JPH068488B2 - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPH068488B2
JPH068488B2 JP60135505A JP13550585A JPH068488B2 JP H068488 B2 JPH068488 B2 JP H068488B2 JP 60135505 A JP60135505 A JP 60135505A JP 13550585 A JP13550585 A JP 13550585A JP H068488 B2 JPH068488 B2 JP H068488B2
Authority
JP
Japan
Prior art keywords
boride
less
atomic
excluding
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60135505A
Other languages
Japanese (ja)
Other versions
JPS61295355A (en
Inventor
節夫 藤村
日登志 山本
裕 松浦
哲 広沢
眞人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60135505A priority Critical patent/JPH068488B2/en
Publication of JPS61295355A publication Critical patent/JPS61295355A/en
Publication of JPH068488B2 publication Critical patent/JPH068488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は焼結磁石の少なくとも1主面を研削加工等に
より加工した場合にも磁石特性の低下しない薄物用永久
磁石合金,特に厚みが約3mm以下の薄物用永久磁石合金
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a permanent magnet alloy for thin materials, in which the magnet characteristics do not deteriorate even when at least one main surface of a sintered magnet is processed by grinding, etc. The present invention relates to a permanent magnet alloy for thin products of 3 mm or less.

[従来の技術] 現在の代表的永久磁石材料は、アルニコ,ハードフェラ
イトおよび希土類コバルト磁石である。近年のコバルト
の原料事情の不安定化に伴ない,コバルトを20〜30wt%
含むアルニコ磁石の需要は減り,鉄の酸化物を主成分と
する安価なハードフェライトが磁石材料の主流を占める
ようになった。
[Prior Art] Typical permanent magnet materials at present are Alnico, hard ferrite, and rare earth cobalt magnets. With the destabilization of the raw material situation of cobalt in recent years, 20 to 30 wt% of cobalt
Demand for Alnico magnets, including these, has decreased, and inexpensive hard ferrites, whose main component is iron oxide, have become the mainstream of magnet materials.

一方、希土類コバルト磁石はコバルトを50〜60wt%も含
むうえ、希土類鉱石中にあまり含まれていないSmを使
用するため大変高価であるが、他の磁石に比べて,磁気
特性が格段に高いため,主として小型で付加価値の高い
磁気回路に多用されるようになった。
On the other hand, the rare earth cobalt magnet is very expensive because it contains 50 to 60 wt% of cobalt and uses Sm which is rarely contained in rare earth ore, but it has much higher magnetic characteristics than other magnets. , It has come to be used mainly for small size and high value-added magnetic circuits.

本発明者は先に,高価なSmやCoを含有しない新しい高性
能永久磁石として磁気異方性を有するFe−B−R系3元
化合物に基づく永久磁石を提案した(特開昭59-4600
8)。この永久磁石は,RとしてNdやPrを中心とする資
源的に豊富な軽希土類を用い、Feを主成分として25MGOe
以上の極めて高いエネルギー積を示す,すぐれた永久磁
石である。さらに,FeBR基本系の展開として,上記Fe−
B−R系3元化合物に基づくFe−B−R系合金のFeの一
部をCoで置換してキュリー温度を上昇させた(Fe,Co)
−B−R系4元化合物に基づき磁気異方性を有するもの
(特開昭59-64733),添加元素M(Al,Ti,V等)の含有
により保持力増大を計ったもの(特開昭59-89401),Co,M
両方を含むもの(特開昭59-132104)等の一連の永久磁
石(合金)が本出願人により開発されている。
The present inventor has previously proposed a permanent magnet based on a Fe-BR ternary compound having magnetic anisotropy as a new high-performance permanent magnet containing no expensive Sm or Co (Japanese Patent Laid-Open No. 59-4600).
8). This permanent magnet uses a light rare earth element, which is rich in resources centered on Nd and Pr as R, and has 25MGOe containing Fe as a main component.
It is an excellent permanent magnet that exhibits the extremely high energy product described above. Furthermore, as a development of the FeBR basic system, the above Fe-
The Curie temperature was raised by substituting a part of Fe in the Fe-BR alloy based on the BR ternary compound with Co (Fe, Co)
Those having magnetic anisotropy based on -BR quaternary compound (Japanese Patent Laid-Open No. 59-64733), and those having increased coercive force by inclusion of additional elements M (Al, Ti, V, etc.) 59-89401), Co, M
The present applicant has developed a series of permanent magnets (alloys) such as those including both (JP-A-59-132104).

最近,磁気回路の高性能化,小型化に伴って,Fe−B−
R系永久磁石は益々注目を浴び、厚みが3mm以下の薄小
物用磁石が要望されてきた。
Recently, as the performance and size of magnetic circuits have increased, Fe-B-
R-type permanent magnets have been attracting more and more attention, and there has been a demand for magnets for thin products having a thickness of 3 mm or less.

[発明が解決しようとする問題点] そのため、成形焼結した薄小の焼結磁石体表面の凹凸面
および歪み面を除去して平坦化し、且つ表面の酸化層除
去のため,研削加工する必要があるが,前記Fe−B−R
系焼結磁石を例へば素材厚み10mmより製品厚み1mm,2
mm,4mm,6mm,8mmに研削加工すると製品厚みが小さ
くなる程,第1図に示す如く,磁石特性は劣化すること
が判った。
[Problems to be Solved by the Invention] Therefore, it is necessary to remove the uneven surface and the strained surface on the surface of the compacted and sintered compact magnet body to flatten it, and to grind to remove the oxide layer on the surface. There is the above-mentioned Fe-BR
For example, for sintered sintered magnets, material thickness is 10mm, product thickness is 1mm, 2
It was found that the magnet characteristics deteriorate as the product thickness becomes smaller by grinding to mm, 4 mm, 6 mm, and 8 mm, as shown in FIG.

本発明は,上述の問題点を解消することを目的とする。The present invention aims to solve the above problems.

[発明による解決手段] 本発明の第1の態様に係る永久磁石合金は,原子%に
て,硼化物のうち少なくとも1種を硼化物分子1個を1
原子と換算して0.05〜3.0%含有し,10〜24%R(RはN
d,Pr,Dy,Ho,Tbの少なくとも1種,或いはこれらの1種
以上と更にLa、Ce、Sm、Gd、Er、Eu、Tm、Yb,La、Yの少なくと
も1種とからなる),4〜24%B,(但し、前記硼化物
中のBを除く)65〜81%Feを主成分とし,主相がFeBR
系正方晶相からなり,主相の平均結晶粒径が9.0μm以
下であることを特徴とする。(但し、前記硼化物はFeB
R系3元化合物を含まない) 本発明の第2の態様として,第1の態様(FeBR基本系)
をベースとし,Feの50%以下を置換してCo(Co0%を除
く)を含有すること,第3の態様としてFeの一部に代え
て後述のM元素を所定%以下含有(M0%を除く)する
こと,さらに第4の態様としてFeの50%以下をCo(Co0
%を除く)で置換すること,及びFeの一部に代えて上記
M元素を所定%含有すること,が夫々特徴とされる。
[Means for Solving the Problems] The permanent magnet alloy according to the first aspect of the present invention has at least one kind of boride in atomic% and one boride molecule as one.
It is contained in 0.05 to 3.0% in terms of atoms, 10 to 24% R (R is N
d, Pr, Dy, Ho, Tb, or at least one of these, and La, Ce, Sm, Gd, Er, Eu, Tm, Yb, La, and Y). 4 to 24% B, (excluding B in the boride) 65 to 81% Fe as the main component, and the main phase is FeBR
It consists of a tetragonal system and is characterized in that the main phase has an average grain size of 9.0 μm or less. (However, the boride is FeB
R-based ternary compound is not included) As the second aspect of the present invention, the first aspect (FeBR basic system)
Based on, and containing Co (excluding 0% Co) by substituting 50% or less of Fe, and as a third aspect, containing a predetermined M or less of M element described later in place of a part of Fe (M0% And excluding 50% or less of Fe as Co (Co0
(Excluding%), and containing a predetermined% of the above M element in place of a part of Fe.

M元素はFeの一部に代り下記の所定%以下のM元素(M
0%を除く)を1種以上含有するものである: 5.0% Al, 3.0% Ti, 5.5% V, 6.0% Ni, 4.5% Cr, 5.0% Mn, 5.0% Bi, 9.0% Nb, 7.0% Ta, 5.2% Mo, 5.0% W, 1.0% Sb, 3.5% Ge, 1.5% Sn, 3.3% Zr, 3.3% Hf,及
び5.0%Si(但しM元素の合量は当該添加元素のうち
最大値を有するものの上記所定%以下)。
The element M replaces a part of Fe, and the element M (M
(Except 0%): 5.0% Al, 3.0% Ti, 5.5% V, 6.0% Ni, 4.5% Cr, 5.0% Mn, 5.0% Bi, 9.0% Nb, 7.0% Ta , 5.2% Mo, 5.0% W, 1.0% Sb, 3.5% Ge, 1.5% Sn, 3.3% Zr, 3.3% Hf, and 5.0% Si (however, the total amount of M elements has the maximum value among the added elements. But above the specified percentage).

[好適な実施の態様及び作用効果] 本発明者はFe−B−R系焼結磁石の磁石特性の低下原因
について種々研究した結果,加工されたFe−B−R系焼
結磁石の表面第一層の結晶群の保磁力低下の理由は高保
磁力を出現するための必要且つ最適な粒界相が存在しな
いためであることを知見した。
[Preferred Embodiment and Operation and Effect] As a result of various studies on the cause of deterioration of the magnetic properties of the Fe-BR sintered magnet, the present inventor has found that the surface of the processed Fe-BR sintered magnet is It was found that the reason for the further decrease in coercive force of the crystal group is that there is no necessary and optimum grain boundary phase for the appearance of high coercive force.

然しながら,加工された表面の結晶群に必要且つ最適の
粒界相を付与することは容易でなく,保磁力の低い表面
層の結晶群の体積比を小さくするためには焼結体の結晶
粒径を極力小さくすることが有効なることを知り得た。
However, it is not easy to give the necessary and optimum grain boundary phase to the crystal group of the processed surface, and in order to reduce the volume ratio of the crystal group of the surface layer with a low coercive force, the crystal grain of the sintered body must be reduced. We have found that it is effective to make the diameter as small as possible.

一般に焼結体の結晶粒径を小さくするためには,成形前
の微粉砕粉末の粒度を小にすることで可能となる。厚み
3mm以下の薄小物用焼結磁石の磁石特性の劣化を極力少
なくし,且つ安定して量産化するためには原料粉末粒度
を2μm以下に抑える必要があるが,Fe−B−R系焼結
磁石用原料粉末には希土類元素を多量に含有するため,
粉末粒度2μm以下の微粉末では化学的に活性で,取扱
いが困難であり,安定した量産化には適しない。
Generally, the crystal grain size of the sintered body can be reduced by reducing the grain size of the finely pulverized powder before molding. In order to minimize the deterioration of the magnetic properties of sintered magnets for thin products with a thickness of 3 mm or less and to stably mass-produce it, it is necessary to keep the particle size of the raw material powder below 2 μm. Since the raw material powder for a magnet contains a large amount of rare earth elements,
Fine powder with a particle size of 2 μm or less is chemically active, difficult to handle, and is not suitable for stable mass production.

発明者は種々研究した結果,Fe−B−R系焼結磁石内に
特定量の硼化物を含有せしめることにより,焼結時にお
ける粒成長を抑制してiHcの増大(1〜2KOe上昇)を図
るとともに,加工により厚み約3mm以下に薄物化した場
合にも焼結磁石の磁石特性が低下することのないすぐれ
た特性を有する永久磁石材料を提供するものである。
As a result of various studies, the inventor suppresses grain growth during sintering and increases iHc (increase by 1 to 2 KOe) by including a specific amount of boride in a Fe—BR system sintered magnet. In addition to the above, the present invention provides a permanent magnet material having excellent characteristics that does not deteriorate the magnet characteristics of the sintered magnet even when the thickness is reduced to about 3 mm or less by processing.

本発明は,硼化物の少なくとも1種を添加することに特
徴がある。硼化物としては,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,
W,希土類(R)等の金属の硼化物,BN等がある。これ
らの硼化物のうち,ZrB,ZrB12,HfB,VB
NbB,NbB,TaB,TaB,TiB,CrB,MoB,
MoBB,MoB,WB,WB,BN,NdB,PrB
等が実用的である。かかる硼化物は融点が高く、非常に
安定な化合物である。例えばZrB2の融点は約3000℃
である。
The present invention is characterized in that at least one boride is added. As boride, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
There are W, borides of metals such as rare earth (R), and BN. Of these borides, ZrB 2 , ZrB 12 , HfB 2 , VB 2 ,
NbB, NbB 2 , TaB, TaB 2 , TiB 2 , CrB 2 , MoB,
MoB 2 B, Mo 2 B, WB, W 2 B, BN, NdB 6 , PrB 6
Etc. are practical. The boride has a high melting point and is a very stable compound. For example, the melting point of ZrB 2 is about 3000 ℃
Is.

この発明の永久磁石材料は平均結晶粒径が9.0μm以下
の範囲にある正方晶系の結晶構造をし磁気異方性を有す
るFeBR系ないしFeCoBR系化合物を少なくとも50Vo1
%以上と体積比で1%〜50%の非磁性相(酸化物相を除
く)を含むことを特徴とする。この発明磁石において、
平均結晶粒径が9μmを越える場合は保磁力の低い表面
の結晶群の体積比を増加させるので好ましくない。平均
結晶粒径は好ましくは7μm以下,さらに3〜5μmで
ある。
The permanent magnet material of the present invention comprises at least 50 Vo1 FeBR or FeCoBR compound having a tetragonal crystal structure with an average crystal grain size of 9.0 μm or less and magnetic anisotropy.
% Or more and a volume ratio of 1% to 50% of a nonmagnetic phase (excluding oxide phase). In this invention magnet,
When the average crystal grain size exceeds 9 μm, the volume ratio of the crystal group on the surface having a low coercive force is increased, which is not preferable. The average crystal grain size is preferably 7 μm or less, and further 3 to 5 μm.

したがって、この発明の永久磁石は,RとしてNdやPrを
中心とする資源的に豊富な軽希土類を主に用い,硼化物
を含有し,Fe,B,Rを主成分とすることにより,20MG
Oe以上の極めて高いエネルギー積並びに,高残留磁束密
度,高保磁力を有し,かつ加工による特性低下を防止し
た,すぐれた永久磁石を安価に得ることができる。
Therefore, the permanent magnet of the present invention mainly uses Nd and Pr-rich light rare earths as R, contains boride, and contains Fe, B, and R as the main components, so that
An excellent permanent magnet that has an extremely high energy product above Oe, a high residual magnetic flux density and a high coercive force, and that prevents deterioration of characteristics due to processing can be obtained at low cost.

この発明の永久磁石に用いる希土類元素Rは,Nb,Pr,D
y,Ho,Tbのうち少なくとも1種を含み,あるいはこれら
の1種以上にさらに,La,Ce,Sm,Gd,Er,Eu,Pm,Tm,Yb,Y
のうち少なくとも1種を含むものが好ましい。又,通例
R(特にNd,Pr,Dy,Ho,Tb等)のうち1種をもって足り,
特にNd,Prが好ましいが,実用上は2種以上の混合物
(ミッシュメタル,ジジム等)を入手上の便宜等の理由
により用いることができる。但し主相を構成する合金の
R中のSm,Laはできるだけ少ない方がよい(例えばSm1
原子%以下,さらに0.5%以下)。R混合系としては特
にNd,Pr,又はこれらと少量(全合金中0.05〜5原子%,
特に0.2〜3原子%)のDy,Ho,Tb等の組合せが温度特性
上好ましい。RとしてはNd,Prの合計50原子%以上(さ
らに好ましくは80原子%)以上とすることが特性,コス
ト,資源的観点から好ましい。
The rare earth element R used in the permanent magnet of the present invention is Nb, Pr, D
At least one of y, Ho, Tb is included, or one or more of these are further added to La, Ce, Sm, Gd, Er, Eu, Pm, Tm, Yb, Y
Among them, those containing at least one kind are preferable. Also, one type of R (particularly Nd, Pr, Dy, Ho, Tb, etc.) is usually sufficient,
Nd and Pr are particularly preferable, but in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons such as convenience in availability. However, Sm and La in R of the alloy forming the main phase should be as small as possible (eg Sm1
Atomic% or less, further 0.5% or less). As an R mixed system, especially Nd, Pr, or a small amount thereof (0.05 to 5 atom% in the total alloy,
A combination of Dy, Ho, Tb, etc. of 0.2 to 3 atomic% is particularly preferable in terms of temperature characteristics. It is preferable that R is 50 atomic% or more (more preferably 80 atomic%) in total of Nd and Pr from the viewpoint of characteristics, cost and resources.

なお,このRは純希土類元素でなくてもよく,工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in manufacturing within the industrially available range.

Rは,新規な上記系永久磁石における,必須元素であっ
て、10原子%未満では,結晶構造がα−鉄と同一構造の
立方晶組織が多く生成するため,高磁気特性,特に高保
磁力が得られず,24原子%を越えると,Rリッチな非磁
性相が多くなり,残留磁束密度(Br)が低下して,すぐれ
た特性の永久磁石が得られない。よって,希土類元素R
は,10原子%〜24原子%の範囲とする。
R is an essential element in the novel permanent magnet, and if it is less than 10 atomic%, a large number of cubic crystal structures having the same crystal structure as α-iron are produced, so that high magnetic properties, especially high coercive force, are obtained. If it exceeds 24 at%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, the rare earth element R
Is in the range of 10 atom% to 24 atom%.

Bは,新規な上記系永久磁石における,必須元素であっ
て,4原子%未満では,菱面体組織が多く生成し,高い
保磁力(iHc)は得られず,24原子%を越えると,Bリッ
チな非磁性相が多くなり,残留磁束密度(Br)が低下する
ため,すぐれた永久磁石が得られない。よって,Bは,
4原子%〜24原子%の範囲とする。
B is an essential element in the new permanent magnets of the above-mentioned system. When it is less than 4 atomic%, a lot of rhombohedral structure is generated and a high coercive force (iHc) cannot be obtained. An excellent permanent magnet cannot be obtained because the rich nonmagnetic phase increases and the residual magnetic flux density (Br) decreases. Therefore, B is
The range is from 4 atom% to 24 atom%.

Feは,FeBR基本系永久磁石において,必須元素であ
り,65原子%未満では残留磁束密度(Br)が低下し,81原
子%を越えると,高い保磁力が得られないので,FeはFe
BR基本系において65原子%〜81原子%の含有とする。
Fe is an essential element in the FeBR basic permanent magnet. If less than 65 atomic%, the residual magnetic flux density (Br) decreases, and if it exceeds 81 atomic%, a high coercive force cannot be obtained.
In the BR basic system, the content is 65 atom% to 81 atom%.

この発明において,特徴の硼化物は焼結磁石の結晶粒微
細化に重要であるが,0.05原子%未満では結晶粒微細化
の効果が少なく,焼結体の主面加工時に磁石特性の低下
を防止する効果が少なく,又3.0原子%を越えると残留
磁束密度並びに最大エネルギー積が低下するため,好ま
しくない。硼化物は好ましくは0.3〜1原子%とする。
In the present invention, the characteristic boride is important for refining the crystal grains of the sintered magnet, but if it is less than 0.05 atom%, the effect of refining the crystal grains is small, and the deterioration of the magnet properties during the main surface processing of the sintered body is suppressed. The effect of prevention is small, and if it exceeds 3.0 atom%, the residual magnetic flux density and the maximum energy product decrease, which is not preferable. The boride content is preferably 0.3 to 1 atomic%.

また,この発明による磁気異方性を有するFeBR系3元
化合物に基づく永久磁石用合金において,Feの一部をCo
で置換する((Fe、Co)−B−R系4元化合物にする)こ
とは,得られる磁石の磁気特性を損なうことなく,温度
特性を改善することができるがCo置換量がFeの50%を越
えると,逆に磁気特性が低下するため,好ましくない。
In the alloy for permanent magnets based on the FeBR ternary compound having magnetic anisotropy according to the present invention, a part of Fe is Co
By substituting with ((Fe, Co) -BR system quaternary compound), the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet, but the Co substitution amount is 50% of that of Fe. If it exceeds%, on the contrary, the magnetic properties deteriorate, which is not preferable.

なお合金中のCo5原子%以上でBrの温度係数が0.1%/
℃以下となり,25原子%以下では他の特性を本質上劣化
させることなくキュリー温度Tcの増大に寄与する。また
Coは少量(0.1〜1原子%)でも含量に応じて有効であ
り,含有量にほゞ対応してキュリー温度TcをFeBR基本
系のTc300〜370℃に対し増大させる。Co20%前後でもiH
cも増大させる。また角形性の改善効果もある。
The temperature coefficient of Br is 0.1% / at 5 atomic% or more of Co in the alloy.
Below 25 ° C, 25 atom% or less contributes to the increase in Curie temperature Tc without substantially deteriorating other properties. Also
Co is effective even in a small amount (0.1 to 1 atom%) depending on the content, and increases the Curie temperature Tc to Tc of 300 to 370 ° C. of the FeBR basic system, corresponding to the content. IH even at around 20% Co
Also increase c. It also has the effect of improving squareness.

また,下記添加元素のうち少なくと1種は,Fe−B−R
系永久磁石に対してその保磁力等を改善あるいは製造性
の改善,低価格化に効果があるため添加する。しかし,
保磁力改善のための添加に伴ない残留磁束密度(Br)の低
下を招来するので,(BH)max20MGOe以上とするためBrは
少くとも9KG以上が必要であり,この範囲での添加が望
ましい。
In addition, at least one of the following additional elements is Fe-BR
It is added to the system-based permanent magnet because it is effective in improving its coercive force, etc., improving manufacturability, and lowering the price. However,
Since the residual magnetic flux density (Br) decreases with the addition for improving the coercive force, it is necessary to add Br in at least 9KG in order to achieve (BH) max20MGOe or more.

また,下記添加元素Mのうち少なくとも1種は,Fe−B
−R系永久磁石に対してその保磁力等を改善あるいは製
造性の改善,低価格化に効果があるため添加する。しか
し,保磁力改善のための添加に伴ない一般に残留磁束密
度(Br)の低下を招来するので,Br9KG以上を得るため下
記範囲での添加が望ましい。
In addition, at least one of the following additional elements M is Fe-B
-R-based permanent magnets are added because they are effective in improving the coercive force, improving the manufacturability, and reducing the cost. However, since the residual magnetic flux density (Br) generally decreases with the addition for improving the coercive force, addition in the following range is desirable in order to obtain Br 9 KG or more.

5.0原子%以下のAl, 3.0原子%以下のTi, 5.5原子%以下のV, 6.0原子%以下のN
i, 4.5原子%以下のCr, 5.0原子%以下のMu, 5.0原子%以下のBi, 9.0原子%以下のNb, 7.0原子%以下のTa, 5,2原子%以下のMo, 5.0原子%以下のW, 1.0原子%以下のS
b, 3.5原子%以下のGe, 1.5原子%以下のSn, 3.3原子%以下のZr, 3.3原子%以下のHf, 5.0原子%以下のSi, のうち少なくとも1種を添加含有(但し,2種以上含有
する場合は,その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有)させることによ
り,永久磁石の高保磁力化が可能になる。なおNi,Mnの
限度はiHcから定められる。但し上記添加元素Mの含有
量は一般にBrの所望地に応じて適宜上記範囲内で選択で
き,一般に0.1〜3原子%以下(特に1%以下)が有効
である。このMはまた,粒界相成分中に合金化して添加
することもできる。添加元素MとしてはV,Nb,Ta,Mo,
W,Cr,Alが好ましい。
5.0 atomic% or less Al, 3.0 atomic% or less Ti, 5.5 atomic% or less V, 6.0 atomic% or less N
i, 4.5 atomic% or less Cr, 5.0 atomic% or less Mu, 5.0 atomic% or less Bi, 9.0 atomic% or less Nb, 7.0 atomic% or less Ta, 5,2 atomic% or less Mo, 5.0 atomic% or less W, S of 1.0 atomic% or less
b, Ge of 3.5 atomic% or less, Sn of 1.5 atomic% or less, Zr of 3.3 atomic% or less, Hf of 3.3 atomic% or less, and Si of 5.0 atomic% or less are added at least one kind (However, two kinds are included. When the above content is included, the maximum content of the additive element is the atomic% or less of the one having the maximum value), so that the coercive force of the permanent magnet can be increased. The limits of Ni and Mn are determined from iHc. However, the content of the additional element M can generally be appropriately selected within the above range depending on the desired site of Br, and generally 0.1 to 3 atomic% or less (particularly 1% or less) is effective. This M can also be alloyed and added to the grain boundary phase component. As the additive element M, V, Nb, Ta, Mo,
W, Cr and Al are preferred.

この発明における合金粉末の結晶相は主相が少なくとも
50vo1%以上(好ましくは80vo1%以上)の正方晶であ
り,少なくとも非磁性相により主相の粒界が囲まれてい
ることが,すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。非磁性相は主としてRリッチ
相(R90原子%以上の金属)或いはさらにBリッチ相
(RFeないしRFe等)から構成されほ
んのわずかでも有効であり,例えば1vo1%以上は十分
な量である。正方晶格子のパラメータはa約8.8Å,c
約12.2Åでありその中心組成はRFe14Bであると考え
られる。Coを含むFeCoBR系の場合にもFeBR基本系に
準じFeは部分的にCoにより置換されて同様の結晶構造を
とる。M元素の添加(所定範囲内)では,基本的結晶構
造は変らないと考えられる。
At least the main phase of the crystal phase of the alloy powder in this invention is
A tetragonal crystal of 50 vo1% or more (preferably 80 vo1% or more) and at least a grain boundary of the main phase surrounded by a non-magnetic phase is essential for producing a sintered permanent magnet with excellent magnetic properties. Is. The nonmagnetic phase is mainly composed of an R-rich phase (R 90 atomic% or more of metal) or a B-rich phase (R 2 Fe 7 B 6 to R 1 Fe 4 B 4 etc.), and is effective even in a slight amount, for example, 1 vo1%. The above is a sufficient amount. The parameter of the tetragonal lattice is a about 8.8Å, c
It is about 12.2Å and its central composition is considered to be R 2 Fe 14 B. Also in the case of the FeCoBR system containing Co, according to the FeBR basic system, Fe is partially replaced by Co and has a similar crystal structure. It is considered that the addition of the M element (within the predetermined range) does not change the basic crystal structure.

本発明のFeBR基本系において,高い残留磁束密度と高
保磁力を得るためには,R12.0〜20原子%,B5〜15原
子%,Fe65〜83原子%の場合,最大エネルギー積(BH)ma
x25MGOe以上がえられるのが好ましい範囲である。さら
にR12.0〜19原子%、B5.5〜12原子%では(BH)max30MG
Oe以上が得られる。
In order to obtain a high residual magnetic flux density and a high coercive force in the FeBR basic system of the present invention, the maximum energy product (BH) ma in the case of R12.0 to 20 atom%, B5 to 15 atom% and Fe65 to 83 atom% is obtained.
It is a preferable range that x25 MGOe or more can be obtained. Furthermore, when R12.0 to 19 atom% and B5.5 to 12 atom%, (BH) max30MG
You can get more than Oe.

R12.0〜16原子%,B5.5〜10原子%では35MGOe以上,
さらにR12〜14.5原子%,B5.8〜8原子%では40MGOe
以上(最高44MGOe)が達成される。
At R12.0 to 16 atom% and B5.5 to 10 atom%, 35 MGOe or more,
Furthermore, 40 MGOe for R12-14.5 atom% and B5.8-8 atom%
The above (up to 44 MGOe) is achieved.

合金中のCoは(原子%にて)35%以下で25MGOe以上,25
%以下で30MGOe以上,23%以下で35MGOe以上,15%以下
で40MGOe以上が可能である。
Co in the alloy is 35% or less (at atomic%), 25 MGOe or more, 25
% Below 30MGOe, below 23% below 35MGOe, below 15% below 40MGOe.

また、この発明の永久磁石は一般的に粉末治金的方法に
より製造可能であり,磁場中加圧成形することにより磁
気的異方性磁石が得られ,また,無磁界中で加圧成形す
るとにより,磁気的等方性磁石を得ることができる。焼
結は常圧又は加圧条件下に行うことができるが、減圧雰
囲気中や真空中など公知の条件下(例えば特開昭59−
215460)においても行うことができる。
Further, the permanent magnet of the present invention can be generally manufactured by a powder metallurgy method, and a magnetically anisotropic magnet can be obtained by pressure molding in a magnetic field. Thus, a magnetically isotropic magnet can be obtained. Sintering can be carried out under normal pressure or pressure, but under known conditions such as reduced pressure atmosphere or vacuum (for example, JP-A-59-59).
215460).

また,この発明による合金は,R,B,Fe(或いはCo,
M元素)の他,工業的生産上不可避的不純物の存在を許
容できる。例えば,2原子%以下のP,2原子%以下の
S,2原子%以下のCu,合計量で2原子%以下を含有す
ることもでき,磁石合金の製造性改善,低価格化が可能
である。但しこれらの元素は一般にBrを低下させるので
少ないほうがよく,上記範囲はBr9KG以上とするためで
あり,さらに所要Brに従いその許容限度は少くなる(合
計1%又は0.5%以下)。
Further, the alloy according to the present invention contains R, B, Fe (or Co,
In addition to (M element), the presence of impurities that are unavoidable in industrial production can be allowed. For example, P can be contained in an amount of 2 atomic% or less, S in an amount of 2 atomic% or less, Cu in an amount of 2 atomic% or less, and a total amount of 2 atomic% or less can be contained, whereby the manufacturability of the magnet alloy can be improved and the cost can be reduced. is there. However, these elements generally reduce Br so that it is preferable that the amount is small, and the above range is for Br 9 KG or more, and the permissible limit is small according to the required Br (total 1% or 0.5% or less).

[実施例] 実施例1 出発原料として,電解鉄,フェロボロン合金,及びNd金
属を使用し,最終の組成が14Nd8B78Feとなるよう,Nd,F
e,Bをまず高周波溶解し,その後,水冷銅鋳型に鋳造
し、1Kgの鋳塊を得た。
[Example] Example 1 Electrolytic iron, ferroboron alloy, and Nd metal were used as starting materials, and Nd, F was added so that the final composition was 14Nd8B78Fe.
First, e and B were melted by high frequency and then cast in a water-cooled copper mold to obtain a 1 kg ingot.

その後,鋳塊をスタンプミルにり,粗粉砕し,次にボー
ルミルにより微粉砕時に粒度50μm以下の純度99.5%以
上のBN,純度99%以上のTiBを夫々最終組成が13.93Nd
7.96B77.61FeO.50BN(又はTiB)になるよう添加配合
して微粉砕して,粒度3.0μmの微分砕粉を得た。
After that, the ingot is put into a stamp mill, coarsely crushed, and then finely crushed with a ball mill. The final composition of BN having a particle size of 50 μm or less and purity of 99.5% or more and TiB 2 having a purity of 99% or more is 13.93 Nd.
7.96B77.61FeO.50BN (or TiB 2 ) was added and blended and finely pulverized to obtain a differentially pulverized powder having a particle size of 3.0 μm.

前記Nd−B−Feの合金粉末,BN含有Nd−B−Fe合金粉末
及びTiB含有のNd−B−Fe合金粉末を夫々型に装入
し,10KOeの磁界中で配向し,磁界と直交方向に2T/c
m2の圧力で成型した。
The Nd-B-Fe alloy powder, the BN-containing Nd-B-Fe alloy powder, and the TiB 2 -containing Nd-B-Fe alloy powder were placed in a mold and oriented in a magnetic field of 10 KOe and perpendicular to the magnetic field. 2T / c in direction
Molded at a pressure of m 2 .

得られた成型体を1100℃,1時間,Ar中の条件で焼結
し,その後,放冷し,更にAr中で600℃,2時間の時効
処理を施して,10mm×5mm×厚み10mm寸法の試験片を得
た。
The obtained molded body is sintered at 1100 ° C for 1 hour in Ar, then allowed to cool, and then subjected to an aging treatment at 600 ° C for 2 hours in Ar to obtain a size of 10 mm × 5 mm × thickness 10 mm. The test piece of was obtained.

磁石の組成,結晶粒径を第1表に,前記試験片の厚みを
6mm,4mm,2mm,1mmに研削加工(両面)した時の磁
気特性の結果を第2図に表す。尚この発明磁石におい
て,BN,TiB2等硼化物は実施例の如く原料粉末の微粉砕
時に配合添加してもよいが,配合原料の溶解時に溶湯中
にTiB等の硼化物を生成せしめ,鋳塊内に硼化物を含
有せしめてもよい。
Table 1 shows the composition and crystal grain size of the magnet, and FIG. 2 shows the results of the magnetic characteristics when the thickness of the test piece was ground to 6 mm, 4 mm, 2 mm, and 1 mm (both sides). In the magnet of the present invention, BN, TiB 2 etc. boride may be compounded and added at the time of finely pulverizing the raw material powder as in the example, but when the compounded raw materials are dissolved, boride such as TiB 2 etc. is generated in the molten metal, A boride may be contained in the ingot.

実施例2 実施例1と同様の方法で得られた第2表に記載のNd15
Fe76.7(添加剤)0.3の焼結磁石から10mm×10mm×厚
み10mm寸法の試験片を得た。さらにこの磁石の厚みを1.
5mmに研磨(両面)したときの磁気特性並びに平均結晶
粒径(D)を第2表に挙げる。
Example 2 Nd 15 B shown in Table 2 obtained in the same manner as in Example 1
A test piece measuring 10 mm × 10 mm × thickness 10 mm was obtained from a sintered magnet of 8 Fe 76.7 (additive) 0.3. Furthermore, the thickness of this magnet is 1.
Table 2 shows the magnetic properties and the average crystal grain size (D) when polished to 5 mm (both sides).

[発明の効果] 本発明によれば、Fe−B−R系永久磁石合金内に所定量
の硼化物を含有せしめ、焼結時における粒成長を抑制し
てiHcの増大(1〜2kOe上昇)を図ることができるとと
もに、加工により厚み約3mm以下に薄物化した場合にも
焼結磁石の磁石特性が低下することがない。
[Effects of the Invention] According to the present invention, a predetermined amount of boride is contained in the Fe-BR permanent magnet alloy to suppress grain growth during sintering and increase iHc (1 to 2 kOe increase). In addition, the magnet characteristics of the sintered magnet do not deteriorate even when the thickness is reduced to about 3 mm or less by processing.

【図面の簡単な説明】[Brief description of drawings]

第1図は14Nd−7B−Fe磁石の厚さtと磁気特性の関係
を示すグラフ, 第2図は本発明の実施例たる14Nd8B77.5Fe0.5(Ti
)及び14Nd8B77.5Fe0.5(BN)の磁石の厚さtと磁
気特性の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the thickness t of a 14Nd-7B-Fe magnet and the magnetic characteristics, and FIG. 2 is an embodiment of the present invention, 14Nd8B77.5Fe0.5 (Ti).
B 2) and a graph showing the relationship between the thickness t and the magnetic properties of the magnet of 14Nd8B77.5Fe0.5 (BN).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 広沢 哲 大阪府三島郡島本町江川2丁目15―17 住 友特殊金属株式会社山崎製作所内 (72)発明者 佐川 眞人 大阪府三島郡島本町江川2丁目15―17 住 友特殊金属株式会社山崎製作所内 (56)参考文献 特開 昭60−119701(JP,A) 特開 昭60−91601(JP,A) 特開 昭60−63903(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Hirosawa 2-15-17 Egawa, Shimamoto-machi, Mishima-gun, Osaka Prefecture 15-17 Sumitomo Special Metals Co., Ltd. Yamazaki Manufacturing (72) Masato Sagawa 2 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture 15-17 17 Sumitomo Special Metals Co., Ltd. Yamazaki Works (56) Reference JP 60-119701 (JP, A) JP 60-91601 (JP, A) JP 60-63903 (JP, A) )

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】原子%にて、硼化物のうち少なくとも1種
を硼化物分子1個を1原子と換算して0.05〜3.0%含有
し、10〜24%R(RはNd、Pr、Dy、Ho、Tbの少なくとも1
種、或いはこれらの1種以上と更にLa、Ce、Sm、Gd、Er、Eu、
Tm、Yb,La、Yの少なくとも1種とからなる)、4〜24%
B(但し、前記硼化物中のBを除く)、65〜81%Feを主
成分とし、主相がFeBR系正方晶相からなり、主相の平
均結晶粒径が9.0μm以下であることを特徴とする永久
磁石合金(但し、前記硼化物はFeBR系3元化合物を含
まない)。
1. In atomic%, at least one kind of boride is contained in an amount of 0.05 to 3.0% by converting one boride molecule into one atom, and 10 to 24% R (R is Nd, Pr, Dy). , Ho, Tb at least 1
Species, or one or more of these and further La, Ce, Sm, Gd, Er, Eu,
Consists of at least one of Tm, Yb, La and Y) 4-24%
B (excluding B in the boride), 65 to 81% Fe as a main component, the main phase is FeBR tetragonal phase, and the average crystal grain size of the main phase is 9.0 μm or less. Characteristic permanent magnet alloy (however, the boride does not include FeBR ternary compound).
【請求項2】原子%にて、硼化物のうち少なくとも1種
を硼化物分子1個を1原子と換算して0.05〜3.0%含有
し、10〜24%R(RはNd、Pr、Dy、Ho、Tbの少なくとも1
種、或いはこれらの1種以上と更にLa、Ce、Sm、Gd、Er、Eu、
Tm、Yb,La、Yの少なくとも1種とからなる)、4〜24%
B(但し、前記硼化物中のBを除く)、65〜81%Feを主
成分とし、Feの50%以下をCo(0%を除く)で置換し、
主相がFeCoBR系正方晶相からなり、主相の平均結晶粒
径が9.0μm以下であることを特徴とする永久磁石合金
(但し、前記硼化物はFeCoB系4元化合物を含まな
い)。
2. In atomic%, at least one kind of boride is contained in an amount of 0.05 to 3.0% by converting one boride molecule into one atom, and 10 to 24% R (R is Nd, Pr, Dy). , Ho, Tb at least 1
Species, or one or more of these and further La, Ce, Sm, Gd, Er, Eu,
Consists of at least one of Tm, Yb, La and Y) 4-24%
B (excluding B in the boride), 65 to 81% Fe as a main component, and replace 50% or less of Fe with Co (excluding 0%),
A permanent magnet alloy in which the main phase is composed of a FeCoBR type tetragonal phase, and the average crystal grain size of the main phase is 9.0 μm or less (however, the boride does not include a FeCoB type quaternary compound).
【請求項3】原子%にて、硼化物のうち少なくとも1種
を硼化物分子1個を1原子と換算して0.05〜3.0%含有
し、10〜24%R(RはNd、Pr、Dy、Ho、Tbの少なくとも1
種、或いはこれらの1種以上と更にLa、Ce、Sm、Gd、Er、Eu、
Tm、Yb,La、Yの少なくとも1種とからなる)、4〜24%
B(但し、前記硼化物中のBを除く)、65〜81%Feを主
成分とし、Feの一部に代り下記の所定%以下のM元素
(M0%を除く)を1種以上含有し、主相がFeBR系正
方晶相からなり、主相の平均結晶粒径が9.0μm以下で
あることを特徴とする永久磁石合金(但し、前記硼化物
はFeBR系3元化合物を含まない)。 (M元素) 5.0% Al, 3.0% Ti, 5.5% V, 6.0% Ni, 4.5% Cr, 5.0% Mn, 5.0% Bi, 9.0% Nb, 7.0% Ta, 5.2% Mo, 5.0% W, 1.0% S
b, 3.5% Ge, 1.5% Sn, 3.3% Zr, 3.3% Hf, 5.0% Si(但しM元素の合量は当該添
加元素のうち最大値を有するものの上記所定%以下)
3. In atomic%, at least one kind of boride is contained in an amount of 0.05 to 3.0% in terms of one boride molecule, and 10 to 24% R (R is Nd, Pr, Dy). , Ho, Tb at least 1
Species, or one or more of these and further La, Ce, Sm, Gd, Er, Eu,
Consists of at least one of Tm, Yb, La and Y) 4-24%
B (excluding B in the above boride), 65 to 81% Fe as a main component, and one or more kinds of the following M elements (excluding M0%) of the following predetermined% or less in place of a part of Fe A permanent magnet alloy in which the main phase is a FeBR tetragonal phase and the average crystal grain size of the main phase is 9.0 μm or less (however, the boride does not include the FeBR ternary compound). (M element) 5.0% Al, 3.0% Ti, 5.5% V, 6.0% Ni, 4.5% Cr, 5.0% Mn, 5.0% Bi, 9.0% Nb, 7.0% Ta, 5.2% Mo, 5.0% W, 1.0% S
b, 3.5% Ge, 1.5% Sn, 3.3% Zr, 3.3% Hf, 5.0% Si (However, the total amount of M elements is the above specified% or less of the maximum amount of the additive elements)
【請求項4】 原子%にて、硼化物のうち少なくとも1種を硼化物分子
1個を1原子と換算して0.05〜3.0%含有し、10〜24%
R(RはNd、Pr、Dy、Ho、Tbの少なくとも1種、或いはこれ
らの1種以上と更にLa、Ce、Sm、Gd、Er、Eu、Tm、Yb,La、Yの
少なくとも1種とからなる)、4〜24%B(但し、前記
硼化物中のBを除く)、65〜81%Feを主成分とし、Feの5
0%以下をCoで置換(Co0%を除く)すると共にFeの一
部に代り下記の所定%以下のM元素(M0%を除く)を
1種以上含有し、主相がFecoBR系正方晶相からなり、
主相の平均結晶粒径が9.0μm以下であることを特徴と
する永久磁石合金(但し、前記硼化物はFeCoBR系4元
化合物を含まない)。 (M元素) 5.0% Al, 3.0% Ti, 5.5% V, 6.0% Ni, 4.5% Cr, 5.0% Mn, 5.0% Bi, 9.0% Nb, 7.0% Ta, 5.2% Mo, 5.0% W, 1.0% Sb, 3.5% Ge, 1.5% Sn, 3.3% Zr, 3.3% Hf, 5.0% Si(但しM元素の合量は当該添
加元素のうち最大値を有するものの上記所定%以下)
4. In atomic%, at least one kind of boride is contained in an amount of 0.05 to 3.0% in terms of one boride molecule, and 10 to 24%.
R (R is at least one of Nd, Pr, Dy, Ho, Tb, or one or more of these and at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, La, Y) 4) to 24% B (excluding B in the boride), 65 to 81% Fe as the main component, and 5% of Fe.
Substituting 0% or less with Co (excluding Co0%), and containing one or more of the following M elements (excluding M0%) of the following predetermined% in place of a part of Fe, and the main phase is FeBR BR tetragonal phase Consists of
A permanent magnet alloy characterized in that the average crystal grain size of the main phase is 9.0 μm or less (however, the boride does not include a FeCoBR-based quaternary compound). (M element) 5.0% Al, 3.0% Ti, 5.5% V, 6.0% Ni, 4.5% Cr, 5.0% Mn, 5.0% Bi, 9.0% Nb, 7.0% Ta, 5.2% Mo, 5.0% W, 1.0% Sb, 3.5% Ge, 1.5% Sn, 3.3% Zr, 3.3% Hf, 5.0% Si (however, the total amount of M elements is the above specified% or less of the maximum amount of the additive elements)
JP60135505A 1985-06-21 1985-06-21 Permanent magnet alloy Expired - Lifetime JPH068488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60135505A JPH068488B2 (en) 1985-06-21 1985-06-21 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60135505A JPH068488B2 (en) 1985-06-21 1985-06-21 Permanent magnet alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5098371A Division JP2514155B2 (en) 1993-04-02 1993-04-02 Method for manufacturing permanent magnet alloy

Publications (2)

Publication Number Publication Date
JPS61295355A JPS61295355A (en) 1986-12-26
JPH068488B2 true JPH068488B2 (en) 1994-02-02

Family

ID=15153327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60135505A Expired - Lifetime JPH068488B2 (en) 1985-06-21 1985-06-21 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPH068488B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272006A (en) * 1987-04-30 1988-11-09 Shin Etsu Chem Co Ltd Rare earth permanent magnet
US5000800A (en) * 1988-06-03 1991-03-19 Masato Sagawa Permanent magnet and method for producing the same
US6377049B1 (en) * 1999-02-12 2002-04-23 General Electric Company Residuum rare earth magnet
JP4605013B2 (en) 2003-08-12 2011-01-05 日立金属株式会社 R-T-B system sintered magnet and rare earth alloy
KR102313049B1 (en) * 2017-12-05 2021-10-14 미쓰비시덴키 가부시키가이샤 Permanent magnet, manufacturing method of permanent magnet, and rotating machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063903A (en) * 1983-09-16 1985-04-12 Sumitomo Special Metals Co Ltd Permanent magnet superior in resistance to oxidation
JPS6091601A (en) * 1983-10-25 1985-05-23 Sumitomo Special Metals Co Ltd Method for pulverization for rare earth-boron-iron permanent magnet alloy powder
JPS60119701A (en) * 1983-12-01 1985-06-27 Sumitomo Special Metals Co Ltd Preparation of powdered alloy of rare earth, boron and iron for permanent magnet

Also Published As

Publication number Publication date
JPS61295355A (en) 1986-12-26

Similar Documents

Publication Publication Date Title
EP0197712B1 (en) Rare earth-iron-boron-based permanent magnet
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JPH0510806B2 (en)
JP2001189206A (en) Permanent magnet
JPH0316761B2 (en)
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JPH068488B2 (en) Permanent magnet alloy
JPH0561345B2 (en)
JP2610798B2 (en) Permanent magnet material
JP2514155B2 (en) Method for manufacturing permanent magnet alloy
JPH066777B2 (en) High-performance permanent magnet material
JPH0536495B2 (en)
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JPS6247455A (en) Permanent magnet material having high performance
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPH0560241B2 (en)
JP2632122B2 (en) Manufacturing method of rare earth permanent magnet
JP2720027B2 (en) Ultra low temperature permanent magnet material
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2868062B2 (en) Manufacturing method of permanent magnet
JPS62291903A (en) Permanent magnet and manufacture of the same
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3255593B2 (en) Manufacturing method of sintered permanent magnet with good thermal stability
JPH0536494B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term