JP5235264B2 - Rare earth sintered magnet and manufacturing method thereof - Google Patents

Rare earth sintered magnet and manufacturing method thereof Download PDF

Info

Publication number
JP5235264B2
JP5235264B2 JP2005233110A JP2005233110A JP5235264B2 JP 5235264 B2 JP5235264 B2 JP 5235264B2 JP 2005233110 A JP2005233110 A JP 2005233110A JP 2005233110 A JP2005233110 A JP 2005233110A JP 5235264 B2 JP5235264 B2 JP 5235264B2
Authority
JP
Japan
Prior art keywords
atomic
rare earth
powder
sintered magnet
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005233110A
Other languages
Japanese (ja)
Other versions
JP2007049010A (en
Inventor
英幸 森本
智織 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005233110A priority Critical patent/JP5235264B2/en
Priority to CN2006800009480A priority patent/CN101031984B/en
Priority to US11/575,928 priority patent/US9551052B2/en
Priority to PCT/JP2006/314076 priority patent/WO2007010860A1/en
Priority to DE112006000070T priority patent/DE112006000070T5/en
Publication of JP2007049010A publication Critical patent/JP2007049010A/en
Application granted granted Critical
Publication of JP5235264B2 publication Critical patent/JP5235264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、希土類焼結磁石及びその製造方法に関する。   The present invention relates to a rare earth sintered magnet and a manufacturing method thereof.

高性能永久磁石として代表的な希土類−鉄−硼素系の希土類焼結磁石は、正方晶化合物であるR2Fe14B型結晶相(主相)と粒界相とを含む組織を有し、優れた磁石特性を発揮する。ここで、Rは希土類元素及びイットリウムからなる群から選択された少なくとも1種の元素であり、主としてNd及び/又はPrを含む。Feは鉄、Bは硼素であり、これらの元素の一部は他の元素によって置換されていても良い。粒界相には、希土類元素Rの濃度が相対的に高いRリッチ相と、硼素の濃度が相対的に高いBリッチ相とが存在している。 A rare earth-iron-boron rare earth sintered magnet typical as a high performance permanent magnet has a structure including a R 2 Fe 14 B type crystal phase (main phase) which is a tetragonal compound and a grain boundary phase, Exhibits excellent magnet properties. Here, R is at least one element selected from the group consisting of rare earth elements and yttrium, and mainly contains Nd and / or Pr. Fe is iron and B is boron, and some of these elements may be substituted by other elements. In the grain boundary phase, there are an R-rich phase having a relatively high concentration of the rare earth element R and a B-rich phase having a relatively high concentration of boron.

以下、希土類−鉄−硼素系の希土類焼結磁石を「R−T−B系焼結磁石」と称することとする。ここで、「T」は鉄を主成分とする遷移金属元素である。R−T−B系焼結磁石では、R214B相(主相)が磁化作用に寄与する強磁性相であり、粒界相に存在するRリッチ相は低融点の非磁性相である。 Hereinafter, a rare earth-iron-boron rare earth sintered magnet is referred to as an “RTB-based sintered magnet”. Here, “T” is a transition metal element mainly composed of iron. In an R-T-B based sintered magnet, the R 2 T 14 B phase (main phase) is a ferromagnetic phase that contributes to the magnetization action, and the R-rich phase present in the grain boundary phase is a low-melting nonmagnetic phase. is there.

R−T−B系焼結磁石は、R−T−B系焼結磁石用合金(母合金)の微粉末(平均粒径:数μm)をプレス装置で圧縮成形した後、焼結することによって製造される。焼結後、必要に応じて時効処理が施される。R−T−B系焼結磁石の製造に用いられる母合金は、金型鋳造によるインゴット法や冷却ロールを用いて合金溶湯を急冷するストリップキャスト法を用いて好適に作製される。   The RTB-based sintered magnet is formed by compressing a fine powder (average particle size: several μm) of an RTB-based sintered magnet alloy (mother alloy) with a press machine and then sintering the powder. Manufactured by. After sintering, an aging treatment is performed as necessary. The mother alloy used for the production of the RTB-based sintered magnet is suitably produced by using an ingot method by die casting or a strip casting method in which the molten alloy is rapidly cooled using a cooling roll.

保磁力の高いR−Fe−B系焼結磁石を製造するため、希土類元素Rとして広く用いられているNdやPrの一部を、重希土類であるDy、Ho、及び/又はTbで置換することが行われている(例えば特許文献1)。Dy、Tb、Hoは、異方性磁界の高い希土類元素であるため、主相の希土類元素RのサイトでNdを置換することにより、保磁力を増大させる効果を発揮する。   In order to produce an R—Fe—B sintered magnet having a high coercive force, a part of Nd and Pr widely used as the rare earth element R is replaced with Dy, Ho, and / or Tb, which are heavy rare earth elements. (For example, Patent Document 1). Since Dy, Tb, and Ho are rare earth elements having a high anisotropic magnetic field, the effect of increasing the coercive force is exhibited by substituting Nd at the site of the rare earth element R of the main phase.

一方、保磁力発現のため、AlやCuを微量に添加することがR−T−B系焼結磁石の開発当初から行われてきた(例えば、特許文献2)。R−T−B系焼結磁石が開発された当時、不可避的不純物として原料合金中に混入していたAlやCuが、その後、R−T−B系焼結磁石の高い保磁力を実現する上で不可欠ともいえる添加元素であることがわかってきた。逆に、AlやCuを意図的に排除すると、R−T−B系焼結磁石の保磁力は極めて低い値しか示さず、実用には供しないこともわかっている。   On the other hand, in order to develop a coercive force, a small amount of Al or Cu has been added from the beginning of the development of an RTB-based sintered magnet (eg, Patent Document 2). Al and Cu mixed in the raw material alloy as an inevitable impurity at the time when the R-T-B system sintered magnet was developed then realized the high coercive force of the R-T-B system sintered magnet. It has been found that this is an indispensable additive element. On the contrary, it is known that if Al and Cu are intentionally excluded, the coercive force of the RTB-based sintered magnet shows only a very low value and is not practically used.

Niを含む多様な金属元素を添加したR−T−B系焼結磁石が特許文献3〜5に開示されている。   Patent Documents 3 to 5 disclose RTB-based sintered magnets to which various metal elements including Ni are added.

特許文献3は、Ndを8〜30%、Bを2〜28重量%、選択添加元素の一つとしてNiを4.5%以下含有し、残部が実質的にFeである永久磁石を開示している。   Patent Document 3 discloses a permanent magnet containing 8 to 30% of Nd, 2 to 28% by weight of B, 4.5% or less of Ni as one of selective additive elements, and the balance being substantially Fe. ing.

特許文献4は、Ndを8〜30%、Bを2〜28重量%、0〜50%のCo、選択添加元素の一つとしてNiを8.0%以下含有し、残部が実質的にFeである高い最大エネルギー積を有する永久磁石を開示している。   Patent Document 4 contains Nd of 8 to 30%, B of 2 to 28% by weight, 0 to 50% of Co, and Ni as a selective additive element of 8.0% or less, with the balance being substantially Fe. A permanent magnet having a high maximum energy product is disclosed.

特許文献5は、NdとPrの一種以上が14原子%〜18原子%、Bが9〜18原子%、添加元素Aが合計で0.5〜5原子%、残部実質的にFeからなる高い最大エネルギー積及び保磁力を有する異方性焼結磁石を開示している。添加元素Aとしては、Al0.2〜2.0原子%、Si0.05〜0.5原子%、Cu0.03〜0.6原子%、Cr0.02〜3.0原子%、Mn0.05〜1.0原子%、Ni0.02〜1.0原子%が記載されている。
特開昭60−32306号公報 特開平5−234733号公報 特開昭59−89401号公報 特開昭59−132104号公報 特開平1−220803号公報
In Patent Document 5, at least one of Nd and Pr is 14 to 18 atom%, B is 9 to 18 atom%, additive element A is 0.5 to 5 atom% in total, and the balance is substantially made of Fe. An anisotropic sintered magnet having a maximum energy product and coercivity is disclosed. As additive element A, Al 0.2-2.0 atomic%, Si 0.05-0.5 atomic%, Cu 0.03-0.6 atomic%, Cr 0.02-3.0 atomic%, Mn 0.05- 1.0 atomic% and Ni 0.02 to 1.0 atomic% are described.
JP-A-60-32306 JP-A-5-234733 JP 59-89401 A JP 59-132104 A Japanese Unexamined Patent Publication No. 1-2220803

Dy、Tb、Hoは、その添加量を増やすほど、保磁力が高く上昇するという効果が得られるが、Dy、Tb、Hoは稀少元素であるため、今後、電気自動車の実用化が進展し、電気自動車用モーターなどに用いられる高耐熱磁石の需要が拡大してゆくと、Dy資源が逼迫する結果、原料コストの増加が懸念される。このため、高保磁力磁石におけるDy使用量削減技術の開発が強く求められている。一方、AlやCuの添加は、保磁力を向上させるが、残留磁束密度の低下を招くという問題がある。   Dy, Tb, and Ho have the effect of increasing the coercive force as the amount added increases. However, since Dy, Tb, and Ho are rare elements, the practical application of electric vehicles will progress in the future. As demand for highly heat-resistant magnets used in electric vehicle motors and the like expands, there is a concern that raw material costs will increase as a result of tight Dy resources. For this reason, development of the Dy usage-amount reduction technology in a high coercive force magnet is strongly demanded. On the other hand, the addition of Al or Cu improves the coercive force, but has the problem of reducing the residual magnetic flux density.

本発明は、上記課題を解決するためになされたものであり、その主たる目的は、AlやCuを添加した場合の保磁力と同等の保磁力を発揮しつつ、AlやCuを添加した場合よりも残留磁束密度を向上させた希土類焼結磁石を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its main purpose is to exhibit a coercive force equivalent to the coercive force when Al or Cu is added, as compared with the case where Al or Cu is added. Another object is to provide a rare earth sintered magnet with improved residual magnetic flux density.

本発明の希土類焼結磁石は、12.0原子%〜15.0原子%の希土類元素(Nd、Pr、Gd、Tb、Dy、及びHoからなる群から選択された少なくとも一種の元素であり、Nd及び/又はPrを50%以上含む)と、5.5原子%〜8.5原子%の硼素(B)と、0.005原子%〜0.40原子%のニッケル(Ni)と、残部の鉄(Fe)及び不可避的不純物とを含有する。   The rare earth sintered magnet of the present invention is at least one element selected from the group consisting of 12.0 atomic% to 15.0 atomic% rare earth element (Nd, Pr, Gd, Tb, Dy, and Ho, Nd and / or Pr at least 50%), 5.5 atomic% to 8.5 atomic% boron (B), 0.005 atomic% to 0.40 atomic% nickel (Ni), and the balance Of iron (Fe) and inevitable impurities.

好ましい実施形態において、Niの組成比率が0.005原子%〜0.20原子%である。   In a preferred embodiment, the composition ratio of Ni is 0.005 atomic% to 0.20 atomic%.

好ましい実施形態において、不可避的不純物はAlを含み、前記Alの含有量は0.4原子%以下である。   In a preferred embodiment, the inevitable impurities include Al, and the Al content is 0.4 atomic% or less.

本発明による他の希土類焼結磁石の製造方法は、12.0原子%〜15.0原子%の希土類元素(Nd、Pr、Gd、Tb、Dy、及びHoからなる群から選択された少なくとも一種の元素であり、Nd及び/又はPrを50%以上含む)と、5.5原子%〜8.5原子%の硼素(B)と、0.005原子%〜0.40原子%のNiと、残部の鉄(Fe)及び不可避的不純物とを含有する合金を用意する工程と、前記合金を粉砕して粉末を作製する工程と、前記粉末を焼結する工程とを含む。   Another method of manufacturing a rare earth sintered magnet according to the present invention is at least one selected from the group consisting of 12.0 atomic% to 15.0 atomic% of rare earth elements (Nd, Pr, Gd, Tb, Dy, and Ho). Element containing Nd and / or Pr of 50% or more), 5.5 atomic% to 8.5 atomic% boron (B), 0.005 atomic% to 0.40 atomic% Ni, And a step of preparing an alloy containing the remaining iron (Fe) and inevitable impurities, a step of pulverizing the alloy to produce a powder, and a step of sintering the powder.

本発明による希土類焼結磁石の製造方法は、12.0原子%〜15.0原子%の希土類元素(Nd、Pr、Gd、Tb、Dy、及びHoからなる群から選択された少なくとも一種の元素であり、Nd及び/又はPrを50%以上含む)と、5.5原子%〜8.5原子%の硼素(B)と、残部の鉄(Fe)及び不可避的不純物とを含有する合金を用意する工程と、前記合金を粉砕して粉末を作製する工程と、前記粉末に対して0.005原子%〜0.40原子%のニッケル(Ni)を添加し、Ni添加粉末を作製する工程と、前記Ni添加粉末を焼結する工程とを含む。   The method for producing a rare earth sintered magnet according to the present invention comprises 12.0 atomic% to 15.0 atomic% of a rare earth element (at least one element selected from the group consisting of Nd, Pr, Gd, Tb, Dy, and Ho) An alloy containing Nd and / or Pr of 50% or more), 5.5 atomic% to 8.5 atomic% of boron (B), and the balance of iron (Fe) and inevitable impurities. A step of preparing, a step of pulverizing the alloy to prepare a powder, a step of adding 0.005 atomic% to 0.40 atomic% of nickel (Ni) to the powder, and preparing a Ni-added powder And a step of sintering the Ni-added powder.

本発明の希土類焼結磁石は、微量に添加したNiの働きにより、CuやAlを添加した従来のR−Fe−B系焼結磁石と同等の保磁力を発現するとともに、それらの磁石よりも高い残留磁束密度を示すことができる。   The rare earth sintered magnet of the present invention exhibits a coercive force equivalent to that of a conventional R—Fe—B based sintered magnet to which Cu or Al is added due to the action of Ni added in a small amount, and more than those magnets. A high residual magnetic flux density can be shown.

従来、保磁力を高める目的で、種々の元素を添加する試みが行われてきた。しかしながら、比較の対象となるR−T−B系焼結磁石には、不可避的不純物とともに、当然の如くAlやCuが含有されていた。これらの元素を含有しない場合に得られる保磁力が余りに低かったためである。   Conventionally, attempts have been made to add various elements for the purpose of increasing the coercive force. However, the RTB-based sintered magnet to be compared contained Al and Cu as a matter of course along with inevitable impurities. This is because the coercive force obtained when these elements are not contained is too low.

しかしながら、本発明者は、敢えてAlやCuの添加を行わないNd−Fe−B系焼結磁石の基本三元組成に対して、種々の元素を微量に添加したところ、微量のNiを添加した場合に、残留磁束密度を低下させることなく保磁力を大幅に向上させる効果が発現することを見出し、本発明を完成するに至った。   However, the present inventor added various amounts of various elements to the basic ternary composition of the Nd—Fe—B based sintered magnet in which no addition of Al or Cu was intentionally added. In this case, the present inventors have found that the effect of greatly improving the coercive force is exhibited without reducing the residual magnetic flux density, and the present invention has been completed.

なお、従来、NiをR−T−B系焼結磁石に添加する試みが全く行われてこなかったわけではない。例えば特許文献3〜5には、添加の目的は異なるとはいえ、NiをR−T−B系焼結磁石に添加することが記載されている。しかしながら、添加の対象となるR−T−B系焼結磁石には、当然にAlやCuが(意図的又は不可避的に)添加されていたため、Ni添加による保磁力上昇効果は、AlやCuあるいはDyなどによる保磁力上昇効果に埋もれてしまって観察されなかった。しかも、後に詳しく説明するように、本願発明者が見出したNi添加効果は、その添加量を極めて低く、かつ狭い範囲に抑えることによって得られるものであり、特許文献2〜4などに教示されている添加量では、Ni添加効果を適切に得ることはできなかった。   Conventionally, there has been no attempt to add Ni to an R-T-B sintered magnet. For example, Patent Documents 3 to 5 describe that Ni is added to an RTB-based sintered magnet, although the purpose of addition is different. However, since R and T-B sintered magnets to be added had naturally added Al or Cu (intentionally or unavoidably), the effect of increasing the coercive force by adding Ni is not limited to Al or Cu. Or it was buried in the coercive force increase effect by Dy etc. and was not observed. Moreover, as will be described in detail later, the Ni addition effect found by the inventors of the present application is obtained by suppressing the addition amount to an extremely low and narrow range, and is taught in Patent Documents 2 to 4 and the like. With the added amount, the Ni addition effect could not be properly obtained.

このように本発明は、基本的三元組成を有するR−T−B系焼結磁石を比較例として用い、しかも、極めて微量のNiを添加することによって初めてわかる新しい知見に基づいてなされたものである。   As described above, the present invention was made on the basis of new knowledge that can be understood only by adding an extremely small amount of Ni using an RTB-based sintered magnet having a basic ternary composition as a comparative example. It is.

本願発明者の検討によると、添加したNiは、主に焼結磁石の粒界相中に存在するものと考えられる。R−T−B系焼結磁石では、その保磁力の発現に粒界相が重要な役割を担っていることが知られており、添加した微量のNiが粒界相中において保磁力を高める何らかの作用をしていると推定される。しかしながら、Ni添加による保磁力上昇メカニズムの詳細は、現在のところ不明であり、本願発明者は鋭意解明を試みつつある。   According to the study of the present inventor, the added Ni is considered to exist mainly in the grain boundary phase of the sintered magnet. In RTB-based sintered magnets, it is known that the grain boundary phase plays an important role in the expression of the coercive force, and a small amount of added Ni increases the coercive force in the grain boundary phase. Presumed to have some effect. However, the details of the coercivity increasing mechanism due to the addition of Ni are currently unknown, and the inventor of the present application is eagerly trying to elucidate.

以下、本発明の希土類焼結磁石の好ましい実施形態を説明する。   Hereinafter, preferred embodiments of the rare earth sintered magnet of the present invention will be described.

(実施形態1)
[原料合金]
まず、12.0原子%〜15.0原子%の希土類元素Rと、5.5原子%〜8.5原子%のBと、0.005原子%〜0.40原子%のNiと、残部Fe及び不可避的不純物とを含有する原料合金を用意する。ここで、Rは、Nd、Pr、Gd、Tb、Dy、及びHoからなる群から選択された少なくとも一種の元素であり、Nd及び/又はPrを50%以上含む。
(Embodiment 1)
[Raw material alloy]
First, 12.0 atomic% to 15.0 atomic% of rare earth element R, 5.5 atomic% to 8.5 atomic% of B, 0.005 atomic% to 0.40 atomic% of Ni, and the balance A raw material alloy containing Fe and inevitable impurities is prepared. Here, R is at least one element selected from the group consisting of Nd, Pr, Gd, Tb, Dy, and Ho, and includes 50% or more of Nd and / or Pr.

R、B、Feの組成比率が上記範囲から外れると、R−T−B系焼結磁石の基本的な組織構造が得られず、所望の磁石特性を発揮させることができない。本発明では、0.005原子%〜0.40原子%という極めて微量のNiを添加することにより、基本三元組成のR−Fe−B系希土類磁石に比べ、飽和磁束密度をほとんど低下させることなく、保磁力を2倍以上に増加させることが可能である。添加するNiの組成比率が0.005原子%未満になると、保磁力上昇効果が得られず、逆に0.40原子%を超えると、保磁力が低下してしまうという問題が発生する。このため、Niの組成比率は0.005原子%以上0.40原子%以下の範囲に設定される。Niの組成比率の好ましい範囲は0.005原子%以上0.20原子%以下である。   If the composition ratio of R, B, and Fe is out of the above range, the basic structure of the RTB-based sintered magnet cannot be obtained, and desired magnet characteristics cannot be exhibited. In the present invention, by adding an extremely small amount of Ni of 0.005 atomic% to 0.40 atomic%, the saturation magnetic flux density is almost reduced as compared with an R—Fe—B rare earth magnet having a basic ternary composition. In addition, the coercive force can be increased more than twice. When the composition ratio of Ni to be added is less than 0.005 atomic%, the effect of increasing the coercive force cannot be obtained. Conversely, when the composition ratio exceeds 0.40 atomic%, the coercive force decreases. For this reason, the composition ratio of Ni is set in the range of 0.005 atomic% or more and 0.40 atomic% or less. A preferable range of the composition ratio of Ni is 0.005 atomic% or more and 0.20 atomic% or less.

なお、Ni添加のタイミングは、焼結工程前であれば任意である。原料合金の溶解時に添加してもよいし、Ni元素を含まない母合金を用意し、ジェットミルによって粉砕する前、又は粉砕した後に微粉末として添加してもよい。Niの微粉末は、Niメタルを粉砕することによって作製されたものであってもよいし、Ni酸化物の粉末であってもよい。粉末状態のNiメタル又はNi化合物の平均粒径は、例えば0.5μm〜50μmに設定され得る。このような粒径範囲にあれば、他の合金粉末と混合して適正な焼結体を得ることができるからである。   The timing of adding Ni is arbitrary as long as it is before the sintering step. You may add at the time of melt | dissolution of a raw material alloy, you may prepare the mother alloy which does not contain Ni element, and may add as a fine powder before grind | pulverizing by a jet mill, or after grind | pulverizing. The fine Ni powder may be produced by pulverizing Ni metal, or may be a Ni oxide powder. The average particle diameter of the Ni metal or Ni compound in the powder state can be set to 0.5 μm to 50 μm, for example. This is because, within such a particle size range, an appropriate sintered body can be obtained by mixing with other alloy powders.

なお、本発明の焼結磁石は、不可避的不純物としてAlやCuを含有していてもよいが、Alの含有量が増加すると、残留磁束密度が低下するため、Alの含有量は0.4原子%以下に調節することが好ましい。また、添加するNiのうちの50原子%以下を、他の金属元素に置き換えてもよい。例えば、Niの50原子%以下を、Ag、Pd、Pt、Cu、Au、Ga、Inからなる群から選択された少なくとも一種の元素で置換してもよい。   The sintered magnet of the present invention may contain Al and Cu as inevitable impurities. However, when the Al content increases, the residual magnetic flux density decreases, so the Al content is 0.4. It is preferable to adjust to atomic% or less. Further, 50 atomic% or less of Ni to be added may be replaced with another metal element. For example, 50 atomic% or less of Ni may be substituted with at least one element selected from the group consisting of Ag, Pd, Pt, Cu, Au, Ga, and In.

本発明による焼結磁石の製造に用いられる母合金を作製するには、例えばインゴット鋳造法や急冷法(ストリップキャスティング法や遠心鋳造法など)を用いることができる。以下、ストリップキャスティング法を用いる場合を例にとり、原料合金の作製方法を説明する。   In order to produce a mother alloy used for manufacturing a sintered magnet according to the present invention, for example, an ingot casting method or a rapid cooling method (such as a strip casting method or a centrifugal casting method) can be used. Hereinafter, a method for producing a raw material alloy will be described by taking as an example the case of using a strip casting method.

まず、上記組成を有する合金をアルゴン雰囲気中において高周波溶解によって溶融し、合金溶湯を形成する。次に、この合金溶湯を1350℃に保持した後、単ロール法によって合金溶湯を急冷し、例えば厚さ約0.3mmのフレーク状合金鋳塊を得る。このときの急冷条件は、例えばロール周速度約1m/秒、冷却速度500℃/秒、過冷却200℃とする。こうして作製した急冷合金鋳片を、次の水素粉砕前に、1〜10mmの大きさのフレーク状に粉砕する。なお、ストリップキャスト法による原料合金の製造方法は、例えば、米国特許第5、383、978号明細書に開示されている。   First, an alloy having the above composition is melted by high frequency melting in an argon atmosphere to form a molten alloy. Next, after this molten alloy is maintained at 1350 ° C., the molten alloy is rapidly cooled by a single roll method to obtain, for example, a flaky alloy ingot having a thickness of about 0.3 mm. The rapid cooling conditions at this time are, for example, a roll peripheral speed of about 1 m / second, a cooling speed of 500 ° C./second, and supercooling of 200 ° C. The quenched alloy slab thus produced is pulverized into flakes having a size of 1 to 10 mm before the next hydrogen pulverization. In addition, the manufacturing method of the raw material alloy by a strip cast method is disclosed by US Patent 5,383,978 specification, for example.

このような原料合金の段階において、既にNiが添加されていても良いし、以下に説明する粉砕工程の後に添加されても良い。   In such a raw material alloy stage, Ni may already be added, or may be added after the pulverization step described below.

[粗粉砕工程]
上記のフレーク状に粗く粉砕された原料合金鋳片を水素炉の内部へ挿入する。次に、水素炉の内部で水素脆化処理(以下、「水素粉砕処理」と称する場合がある)工程を行なう。水素粉砕後の粗粉砕合金粉末を水素炉から取り出す際、粗粉砕粉が大気と接触しないように、不活性雰囲気下で取り出し動作を実行することが好ましい。そうすれば、粗粉砕粉が酸化・発熱することが防止され、磁石の磁気特性が向上するからである。
[Coarse grinding process]
The raw material alloy slab coarsely crushed into flakes is inserted into the hydrogen furnace. Next, a hydrogen embrittlement process (hereinafter sometimes referred to as “hydrogen pulverization process”) is performed inside the hydrogen furnace. When the coarsely pulverized alloy powder after hydrogen pulverization is taken out from the hydrogen furnace, it is preferable to perform the take-out operation in an inert atmosphere so that the coarsely pulverized powder does not come into contact with the atmosphere. This is because the coarsely pulverized powder is prevented from oxidizing and generating heat, and the magnetic properties of the magnet are improved.

水素粉砕によって、希土類合金は0.1mm〜数mm程度の大きさに粉砕され、その平均粒径は500μm以下となる。水素粉砕後、脆化した原料合金をロータリクーラ等の冷却装置によって、より細かく解砕するとともに冷却することが好ましい。比較的高い温度状態のまま原料を取り出す場合は、ロータリクーラ等による冷却処理の時間を相対的に長くすれば良い。   By hydrogen pulverization, the rare earth alloy is pulverized to a size of about 0.1 mm to several mm, and the average particle size becomes 500 μm or less. After the hydrogen pulverization, it is preferable that the embrittled raw material alloy is further crushed and cooled by a cooling device such as a rotary cooler. When the raw material is taken out in a relatively high temperature state, the time for the cooling process by a rotary cooler or the like may be made relatively long.

[微粉砕工程]
次に、粗粉砕粉に対してジェットミル粉砕装置を用いて微粉砕を実行する。本実施形態で使用するジェットミル粉砕装置にはサイクロン分級機が接続されている。ジェットミル粉砕装置は、粗粉砕工程で粗く粉砕された希土類合金(粗粉砕粉)の供給を受け、粉砕機内で粉砕する。粉砕機内で粉砕された粉末はサイクロン分級機を経て回収タンクに集められる。こうして、0.1〜20μm程度の微粉末を得ることができる。このような微粉砕に用いる粉砕装置は、ジェットミルに限定されず、アトライタやボールミルであってもよい。
[Fine grinding process]
Next, the coarsely pulverized powder is finely pulverized using a jet mill pulverizer. A cyclone classifier is connected to the jet mill crusher used in the present embodiment. The jet mill pulverizer is supplied with the rare earth alloy (coarse pulverized powder) coarsely pulverized in the coarse pulverization step, and pulverizes in the pulverizer. The powder pulverized in the pulverizer is collected in a collection tank through a cyclone classifier. Thus, a fine powder of about 0.1 to 20 μm can be obtained. The pulverizer used for such fine pulverization is not limited to a jet mill, and may be an attritor or a ball mill.

[プレス成形]
本実施形態では、上記方法で作製された磁性粉末に対し、ロッキングミキサー内で潤滑剤を例えば0.3wt%添加・混合し、潤滑剤で合金粉末粒子の表面を被覆する。次に、上述の方法で作製した磁性粉末を公知のプレス装置を用いて配向磁界中で成形する。印加する磁界の強度は、例えば1テスラ(T)である。
[Press molding]
In the present embodiment, for example, 0.3 wt% of a lubricant is added to and mixed with the magnetic powder produced by the above method in a rocking mixer, and the surface of the alloy powder particles is coated with the lubricant. Next, the magnetic powder produced by the above-described method is molded in an orientation magnetic field using a known press machine. The intensity of the applied magnetic field is, for example, 1 Tesla (T).

[焼結工程]
上記の粉末成形体に対して、650〜1000℃の範囲内の温度で10〜240分間保持する工程と、その後、上記の保持温度よりも高い温度(例えば1000〜1100℃)で焼結を更に進める工程とを順次行なうことが好ましい。焼結時、特に液相が生成されるとき(温度が650〜1000℃の範囲内にあるとき)、粒界相中のRリッチ相が融け始め、液相が形成される。その後、焼結が進行し、焼結磁石が形成される。焼結後、必要に応じて、時効処理が行われる。
[Sintering process]
With respect to said powder molded object, the process hold | maintained for 10 to 240 minutes at the temperature within the range of 650-1000 degreeC, and sintering further by the temperature (for example, 1000-1100 degreeC) higher than said holding temperature after that. It is preferable to sequentially perform the proceeding steps. During sintering, particularly when a liquid phase is generated (when the temperature is in the range of 650 to 1000 ° C.), the R-rich phase in the grain boundary phase begins to melt and a liquid phase is formed. Thereafter, sintering proceeds and a sintered magnet is formed. After sintering, an aging treatment is performed as necessary.

以下、本発明の実施例を説明する。
(実施例1)
Nd:14.1原子%、B:6.1原子%、Ni:0.05〜0.6原子%、Al:0.05原子%、残部Feからなる合金を用意し、上述した実施形態における製造方法により、焼結磁石を作製した(実施例1)。一方、Niを添加しないこと以外では実施例1と同様の組成を有する母合金を用い、実施例1と同様にして比較例1を作製した。
Examples of the present invention will be described below.
Example 1
An alloy consisting of Nd: 14.1 atomic%, B: 6.1 atomic%, Ni: 0.05 to 0.6 atomic%, Al: 0.05 atomic%, and the balance Fe is prepared. A sintered magnet was produced by the production method (Example 1). On the other hand, Comparative Example 1 was produced in the same manner as in Example 1 except that a mother alloy having the same composition as in Example 1 was used except that Ni was not added.

プレス成形前における粉末の平均粒径は4.4〜4.6μmであった。成形は、1.0Tの磁場中で行った。成形後、1000〜1100℃で4時間の焼結工程、及び580〜660℃で2時間の時効処理を行った。得られた焼結体は、11mm×10mm×18mmの直方体形状を有していた。   The average particle size of the powder before press molding was 4.4 to 4.6 μm. Molding was performed in a 1.0 T magnetic field. After molding, a sintering process at 1000 to 1100 ° C. for 4 hours and an aging treatment at 580 to 660 ° C. for 2 hours were performed. The obtained sintered body had a rectangular parallelepiped shape of 11 mm × 10 mm × 18 mm.

図1は、Ni添加量と磁石特性との関係を示すグラフである。グラフの左側縦軸は保磁力HcJ(kA/m)であり、右側縦軸は残留磁束密度Br(T)である。保磁力の測定値は「○」で示し、残留磁束密度Brの測定値は「◆」で示している。 FIG. 1 is a graph showing the relationship between the amount of added Ni and the magnet characteristics. The left vertical axis of the graph is the coercive force H cJ (kA / m), and the right vertical axis is the residual magnetic flux density B r (T). Measurement of coercivity are indicated by "○", the measured value of the residual magnetic flux density B r is shown by "◆".

図1からわかるように、僅か0.05原子%のNiを添加するだけで、比較例1(Ni無添加)の保磁力HcJ(約340kA/m)に比べて2倍以上の値(約約800kA/m)に増加することがわかる。図1の例では、Ni添加量が0.05原子%程度で保磁力HcJはピーク値を示している。Ni添加量が0.4原子%を超えて大きくなると、Ni添加の効果は徐々に低下してゆく。一方、残留磁束密度Brは、Ni添加量が0.4原子%以下であれば、ほとんど変化しない。 As can be seen from FIG. 1, by adding only 0.05 atomic% of Ni, the value (about approx. 2 times) compared to the coercive force H cJ (about 340 kA / m) of Comparative Example 1 (without Ni addition) It can be seen that it increases to about 800 kA / m). In the example of FIG. 1, the coercive force H cJ shows a peak value when the Ni addition amount is about 0.05 atomic%. When the amount of added Ni exceeds 0.4 atomic%, the effect of adding Ni gradually decreases. On the other hand, the residual magnetic flux density B r is, Ni amount is equal to or less than 0.4 atomic%, hardly changes.

更に詳しい実験によると、Ni添加の効果は、Ni添加量が0.005原子%以上の場合に発現することがわかった。以上のことから、本発明では、Ni添加量を0.005原子%以上0.4原子%以下の範囲に設定している。   According to a further detailed experiment, it has been found that the effect of Ni addition is manifested when the Ni addition amount is 0.005 atomic% or more. From the above, in the present invention, the amount of Ni added is set in the range of 0.005 atomic% to 0.4 atomic%.

(実施例2)
Nd:14.1原子%、B:6.1原子%、残部Feからなる合金を用意して、上述した実施形態の製造方法によって焼結磁石を作製した(実施例2及び比較例2)。この例では、プレス成形工程前における上記合金の粉末に対して0.02〜0.5原子%のNi粉末を混合し、比較例2では、Ni粉末を混合しなかった。Niは、Niメタル粉末又はNiO粉末の2通りの形態で合金粉末と混合した。
(Example 2)
An alloy composed of Nd: 14.1 atomic%, B: 6.1 atomic% and the balance Fe was prepared, and sintered magnets were manufactured by the manufacturing method of the above-described embodiment (Example 2 and Comparative Example 2). In this example, 0.02 to 0.5 atomic% of Ni powder was mixed with the powder of the alloy before the press molding step, and in Comparative Example 2, Ni powder was not mixed. Ni was mixed with the alloy powder in two forms, Ni metal powder or NiO powder.

プレス成形前における粉末の平均粒径は4.6μmであった。プレス成形は1.0Tの磁場中で行った。プレス成形後、1000〜1100℃で4時間の焼結工程、及び、580〜620℃で2時間の時効処理を行った。得られた焼結体は、11mm×10mm×18mmの直方体形状を有していた。   The average particle size of the powder before press molding was 4.6 μm. The press molding was performed in a 1.0 T magnetic field. After the press molding, a sintering process at 1000 to 1100 ° C. for 4 hours and an aging treatment at 580 to 620 ° C. for 2 hours were performed. The obtained sintered body had a rectangular parallelepiped shape of 11 mm × 10 mm × 18 mm.

図2は、Ni添加量と保磁力HcJとの関係を示すグラフである。図2では、Niメタル粉末を添加した場合の測定結果を「○」で示し、NiO粉末を添加した場合の測定結果は「×」で示している。 FIG. 2 is a graph showing the relationship between the Ni addition amount and the coercive force H cJ . In FIG. 2, the measurement result when the Ni metal powder is added is indicated by “◯”, and the measurement result when the NiO powder is added is indicated by “x”.

図1及び図2を比較してわかるように、Ni微量添加の効果は、添加のタイミングに依存していない。Ni粉砕する前の合金段階から添加していてもよいし、また、粉末化した後に添加してもよい。また、図2から明らかなように、Ni添加は、酸化物などのNi化合物の形態で添加しても、Niメタルの状態で添加してもよい。   As can be seen by comparing FIG. 1 and FIG. 2, the effect of adding a small amount of Ni does not depend on the timing of addition. It may be added from the alloy stage before Ni grinding, or may be added after powdering. As is clear from FIG. 2, Ni may be added in the form of a Ni compound such as an oxide or in the form of Ni metal.

(実施例3)
以下の表1に示す組成を有する合金を用意して、上述した実施形態の製造方法によって焼結磁石(実施例3及び比較例3)を作製した。
(Example 3)
An alloy having the composition shown in Table 1 below was prepared, and sintered magnets (Example 3 and Comparative Example 3) were prepared by the manufacturing method of the above-described embodiment.

プレス成形前における粉末の平均粒径は4.5μmであった。成形は、1.0Tの磁場中で行った。成形後、1000〜1100℃で4時間の焼結工程、及び、500〜620℃で2時間の時効処理を行った。得られた焼結体は、11mm×10mm×18mmの直方体形状を有していた。   The average particle size of the powder before press molding was 4.5 μm. Molding was performed in a 1.0 T magnetic field. After molding, a sintering process at 1000 to 1100 ° C. for 4 hours and an aging treatment at 500 to 620 ° C. for 2 hours were performed. The obtained sintered body had a rectangular parallelepiped shape of 11 mm × 10 mm × 18 mm.

実施例3及び比較例3の組成及び磁気特性を、以下の表1に示す。   The composition and magnetic properties of Example 3 and Comparative Example 3 are shown in Table 1 below.

Figure 0005235264
Figure 0005235264

表1からわかるように、Ni以外にCuやAgが添加されていても、高い残留磁束密度Br及び保磁力HcJを得ることができる。ただし、NiおよびCuの総量が0.4原子%よりも多い0.6原子%の場合は、Niが添加されていても保磁力HcJが低下した。 As can be seen from Table 1, be added Cu or Ag besides Ni, it is possible to obtain a high residual magnetic flux density B r and coercivity H cJ. However, in the case where the total amount of Ni and Cu was 0.6 atomic%, which was larger than 0.4 atomic%, the coercive force H cJ was lowered even when Ni was added.

(実施例4)
Nd:14.1原子%、B:6.1原子%、Ni:0.05原子%、Al:0.05〜0.5原子%、残部Feからなる合金を用意して、上述した実施形態の製造方法によって焼結磁石を作製した(実施例4及び比較例4)。
Example 4
The above-described embodiment is prepared by preparing an alloy including Nd: 14.1 atomic%, B: 6.1 atomic%, Ni: 0.05 atomic%, Al: 0.05 to 0.5 atomic%, and the balance Fe. Sintered magnets were produced by the manufacturing method (Example 4 and Comparative Example 4).

プレス成形前における粉末の平均粒径は4.5〜4.7μmであった。成形は、1.0Tの磁場中で行った。成形後、1000〜1060℃で4時間の焼結工程、及び、600〜620℃で2時間の時効処理を行った。得られた焼結体は、11mm×10mm×18mmの直方体形状を有していた。   The average particle size of the powder before press molding was 4.5 to 4.7 μm. Molding was performed in a 1.0 T magnetic field. After the molding, a sintering process for 4 hours at 1000 to 1060 ° C. and an aging treatment for 2 hours at 600 to 620 ° C. were performed. The obtained sintered body had a rectangular parallelepiped shape of 11 mm × 10 mm × 18 mm.

図3は、残留磁束密度BrとAl添加量との関係を示すグラフである。Al添加量が0.40原子%を超えると、飽和磁束密度が低くなり、Ni微量添加の効果が損なわれるおそれがあることがわかる。 FIG. 3 is a graph showing the relationship between the residual magnetic flux density Br and the Al addition amount. It can be seen that when the Al addition amount exceeds 0.40 atomic%, the saturation magnetic flux density is lowered, and the effect of adding a small amount of Ni may be impaired.

(実施例5)
Nd:11.4原子%、Pr;2.8原子%、B:6.1原子%、Ni:0.05原子%、残部Feからなる合金を用意し、実施例1と同様の工程により、実施例5を作製した。実施例5について磁石特性を測定したところ、保磁力HcJは855kA/m、残留磁束密度Brは1.39Tであった。Nd以外にPrなどの希土類元素が添加される場合でも本発明の効果を奏することができることを確認した。
(Example 5)
An alloy consisting of Nd: 11.4 atomic%, Pr: 2.8 atomic%, B: 6.1 atomic%, Ni: 0.05 atomic%, and the balance Fe is prepared. Example 5 was produced. Measurement of the magnetic properties for Example 5, the coercive force H cJ is 855kA / m, residual flux density B r was 1.39T. It was confirmed that the effects of the present invention can be achieved even when a rare earth element such as Pr is added in addition to Nd.

本発明の希土類焼結磁石は、CuやAlが添加された従来のR−Fe−B系希土類焼結磁石と同等の保磁力を発現するとともに、それらの磁石よりも高い残留磁束密度を示す。このため、本発明の希土類焼結磁石は、保磁力及び残留磁束密度の両方が高い値を有することの求められる種々の用途に好適に用いられる。   The rare earth sintered magnet of the present invention exhibits a coercive force equivalent to that of a conventional R—Fe—B rare earth sintered magnet to which Cu or Al is added, and exhibits a higher residual magnetic flux density than those magnets. For this reason, the rare earth sintered magnet of the present invention is suitably used for various applications in which both coercive force and residual magnetic flux density are required to have high values.

Ni添加量と磁石特性との関係を示すグラフである。グラフの左側縦軸は保磁力HcJ(kA/m)であり、右側縦軸は残留磁束密度Br(T)である。保磁力の測定値は「○」で示し、残留磁束密度Brの測定値は「◆」で示している。It is a graph which shows the relationship between Ni addition amount and a magnet characteristic. The left vertical axis of the graph is the coercive force H cJ (kA / m), and the right vertical axis is the residual magnetic flux density B r (T). Measurement of coercive force indicated by "○", the measured value of the residual magnetic flux density B r is shown by "◆". Ni添加量と保磁力HcJとの関係を示すグラフである。図2では、Niメタル粉末を添加した場合の測定結果を「○」で示し、NiO粉末を添加した場合の測定結果は「×」で示している。It is a graph which shows the relationship between Ni addition amount and coercive force HcJ . In FIG. 2, the measurement result when the Ni metal powder is added is indicated by “◯”, and the measurement result when the NiO powder is added is indicated by “x”. 残留磁束密度BrとAl添加量との関係を示すグラフである。It is a graph which shows the relationship between residual magnetic flux density Br and Al addition amount.

Claims (3)

12.0原子%〜15.0原子%の希土類元素(Nd及び/又はPr)と、
5.5原子%〜8.5原子%の硼素(B)と、
0.02原子%〜0.1原子%のニッケル(Ni)と、
残部の鉄(Fe)及び不可避的不純物と、
を含有し、
不可避的不純物として含まれるAlの含有量は0.4原子%以下である、希土類焼結磁石。
12.0 atomic% to 15.0 atomic% of a rare earth element (Nd and / or Pr),
5.5 atomic percent to 8.5 atomic percent boron (B),
0.02 atomic% to 0.1 atomic% nickel (Ni ) ,
The balance iron (Fe) and inevitable impurities;
Containing
A rare earth sintered magnet in which the content of Al contained as an inevitable impurity is 0.4 atomic% or less.
12.0原子%〜15.0原子%の希土類元素(Nd及び/又はPr)と、5.5原子%〜8.5原子%の硼素(B)と、0.02原子%〜0.1原子%のニッケル(Ni)と、残部の鉄(Fe)及び不可避的不純物とを含有し、不可避的不純物として含まれるAlの含有量が0.4原子%以下である合金を用意する工程と、
前記合金を粉砕して粉末を作製する工程と、
前記粉末を焼結する工程と、
を含む希土類焼結磁石の製造方法。
12.0 atomic% to 15.0 atomic% rare earth element (Nd and / or Pr), 5.5 atomic% to 8.5 atomic% boron (B), 0.02 atomic% to 0.1 Preparing an alloy containing atomic% nickel (Ni ) , the remaining iron (Fe) and unavoidable impurities, and the content of Al contained as unavoidable impurities is 0.4 atomic% or less; ,
Crushing the alloy to produce a powder;
Sintering the powder;
A method for producing a rare earth sintered magnet comprising:
12.0原子%〜15.0原子%の希土類元素(Nd及び/又はPr)と、5.5原子%〜8.5原子%の硼素(B)と、残部の鉄(Fe)及び不可避的不純物とを含有し、不可避的不純物として含まれるAlの含有量が0.4原子%以下である合金を用意する工程と、
前記合金を粉砕して粉末を作製する工程と、
前記粉末に対して0.02原子%〜0.1原子%のニッケル(Ni)を添加し、Ni添加粉末を作製する工程と、
前記Ni添加粉末を焼結する工程と、
を含む希土類焼結磁石の製造方法。
12.0 atomic% to 15.0 atomic% of rare earth elements (Nd and / or Pr), 5.5 atomic% to 8.5 atomic% of boron (B), the balance iron (Fe) and inevitable A step of preparing an alloy containing impurities and having an Al content of 0.4 atomic% or less contained as unavoidable impurities;
Crushing the alloy to produce a powder;
Adding 0.02 atomic% to 0.1 atomic% of nickel (Ni ) to the powder to produce a Ni-added powder;
Sintering the Ni-added powder;
A method for producing a rare earth sintered magnet comprising:
JP2005233110A 2005-07-15 2005-08-11 Rare earth sintered magnet and manufacturing method thereof Active JP5235264B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005233110A JP5235264B2 (en) 2005-08-11 2005-08-11 Rare earth sintered magnet and manufacturing method thereof
CN2006800009480A CN101031984B (en) 2005-07-15 2006-07-14 Rare earth sintered magnet and method for production thereof
US11/575,928 US9551052B2 (en) 2005-07-15 2006-07-14 Rare earth sintered magnet and method for production thereof
PCT/JP2006/314076 WO2007010860A1 (en) 2005-07-15 2006-07-14 Rare earth sintered magnet and method for production thereof
DE112006000070T DE112006000070T5 (en) 2005-07-15 2006-07-14 Rare earth sintered magnet and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233110A JP5235264B2 (en) 2005-08-11 2005-08-11 Rare earth sintered magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007049010A JP2007049010A (en) 2007-02-22
JP5235264B2 true JP5235264B2 (en) 2013-07-10

Family

ID=37851581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233110A Active JP5235264B2 (en) 2005-07-15 2005-08-11 Rare earth sintered magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5235264B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274781B2 (en) 2007-03-22 2013-08-28 昭和電工株式会社 R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678582B2 (en) * 1985-03-26 1994-10-05 住友特殊金属株式会社 Permanent magnet material
JPS63241141A (en) * 1987-12-28 1988-10-06 Sumitomo Special Metals Co Ltd Ferromagnetic alloy
JPS63241142A (en) * 1987-12-28 1988-10-06 Sumitomo Special Metals Co Ltd Ferromagnetic alloy
JP2586198B2 (en) * 1990-09-26 1997-02-26 三菱マテリアル株式会社 Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance

Also Published As

Publication number Publication date
JP2007049010A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
CN109964290B (en) Method for producing R-T-B sintered magnet
JP4635832B2 (en) Manufacturing method of rare earth sintered magnet
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
US9551052B2 (en) Rare earth sintered magnet and method for production thereof
WO2012002059A1 (en) R-t-b type rare earth permanent magnet, motor, automobile, power generator, and wind power generation system
JP2010121167A (en) Permanent magnet, permanent magnet motor with the use of the same, and generator
WO2010113371A1 (en) Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP4900085B2 (en) Rare earth magnet manufacturing method
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
US7390369B2 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP6760160B2 (en) Manufacturing method of RTB-based sintered magnet
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4483630B2 (en) Manufacturing method of rare earth sintered magnet
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4802927B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JP7476601B2 (en) Manufacturing method of RTB based sintered magnet
JP4415551B2 (en) Rare earth alloy, rare earth sintered magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110322

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350