニコ、ハー
ドフェライトおよび希土類コバルトla′EJである。
Background technology Current representative permanent! 1nEI materials are alnico, hard ferrite and rare earth cobalt la'EJ.

このうち希土類コバルト磁石は、磁気特性が格段にすぐ
れているため、多種用途に利用されているが、主成分の
Sm、Coは共に資源的に不足し、かつ高価であり、今
後長期間にわたって、安定して多量に供給されることは
困難である。そのため、磁気特性がすぐれ、かつ安価で
、さらに資源的に豊富で今後の安定供給が可能な組成元
素からなる永久磁石材料が切望されてきた。
Among these, rare earth cobalt magnets have extremely excellent magnetic properties and are used for a variety of purposes, but their main components, Sm and Co, are both scarce and expensive, and will continue to be used for a long time. It is difficult to stably supply large amounts of it. Therefore, there has been a strong desire for a permanent magnet material that has excellent magnetic properties, is inexpensive, and is composed of constituent elements that are abundant in resources and can be stably supplied in the future.

本出願人は先に、高価なSmやらを含有しない新しい高
性能永久磁石としてFB−B−R系(RはYを含む希土
類元素のうち少なくとも1種)永久磁石を提案した(特
開昭59−46008号、特開昭59−64733号、
特開昭59.−89401号、特開昭59−13210
4号)。
The present applicant previously proposed an FB-B-R type permanent magnet (R is at least one rare earth element including Y) as a new high-performance permanent magnet that does not contain expensive Sm (Japanese Patent Application Laid-Open No. 59-1993). -46008, JP-A-59-64733,
Japanese Patent Publication No. 1983. No.-89401, JP-A-59-13210
No. 4).

この永久磁石は、Rとして陽や円を中心とする資源的に
豊富な軽希土類を用い、Feを主成分として15MGO
8以上の極めて高いエネルギー積を示す、すぐれた永久
磁石である。
This permanent magnet uses resource-rich light rare earths mainly positive and circular as R, and has 15MGO with Fe as the main component.
It is an excellent permanent magnet that exhibits an extremely high energy product of 8 or more.

このFB−B−R系永久1a5に、なお一層の高磁石特
性を与える組成として、R(Rはm、 Pr、き。
The composition that gives this FB-BR permanent 1a5 even higher magnetic properties is R (R is m, Pr, ki).

)1o、Tbのうち少なくとも1種あるいはさらに、i
) 1o, at least one of Tb, or in addition, i
.

Ce、 Sm、 CcJ、 Er、 Eu、丁m、 Y
b、 Li、 Yのうち少なくとも1種からなる)10
.0原子%〜30原子%、B2原子%〜28原子%、F
e60原子%〜83原子%を主成分とし、主相が正方晶
からなる永久磁石材料を提案した。この永久磁石は、結
晶構造的には、R2F1114 B正方晶の磁性相が5
0vo1%以上、Rリッチ金属相、Bリッチ金属相及び
R2O:l相からなる非磁性相が50 vo1%以下か
らなり、13rは10.5kG以上、HCは10 ko
e以上、25MGOs以上の極めて高いエネルギー積を
示す、すぐれた永久磁石であり、 (BH)maXは4
0)IGOeに達する。
Ce, Sm, CcJ, Er, Eu, Dingm, Y
consisting of at least one of b, Li, Y)10
.. 0 atom% to 30 atom%, B2 atom% to 28 atom%, F
We have proposed a permanent magnet material whose main component is 60 atomic % to 83 atomic % e and whose main phase is tetragonal. In terms of crystal structure, this permanent magnet has a R2F1114B tetragonal magnetic phase of 5
0vo1% or more, non-magnetic phase consisting of R-rich metal phase, B-rich metal phase and R2O:1 phase consists of 50vo1% or less, 13r is 10.5kG or more, HC is 10ko
It is an excellent permanent magnet that exhibits an extremely high energy product of more than e and 25MGOs, and (BH)maX is 4
0) Reach IGOe.

このように、従来とは比較できないほど、高性能な永久
磁石であるが、今日の機器の小型高性能化の要求には、
ざらに、(BH)maxが408GOe以上の高性能永
久ia5材料が求められている。
In this way, permanent magnets have a high performance that cannot be compared with conventional magnets, but in order to meet the demands for smaller size and higher performance in today's equipment,
In general, a high performance permanent IA5 material with (BH)max of 408 GOe or more is required.

発明の目的 この発明は、Fa−B−R系永久磁石材料の磁石特性の
向上、特に最大エネルギー積の改善向上を計ることを目
的とし、 (BH)max≧40)IGOeの高性能が
得られるFB−B−R系永久磁石材料を目的としている
Purpose of the Invention The present invention aims to improve the magnetic properties of Fa-B-R permanent magnet materials, particularly the maximum energy product, so that (BHmax≧40) high performance of IGOe can be obtained. It is aimed at FB-BR-based permanent magnet materials.

発明の構成と効果 発明者らは、Fa  B  R系永久磁石材料の磁石特
性、特に(BH)ma:xの改善向上を計るため、組成
範囲及び磁性相と非磁性相の11石特性との相関関係に
つき、特にFe  B  I’!J焼結Ia石体につい
て種々検討した結果、特定表層部を有する正方晶の磁性
相とその間に介在する非磁性相との特定相関係が、 (
BH)max等に、特に大きく関与していることを知見
した。
Structure and Effects of the Invention In order to improve the magnetic properties of FaBR permanent magnet materials, especially (BH)ma: Regarding the correlation, especially Fe B I'! As a result of various studies on the J sintered Ia stone body, the specific phase relationship between the tetragonal magnetic phase having a specific surface layer and the non-magnetic phase interposed therebetween is as follows:
BH) max, etc., were found to be particularly significantly involved.

すなわち、Fe  B  Nd焼結磁石体において、高
保磁力は、R2Fe+4B正方晶の磁性相の表層部にあ
る体心立方晶相の存在が不可欠である。また、Rリッチ
金属相、Bリッチ金属相及びR2O3相からなる非磁性
相の量が多くなると、Brの低下をHC来するため、非
磁性相が存在しないことが有効の如く考えられるが、透
過電子顕微鏡による調査結果では、この非磁性相は、焼
結磁石体の結晶粒界面で保磁力発生に重要な作用を及ぼ
し、かつ結晶粒界の形成にも大きく関5しており、Fe
  B−Nd焼結磁石体おいて、非磁性相が存在しなC
ブれば、焼結磁石体にFBが析出して、保磁力の急激な
低下をもたらす。しかし、特定厚みの体心立方晶相の表
層部を有するR2F814 B正方晶の磁性相と、Rリ
ッチ金属相、Bリッチ金属相及びR2O3相からなる非
磁性相との特定相組織を満足すると、焼結磁石体の磁石
特性、特に(BH)maxが458GOeを越える特性
が得られることを知見した。
That is, in the FeBNd sintered magnet, the presence of a body-centered cubic phase in the surface layer of the R2Fe+4B tetragonal magnetic phase is essential for high coercive force. Furthermore, if the amount of non-magnetic phase consisting of R-rich metal phase, B-rich metal phase and R2O3 phase increases, the Br decreases due to HC, so it is thought that the absence of non-magnetic phase is effective. According to the results of an investigation using an electron microscope, this nonmagnetic phase has an important effect on the generation of coercive force at the grain boundaries of the sintered magnet, and is also greatly involved in the formation of grain boundaries.
In the B-Nd sintered magnet body, there is no non-magnetic phase C
If this occurs, FB will precipitate on the sintered magnet body, resulting in a rapid decrease in coercive force. However, if the specific phase structure of an R2F814B tetragonal magnetic phase having a surface layer of a body-centered cubic phase with a specific thickness and a nonmagnetic phase consisting of an R-rich metal phase, a B-rich metal phase, and an R2O3 phase is satisfied, It has been found that the magnetic properties of the sintered magnet body, especially the properties in which (BH)max exceeds 458 GOe, can be obtained.

また、Fe、B、Rの特定範囲において、含有酸素量を
減少させると磁石特性の改善に有効であり、C量を低減
すると磁石の耐食性が向上することを知見したが、含有
酸素量の低減は焼結時に結晶粒の成長を増進させるため
、特性劣化を招来する問題があり、これに対して、焼結
時の結晶粒の生長を抑制するのに、硼化物の添加が有効
であり、Fa。
In addition, we found that reducing the amount of oxygen contained within a specific range of Fe, B, and R is effective in improving the magnet properties, and reducing the amount of C improves the corrosion resistance of the magnet. Because it promotes the growth of crystal grains during sintering, there is a problem that it causes property deterioration.In response to this problem, adding boride is effective in suppressing the growth of crystal grains during sintering. Fa.

B、R,I化物e ”eの特定範囲並びに磁性相と非磁
性相との特定相関係を満足すると、(BH)maxの最
大値が50MGOs以上に達することを知見した。
It has been found that when a specific range of B, R, I compounds e''e and a specific phase relationship between the magnetic phase and the non-magnetic phase are satisfied, the maximum value of (BH)max reaches 50 MGOs or more.

すなわち、この発明は、 R12,0原子%〜15.0原子%〜15.0原子%(
RはMまたは門の1種または2種、あるいはさらにその
1部を1原子%以下のDV、丁す、 Gd、 Ho、 
Er、丁m、 ybの重希上類元素のうち少なくとも1
種で置換できる)、B5.5原子%〜8.0原子%、 0220001)l)m以下、C800ppm以下、必
要に応シテ、TL、 Zr、 HP、 V、 Nb、 
Ta、 Mo、 W。
That is, this invention provides R12,0 at% to 15.0 at% to 15.0 at% (
R is M or one or two of the phylums, or a part thereof with 1 atomic % or less of DV, Di, Gd, Ho,
At least one of the heavy rarefied elements Er, chlorine, and yb
), B5.5 atomic% to 8.0 atomic%, 0220001) l) m or less, C800 ppm or less, as necessary, TL, Zr, HP, V, Nb,
Ta, Mo, W.

Nのうち少なくとも1種を2原子%以下、残部Fθ及び
不可避的不純物よりなり、表面部に5Å〜500Aの均
一厚みの体心立方晶相を有する粒径10.OIJm以下
の正方晶からなる主相と、主相聞のRリッチ金属相、B
リッチ金属相及び酸化物相からなる非磁性相を有し、 最大エネルギー積が(BH)max≧45)IGOsで
あることを特徴とする高性能永久磁石材料である。
The grain size is 10.2 atomic % or less of at least one kind of N, the balance is Fθ and unavoidable impurities, and the surface portion has a body-centered cubic phase with a uniform thickness of 5 Å to 500 Å. A main phase consisting of tetragonal crystals of OIJm or less, an R-rich metal phase between the main phases, and B
It is a high-performance permanent magnetic material characterized by having a non-magnetic phase consisting of a rich metal phase and an oxide phase, and having a maximum energy product (BHmax≧45) of IGOs.

この発明において、 R12,5原子%〜13.5原子%(Rは動または門の
1種または2種、あるいはさらにその1部を1原子%以
下の重希上類元素で置換できる)、36.0原子%〜7
.5原子%、 0215001)I)m以下、c  6ooppm以下
、残部Fθ及び不可避的不純物よりなり、表面部に80
Å〜400人の均一厚みの体心立方晶相を有する粒径8
.0項以下の正方晶からなる主相と、主相間にRリッチ
金属相、Bリッチ金属相及び酸化物相からなる非磁性相
を介在させる特定相関係を満足すると、得られる永久磁
石材料の(B H)maxは468GOa以上、最高5
2)IGOa以上にも達する。
In this invention, R12.5 atomic% to 13.5 atomic% (R can be substituted with one or two moieties or groups, or a part thereof can be replaced with 1 atomic% or less of a heavy rare upper element), 36 .0 atomic%~7
.. 5 at.
Grain size 8 with body-centered cubic phase of uniform thickness of Å ~ 400
.. When a specific phase relationship is satisfied in which a main phase consisting of a tetragonal crystal with a term of 0 or less and a nonmagnetic phase consisting of an R-rich metal phase, a B-rich metal phase, and an oxide phase are interposed between the main phases, the resulting permanent magnet material ( B H) max is 468 GOa or more, maximum 5
2) Reach IGOa or higher.

また、この発明による永久磁石材お1の好ましい組成範
囲では、Feの1部を2原子%以下のTFI ZY1’
r’+f、 V 、 陽、 Ta、 Mo、 W 、 
Aftのうち少なくともコ種と置換することにより、得
られる永久磁石材料の(B I−()maXは46HG
Oe以上、最高52MGOe以上にも達し、かつすぐれ
た保磁力が得られる。
Further, in a preferred composition range of the permanent magnet material 1 according to the present invention, a part of Fe is 2 atomic % or less of TFI ZY1'
r'+f, V, positive, Ta, Mo, W,
By replacing Aft with at least these species, the obtained permanent magnet material (BI-()maX is 46HG
Oe or more, reaching a maximum of 52 MGOe or more, and an excellent coercive force can be obtained.

また、TiB2、E3N 、 ZyBz 、ZrBtz
 、HfB2、VB2 、NbB、NbB2 、TaB
、TaB2、CrB2、MoB、 MOB2 、t’b
2 B、WB、W2B等の硼化物のうち少なくとも1種
を0.05原子%〜3.0原子%、好ましくは0.10
原子%〜0.50原子%を添加すると、焼結時の結晶粒
生長を抑制し、磁石特性の向上を計ることができる。
Also, TiB2, E3N, ZyBz, ZrBtz
, HfB2, VB2, NbB, NbB2, TaB
, TaB2, CrB2, MoB, MOB2, t'b
0.05 at.% to 3.0 at.%, preferably 0.10 at.% of at least one type of boride such as 2 B, WB, W2B, etc.
Addition of from atomic % to 0.50 atomic % can suppress crystal grain growth during sintering and improve magnetic properties.

永久磁石の成分限定理由 この発明の永久磁石材料の希土類元素Rは、陶。Reasons for limiting the composition of permanent magnets The rare earth element R of the permanent magnet material of this invention is ceramic.

門、のうら少なくとも1種、あるいはさらに、Dy。At least one type of phylum, noura, or even Dy.

Tb、 Gd、 Ho、 Er、丁m、 Ybの重希上
類元素のうち少なくとも1種で置換できる。
It can be replaced with at least one of the heavy rarefied elements Tb, Gd, Ho, Er, Tb, and Yb.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミツシュメタル、ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, normally one type of R is sufficient, but in practice two types are sufficient.
A mixture of more than one species (Mitushmetal, Didim, etc.) can be used for reasons such as availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rは、このFe−BR系永久磁石IJi旧こおける、必
須元素でおって、12原子%未満では、結晶MA造がα
−鉄と同一構造の立方晶組織となるため、高磁気特性、
特に高保磁力が得られず、15原子%を越えると、Rリ
ッチな非磁性相が多くなり、保磁力は10 kos以上
でおるが、残留磁束密度Brが低下して、すぐれた特性
の永久磁石が得られない。
R is an essential element in this Fe-BR permanent magnet IJI, and if it is less than 12 atomic %, the crystal MA structure will be α
-High magnetic properties due to the same cubic crystal structure as iron
In particular, if a high coercive force cannot be obtained and the content exceeds 15 at%, the R-rich nonmagnetic phase increases, and the coercive force remains at 10 kos or more, but the residual magnetic flux density Br decreases, resulting in a permanent magnet with excellent characteristics. is not obtained.

よって、希土類元素は、12原子%〜15原子%の範囲
とする。
Therefore, the rare earth element is in the range of 12 atomic % to 15 atomic %.

Bは、Fe−BR系永久磁石にあける、必須元素であっ
て、5,5原子%未満では、焼結磁石体の保磁力及び角
型性の低下を招来し、8.0原子%を越えると、Bリッ
チな非磁性相が多くなり、残留磁束密度Brが低下し、
(BH)maXが低下してすぐれた永久磁石が得られな
い。よって、Bは、5.5原子%〜8.O[子%の範囲
とする。
B is an essential element in Fe-BR permanent magnets, and if it is less than 5.5 at%, it will cause a decrease in the coercive force and squareness of the sintered magnet, and if it exceeds 8.0 at%. , the B-rich nonmagnetic phase increases, the residual magnetic flux density Br decreases,
(BH) maX decreases and an excellent permanent magnet cannot be obtained. Therefore, B is 5.5 atomic % to 8. O[Child% range.

水系永久磁石材料に含まれる酸素は、最も酸化しやすい
希土類元素と結合して希土類酸化物となり、永久磁石中
に酸化物R2O3として残留するため好ましくなく、0
□但が2000ppmを越えると、Br、Hc及び(B
H)maXが共に低下するため、02量は2000pp
m以下とする。
Oxygen contained in the water-based permanent magnet material is undesirable because it combines with the rare earth element that is most easily oxidized to form a rare earth oxide, which remains in the permanent magnet as an oxide R2O3.
□However, if it exceeds 2000 ppm, Br, Hc and (B
H) Since both maX decreases, the amount of 02 is 2000pp
m or less.

また、含有炭素間が、800ppmを越えると、茗しい
Hc 、角型性の劣化を生じ、高磁石特性が得られず好
ましくない。
Moreover, if the content of carbon atoms exceeds 800 ppm, it is not preferable because it causes dull Hc and deterioration of squareness, making it impossible to obtain high magnetic properties.

Feは、上記系永久磁石材料において、必須元素であり
、他の必須元素及び添7][1元素の含有残余とする。
Fe is an essential element in the above-mentioned permanent magnet material, and is the remaining content of other essential elements and addition 7] [1 element.

この発明による永久磁石材料の相組織において、主相の
正方晶の表面部に5Å〜500 Aの均一厚みの体心立
方晶相を形成すると、体心立方晶相内の石壁の移動が抑
制され、保磁力が向上するが、組織内に体心立方晶相が
全く存在しないと、0.2〜0.3kOe程度の極めて
低い保磁力しか得られず、少なくも5A  の均一厚み
が必要であり、高保磁力を得るには80八〜400八厚
みが好ましく、また、500Aを越えると、保磁力が再
び低下し好ましくない。
In the phase structure of the permanent magnet material according to the present invention, when a body-centered cubic phase with a uniform thickness of 5 Å to 500 A is formed on the surface of the main tetragonal phase, movement of the stone wall within the body-centered cubic phase is suppressed. , the coercive force is improved, but if there is no body-centered cubic phase in the structure, only an extremely low coercive force of about 0.2 to 0.3 kOe can be obtained, and a uniform thickness of at least 5 A is required. In order to obtain a high coercive force, a thickness of 808 to 4008 is preferable, and if it exceeds 500 A, the coercive force decreases again, which is not preferable.

また、体心立方品の厚みが不均一であったり、体心立方
晶相近くに結晶欠陥、析出物、介在物が存在すると、磁
石特性は茗しく劣化する。また、主相間に介在するRリ
ッチ金属相、Bリッチ金属相及び酸化物からなる非磁性
相は、水系合金粉末の成型体を焼結する際に、液相が生
成して焼結体の高密度化に有効であり、ざらには焼結後
の時効処理時に、体心立方品の形成促進に有効で市る。
Furthermore, if the thickness of the body-centered cubic product is non-uniform or if crystal defects, precipitates, or inclusions are present near the body-centered cubic phase, the magnetic properties will deteriorate dramatically. In addition, the non-magnetic phase consisting of the R-rich metal phase, B-rich metal phase and oxides interposed between the main phases forms a liquid phase when sintering the molded body of the water-based alloy powder, and the sintered body becomes high. It is effective for densification, and more particularly for promoting the formation of body-centered cubic products during aging treatment after sintering.

また、R2F1314 B正方晶の磁性相と、Rリッチ
金属相、Bリッチ金属相及び酸化物からなる非磁性相と
の量比を、磁性相/非磁性相=15〜300とするのが
好ましい、これは量比が15未満では、f3rが低下し
て(BH)max≧45HGOaの特性が得られず、ま
た300を越えると焼結磁石体を得ることが非常に困難
となり、かつ焼結体内にFeが品出しやすくなり、磁石
特性の劣化を招来するためである。
Further, it is preferable that the quantitative ratio of the R2F1314 B tetragonal magnetic phase and the non-magnetic phase consisting of the R-rich metal phase, the B-rich metal phase and the oxide is set to magnetic phase/non-magnetic phase = 15 to 300. This is because when the quantity ratio is less than 15, f3r decreases and the characteristic of (BH)max≧45HGOa cannot be obtained, and when it exceeds 300, it becomes very difficult to obtain a sintered magnet body, and This is because Fe becomes easier to sell and causes deterioration of magnetic properties.

また、この発明による永久磁石材料において、Feの一
部を2原子%以下のTj、 Zr、 Hf、 V、 N
b。
Further, in the permanent magnet material according to the present invention, a part of Fe is replaced by 2 atomic % or less of Tj, Zr, Hf, V, N.
b.

Ta、 Mo、 W、 Mのうち少なくとも1種と置換
することにより、すぐれた保磁力が得られるが、置換量
が2原子%を越えるとB「の低下を(C来し好ましくな
い。
By substituting with at least one of Ta, Mo, W, and M, an excellent coercive force can be obtained, but if the amount of substitution exceeds 2 atomic %, it is undesirable because it causes a decrease in B' (C).

硼化物のうち少なくとも1種を0.05原子%〜3.0
原子%含有させると、02鑑を2000ppm以下とし
た時、磁石体の焼結時の結晶粒の成長を抑制でき、Ti
B2 、BN 、ZrB2.2JB12 、HfBz、
V B2 、NbB、 NbB2 、rag、TaB2
 、CrB2、MoB、MOB2 、Mo2 BlWB
、W2 B等の硼化物のうち少なくとも1種を添加する
のもよい。
0.05 atomic % to 3.0 at least one type of boride
When Ti is contained in atomic%, the growth of crystal grains during sintering of the magnet body can be suppressed when the 02 index is 2000 ppm or less.
B2, BN, ZrB2.2JB12, HfBz,
V B2 , NbB, NbB2 , rag, TaB2
, CrB2, MoB, MOB2, Mo2 BlWB
It is also good to add at least one type of boride such as , W2B, etc.

この硼化物のmが0.05原子%未満では、磁石体の焼
結時の結晶粒成長の抑制効果、すなわち、納品微細化効
果が得られず、また、3.0原子%を越えると、上記の
効果が飽和して3r。
If m of this boride is less than 0.05 at%, the effect of suppressing crystal grain growth during sintering of the magnet body, that is, the effect of making the product finer, cannot be obtained, and if it exceeds 3.0 at%, The above effects are saturated at 3r.

(BH)maxが急激に低下するため、0.05原子%
〜3.0原子%とする。
(BH)max decreases rapidly, so 0.05 at%
~3.0 at%.

また、この発明による永久磁石材料において、Feの一
部を15原子%以下の%で置換することは、得られる磁
石の磁気特性を損うことなく、温度特性を改善すること
ができる。
Further, in the permanent magnet material according to the present invention, replacing a portion of Fe with 15 atomic % or less can improve the temperature characteristics without impairing the magnetic properties of the resulting magnet.

この発明による永久ia石材料は、鋳塊粉砕法あるいは
Ca還元拡散法により得られた合金粉末を原料として製
造されるが、合金粉末中に含有される02、C,Ca、
特にozffiを極力少なくする必要があり、永久rJ
i1石材料の製造全工程において、酸化しないよう、不
活性雰囲気中で保管、製造することにより、高性能が確
保される。
The permanent IA stone material according to the present invention is manufactured using an alloy powder obtained by an ingot crushing method or a Ca reduction diffusion method as a raw material.
In particular, it is necessary to reduce ozffi as much as possible, and permanent rJ
High performance is ensured by storing and manufacturing i1 stone materials in an inert atmosphere to prevent oxidation during the entire manufacturing process.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and can be press-molded in a non-magnetic field to obtain a magnetically isotropic magnet.

実施例 u訂 出発原料として、純度99.9%の電解鉄、フェロボロ
ン合金、純度99.7%以上の陶金属を使用し、これら
を配合後、Ar雰囲気中で、高周波溶解し、その後水冷
銅鋳型に鋳造し、13. ONd 6.5 B Bo、
 5Feなる組成のtohg鋳則を得た。
Example u version Electrolytic iron with a purity of 99.9%, ferroboron alloy, and ceramic metal with a purity of 99.7% or more were used as starting materials. After mixing these, they were high-frequency melted in an Ar atmosphere, and then water-cooled with copper. Cast into a mold, 13. ONd 6.5 B Bo,
A tohg casting rule with a composition of 5Fe was obtained.

その後この鋳塊を、Ar雰囲気中にて、スタンプミルに
より粗粉砕し、次にボールミルにより微粉砕し、平均粒
度1.674mの@粉末を冑た。
Thereafter, this ingot was coarsely pulverized in an Ar atmosphere using a stamp mill, and then finely pulverized using a ball mill to obtain powder with an average particle size of 1.674 m.

得られたNd  B −Fe合金粉末を酸化しないよう
に保管し、その後Ar雰囲気中で、各微粉末を金型に挿
入し、20.0 kOeの磁界中で配向し、磁界に垂直
方向に、1.5 tJの圧力で成形した。
The obtained NdB-Fe alloy powder was stored so as not to oxidize, and then each fine powder was inserted into a mold in an Ar atmosphere, oriented in a magnetic field of 20.0 kOe, and perpendicular to the magnetic field. Molding was carried out at a pressure of 1.5 tJ.

冑られた10mmX 15+y+mX20tnm寸法の
成形体を、1100°C,1時間、 Ar雰囲気中、の
条件で焼結し、ざらにAr中で、800℃、1.5時間
と6008C,1,5時間の2段時効処理を施して磁石
化した。
The molded body with dimensions of 10 mm x 15 + y + m x 20 tnm was sintered at 1100°C for 1 hour in an Ar atmosphere, and then roughly sintered in Ar at 800°C for 1.5 hours and at 6008C for 1.5 hours. It was subjected to two-stage aging treatment and turned into a magnet.

得られた焼結磁石体の組成、磁石特性及び耐食性を測定
し、その結果を第1表に示す。耐食性は、温度70℃X
湿度95%xlo00時間の加速テストを行ない、酸化
増量(ppm )で評価した。
The composition, magnetic properties, and corrosion resistance of the obtained sintered magnet body were measured, and the results are shown in Table 1. Corrosion resistance is at a temperature of 70℃
An accelerated test was conducted at a humidity of 95% x lo 00 hours, and the weight gain by oxidation (ppm) was evaluated.

また、第1図にこの発明による永久磁石材料の電子顕微
鏡組織写真(倍率10万倍)を示す。写真において、(
1)は主相、(2)は体心立方品、(3)はMリッチ相
である。
Further, FIG. 1 shows an electron micrograph (magnification: 100,000 times) of the structure of the permanent magnet material according to the present invention. In the photo, (
1) is the main phase, (2) is the body-centered cubic product, and (3) is the M-rich phase.

比較のため、出発原料として、純度99,9%の電解鉄
、フェロボロン合金、純度99.7%以上のM金属を使
用し、これらを配合後、Ar雰囲気中で、高周波溶解し
、その後水冷銅鋳型に鋳造し、16.5Nd9、 OB
 74.5Feなる組成の10k(IU塊を1qた。
For comparison, electrolytic iron with a purity of 99.9%, ferroboron alloy, and M metal with a purity of 99.7% or more were used as starting materials. After blending these, they were high-frequency melted in an Ar atmosphere, and then water-cooled copper Cast in a mold, 16.5Nd9, OB
1q of 10k (IU) of composition 74.5Fe was collected.

その後この鋳塊を、大気中にて、スタンプミルにより粗
粉砕し、次にボールミルにより微粉砕し、平均粒度1.
8μmの微粉末を冑た。
Thereafter, this ingot was coarsely ground in the atmosphere using a stamp mill, and then finely ground using a ball mill, with an average particle size of 1.
A fine powder of 8 μm was removed.

その後大気中で、各微粉末を金型に挿入し、20.0 
koeの磁界中で配向し、磁界に垂直方向に、1.5j
4の圧力で成形した。
After that, each fine powder was inserted into a mold in the atmosphere, and the
koe oriented in the magnetic field and perpendicular to the magnetic field, 1.5j
It was molded at a pressure of 4.

得られた10mmX 15mmX20+r+m寸法の成
形体を、1120°C,2時間、 Ar雰囲気中、の条
件で焼結し、ざらにA、中で、800’C,1,5時間
と600℃、1.5時間の2段時効処理を施してF!1
15化した。
The obtained molded body with dimensions of 10 mm x 15 mm x 20+r+m was sintered at 1120°C for 2 hours in an Ar atmosphere, and then sintered at 800°C for 1.5 hours and at 600°C for 1.5 hours. After 5 hours of two-stage aging treatment, F! 1
It became 15.

得られた焼結磁石体の組成、磁石特性及び耐食性を測定
し、その結果を第1表に示す。耐食性は、温度70’C
X湿度95%xlooo時間の加速テストを行ない、酸
化増量(ppm )で評価した。
The composition, magnetic properties, and corrosion resistance of the obtained sintered magnet body were measured, and the results are shown in Table 1. Corrosion resistance is at a temperature of 70'C
An accelerated test of x humidity 95% x looo time was conducted and evaluation was made in terms of oxidation weight gain (ppm).

また、第2図に比較例永久磁石材料の電子顕微鏡組織写
真(倍率5万i′8)を示す。
Further, FIG. 2 shows an electron micrograph (magnification: 50,000 i'8) of the structure of the comparative permanent magnet material.

叉施努2 出発原料として、純度99.9%の電解鉄、フェロボロ
ン合金、純度99.7%以上の陶金属、〜金属、及びフ
ェロニオブを使用し、これらを配合後、Ar雰囲気中で
、高周波溶解し、その後水冷銅鋳型に鋳造し、13.0
NdO,25Dv 6.5F30.25 N080.0
Feなる組成のiokg鋳塊を得た。
As starting materials, electrolytic iron with a purity of 99.9%, ferroboron alloy, ceramic metal with a purity of 99.7% or more, metals, and ferroniobium are used as starting materials. After blending these, high-frequency melted and then cast into a water-cooled copper mold, 13.0
NdO, 25Dv 6.5F30.25 N080.0
An iokg ingot having a composition of Fe was obtained.

その後この鋳塊を、純度99.999%の高純度Ar雰
囲気中にて、スタンプミルにより粗粉砕し、次にボール
ミルによる微粉砕し、平均粒度1.3μmの微粉末を得
た。
Thereafter, this ingot was coarsely pulverized by a stamp mill in a high-purity Ar atmosphere with a purity of 99.999%, and then finely pulverized by a ball mill to obtain a fine powder with an average particle size of 1.3 μm.

得られたNd  Oy  B −Nb  Fe合金粉末
を酸化しないように保管し、その後Ar雰囲気中で、各
微粉末を金型に挿入し、20.0kOeの磁界中で配向
し、磁界に垂直方向に、1.5iJの圧力で成形した。
The obtained Nd Oy B -Nb Fe alloy powder was stored so as not to be oxidized, and then each fine powder was inserted into a mold in an Ar atmosphere, oriented in a magnetic field of 20.0 kOe, and then perpendicular to the magnetic field. , 1.5 iJ pressure.

得られた10mmX 15mmX 20mm寸法の成形
体を、1100℃、2時間、 Ar雰囲気中、の条件で
焼結し、さらにAr中で、800°C,2時間と600
°Q、  2時間の2段時効処理を施して磁石化した。
The obtained compact with dimensions of 10 mm x 15 mm x 20 mm was sintered at 1100°C for 2 hours in an Ar atmosphere, and then sintered at 800°C for 2 hours and 600°C in Ar.
°Q, Two-stage aging treatment for 2 hours was performed to form a magnet.

得られた焼結磁石体の組成、f!i石特性及び耐食性を
測定し、その結果を第2表に示す。耐食性は、温度70
’CX湿度95%x1000時間の加速テス1〜を行な
い、酸化増ffi(ppm)で評価した。
The composition of the obtained sintered magnet body, f! The stone properties and corrosion resistance were measured and the results are shown in Table 2. Corrosion resistance at temperature 70
'CX humidity 95% x 1000 hours acceleration test 1 ~ was conducted and oxidation gain ffi (ppm) was evaluated.

また、得られた焼結m石体の顕微鏡組織は第1図のもの
と同様組織であった。
The microscopic structure of the obtained sintered stone body was similar to that in FIG.

つぎに、比較のため、上記条件で製造した同一組成の鋳
塊を、99%Ar雰囲気中で粉砕する以外は全く同一条
件で、微粉砕、成形、焼結2時効処理して磁石化し、得
られた焼結磁石体の組成、11石特性及び耐食性を測定
し、その結果を第2表に示す。
Next, for comparison, an ingot of the same composition produced under the above conditions was subjected to fine pulverization, molding, sintering and two aging treatments under exactly the same conditions except that it was pulverized in a 99% Ar atmosphere, and magnetized. The composition, 11-stone properties, and corrosion resistance of the sintered magnet bodies were measured, and the results are shown in Table 2.

第1表 第2表Table 1 Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による永久1a5材料の電子顕微鏡組
織写真(倍率10万倍)でおり、第2図は比較永久磁石
材料の電子顕微鏡組織写真(倍率5万倍)である。 出願人  住友特殊金属株式会社 1 ’ 1・dll
FIG. 1 is an electron micrograph (magnification: 100,000 times) of the permanent 1a5 material according to the present invention, and FIG. 2 is an electron micrograph (magnification: 50,000 times) of a comparative permanent magnet material. Applicant: Sumitomo Special Metals Co., Ltd. 1' 1・dll

Claims (1)

【特許請求の範囲】 1 R12.0原子%〜15.0原子%(RはNdまたはP
rの1種または2種、あるいはさらにその1部を1原子
%以下の重希上類元素で置換できる)、 B5.5原子%〜8.0原子%、 O_22000ppm以下、C800ppm以下、残部
Fe及び不可避的不純物よりなり、 表面部に5Å〜500Åの均一厚みの体心立方晶相を有
する粒径10.0μm以下の正方晶からなる主相と、主
相間のRリッチ金属相、Bリッチ金属相及び酸化物相か
らなる非磁性相を有することを特徴とする高性能永久磁
石材料。 2 R12.0原子%〜15.0原子%(RはNdまたはP
rの1種または2種、あるいはさらにその1部を1原子
%以下の重希上類元素で置換できる)、 B5.5原子%〜8.0原子%、 Ti、Zr、Hf、V、Nb、Ta、Mo、W、Alの
うち少なくとも1種を2原子%以下、 O_22000ppm以下、C800ppm以下、残部
Fe及び不可避的不純物よりなり、 表面部に5Å〜500Åの均一厚みの体心立方晶相を有
する粒径10.0μm以下の正方晶からなる主相と、主
相間のRリッチ金属相、Bリッチ金属相及び酸化物相か
らなる非磁性相を有することを特徴とする高性能永久磁
石材料。
[Claims] 1 R12.0 atomic % to 15.0 atomic % (R is Nd or P
one or two types of r, or a part thereof can be substituted with 1 at% or less of a heavy rare upper element), B5.5 at% to 8.0 at%, O_22000 ppm or less, C800 ppm or less, the balance being Fe and A main phase consisting of tetragonal crystals with a grain size of 10.0 μm or less, which is composed of unavoidable impurities and has a body-centered cubic phase with a uniform thickness of 5 Å to 500 Å on the surface, and an R-rich metal phase and a B-rich metal phase between the main phases. A high-performance permanent magnetic material characterized by having a non-magnetic phase consisting of an oxide phase and an oxide phase. 2 R12.0 at% to 15.0 at% (R is Nd or P
One or two types of r, or a part thereof can be substituted with 1 atomic % or less of a heavy rare element), B5.5 atomic % to 8.0 atomic %, Ti, Zr, Hf, V, Nb , Ta, Mo, W, and Al at least 2 atomic %, O_22000 ppm or less, C800 ppm or less, and the balance is Fe and unavoidable impurities, and has a body-centered cubic phase with a uniform thickness of 5 Å to 500 Å on the surface. A high-performance permanent magnet material characterized by having a main phase consisting of tetragonal crystals having a particle size of 10.0 μm or less, and a nonmagnetic phase consisting of an R-rich metal phase, a B-rich metal phase, and an oxide phase between the main phases.
JP60188761A 1985-08-28 1985-08-28 Permanent magnet material having high performance Pending JPS6247455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60188761A JPS6247455A (en) 1985-08-28 1985-08-28 Permanent magnet material having high performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60188761A JPS6247455A (en) 1985-08-28 1985-08-28 Permanent magnet material having high performance

Publications (1)

Publication Number Publication Date
JPS6247455A true JPS6247455A (en) 1987-03-02

Family

ID=16229306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60188761A Pending JPS6247455A (en) 1985-08-28 1985-08-28 Permanent magnet material having high performance

Country Status (1)

Country Link
JP (1) JPS6247455A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114106A (en) * 1986-04-30 1988-05-19 Seiko Epson Corp Permanent magnet and manufacture thereof
EP0289680A2 (en) * 1987-04-30 1988-11-09 Seiko Epson Corporation Permanent magnet and method of producing the same
JPH01169904A (en) * 1987-12-24 1989-07-05 Taiyo Yuden Co Ltd Permanent magnet and manufacture thereof
US5538565A (en) * 1985-08-13 1996-07-23 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US6136099A (en) * 1985-08-13 2000-10-24 Seiko Epson Corporation Rare earth-iron series permanent magnets and method of preparation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063903A (en) * 1983-09-16 1985-04-12 Sumitomo Special Metals Co Ltd Permanent magnet superior in resistance to oxidation
JPS6091601A (en) * 1983-10-25 1985-05-23 Sumitomo Special Metals Co Ltd Method for pulverization for rare earth-boron-iron permanent magnet alloy powder
JPS60119701A (en) * 1983-12-01 1985-06-27 Sumitomo Special Metals Co Ltd Preparation of powdered alloy of rare earth, boron and iron for permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063903A (en) * 1983-09-16 1985-04-12 Sumitomo Special Metals Co Ltd Permanent magnet superior in resistance to oxidation
JPS6091601A (en) * 1983-10-25 1985-05-23 Sumitomo Special Metals Co Ltd Method for pulverization for rare earth-boron-iron permanent magnet alloy powder
JPS60119701A (en) * 1983-12-01 1985-06-27 Sumitomo Special Metals Co Ltd Preparation of powdered alloy of rare earth, boron and iron for permanent magnet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538565A (en) * 1985-08-13 1996-07-23 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5560784A (en) * 1985-08-13 1996-10-01 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5565043A (en) * 1985-08-13 1996-10-15 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5597425A (en) * 1985-08-13 1997-01-28 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US6136099A (en) * 1985-08-13 2000-10-24 Seiko Epson Corporation Rare earth-iron series permanent magnets and method of preparation
JPS63114106A (en) * 1986-04-30 1988-05-19 Seiko Epson Corp Permanent magnet and manufacture thereof
EP0289680A2 (en) * 1987-04-30 1988-11-09 Seiko Epson Corporation Permanent magnet and method of producing the same
JPH01169904A (en) * 1987-12-24 1989-07-05 Taiyo Yuden Co Ltd Permanent magnet and manufacture thereof

Similar Documents

Publication Publication Date Title
RU2377680C2 (en) Rare-earth permanaent magnet
WO2013191276A1 (en) Sintered magnet
US10083783B2 (en) Rare earth based magnet
JPWO2005001856A1 (en) R-T-B rare earth permanent magnet and method for producing the same
JP5464289B1 (en) R-T-B sintered magnet
JP2016152246A (en) Rare earth based permanent magnet
JP2001189206A (en) Permanent magnet
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2000114017A (en) Permanent magnet and material thereof
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH01220803A (en) Magnetic anisotropic sintered magnet and manufacture thereof
JP6511844B2 (en) RTB based sintered magnet
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPS6247455A (en) Permanent magnet material having high performance
JPH0561345B2 (en)
JPH06231926A (en) Rare earth permanent magnet
WO2021193333A1 (en) Anisotropic rare-earth sintered magnet and method for producing same
JPS6223960A (en) High-efficiency permanent magnet material
JPH068488B2 (en) Permanent magnet alloy
JP2014209547A (en) Rare earth magnet
WO2021193334A1 (en) Anisotropic rare earth sintered magnet and method for producing same
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
JP2005286175A (en) R-t-b-based sintered magnet and its manufacturing method