JPS63241142A - Ferromagnetic alloy - Google Patents

Ferromagnetic alloy

Info

Publication number
JPS63241142A
JPS63241142A JP62329641A JP32964187A JPS63241142A JP S63241142 A JPS63241142 A JP S63241142A JP 62329641 A JP62329641 A JP 62329641A JP 32964187 A JP32964187 A JP 32964187A JP S63241142 A JPS63241142 A JP S63241142A
Authority
JP
Japan
Prior art keywords
alloy
ferromagnetic alloy
permanent magnet
elements
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62329641A
Other languages
Japanese (ja)
Other versions
JPH0535211B2 (en
Inventor
Masato Sagawa
眞人 佐川
Setsuo Fujimura
藤村 節夫
Yutaka Matsuura
裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP62329641A priority Critical patent/JPS63241142A/en
Publication of JPS63241142A publication Critical patent/JPS63241142A/en
Publication of JPH0535211B2 publication Critical patent/JPH0535211B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a ferromagnetic alloy useful as permanent magnet material, by incorporating specific amounts of rare-earth elements, such as Nd and Pr, and B into an iron base which is partly substituted by Co so as to increase coercive force, etc. CONSTITUTION:An Fe-B-R-M ferromagnetic alloy has a composition which consists of, by atomic percentage, 8-30% R (Nd and/or Pr), 2-28% B, one or more additive elements M among <=9.5% Al, <=4.5% Ti, <=9.5% V, <=8.5% Cr, <=8% Mn, <=5.5% Zr, <=5.5% Hf, <=12.5% Nb, <=10.5% Ta, <=9.5% Mo, <=7% Ge, <=2.5% Sb, <=3.5% Sn, <=5% Bi, <=8% Ni, and <=9.5% W, and the balance essentially Fe and in which a part of Fe is substituted by <=50% Co based on the whole composition. Moreover, if necessary, Nd and Pr content in R is regulated to >=50% and one or more elements among Dy, Ho, Tb, La, Ce, Gd, and Y are incorporated.

Description

【発明の詳細な説明】 本発明はFe、希土類元素を主体とする強磁性合金、特
に新規なCo添加Fe−B−R系強磁性合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ferromagnetic alloy mainly containing Fe and rare earth elements, and particularly to a novel Co-added Fe-BR-based ferromagnetic alloy.

従来から強磁性合金の一つとして永久磁石材料が知られ
ている。永久磁石材料は一般家庭の各種電気製品から、
大型コンピュータの周辺端末機まで2幅広い分野で使わ
れるきわめて重要な電気・電子材料の一つである。近年
の電気、電子機器の小型化、高効率化の要求にともない
、永久磁石材料はますます高性能化が求められるように
なった。
Permanent magnet materials have been known as one of the ferromagnetic alloys. Permanent magnet materials are used in various household electrical appliances.
It is one of the extremely important electrical and electronic materials used in a wide range of fields, including peripheral terminals for large computers. With the recent demand for smaller size and higher efficiency of electrical and electronic equipment, permanent magnet materials are required to have even higher performance.

現在の代表的な永久磁石材料はアルニコ、ハードフェラ
イトおよび希土類コバルト系磁石材料である。最近のコ
バルトの原料事情の不安定化にともない、コバルトを2
0〜30重量%含むアルニコ磁石材料の需要は減り、鉄
の酸化物を主成分とする安価なハードフェライトが磁石
材料の主流を占めるようになった。一方、希土類コバル
ト系磁石材料はコバルトを50〜65重量%も含むうえ
、希土類鉱石中にあまり含まれていないSmを使用する
ため大変高価であるが、他の磁石材料に比べて。
Current typical permanent magnet materials are alnico, hard ferrite, and rare earth cobalt based magnet materials. Due to the recent instability in the raw material situation for cobalt,
The demand for alnico magnet materials containing 0 to 30% by weight has decreased, and inexpensive hard ferrites containing iron oxide as a main component have become the mainstream of magnet materials. On the other hand, rare earth cobalt-based magnet materials contain 50 to 65% by weight of cobalt and use Sm, which is not included in rare earth ores, so they are very expensive compared to other magnet materials.

磁気特性が格段に高いため、主として小型で、付加価値
の高い磁気回路に多く使われるようになった。
Because of its extremely high magnetic properties, it has come to be used mainly in small, high-value-added magnetic circuits.

希土類を用いた磁石材料がもっと広い分野で安価に、か
つ多量に使われるようになるためには。
In order for magnetic materials using rare earth elements to be used in a wider range of fields at low cost and in large quantities.

高価なコバルトを含まず、かつ希土類金属として、鉱石
中に多量に含まれている軽希土類を主成分と、すること
が必要である。このような永久磁石材料の一つの試みと
して+ RF e Z系化合物(ただしRは希土類元素
を示す記号)が検討された。
It is necessary that it does not contain expensive cobalt and that the main component is a light rare earth metal, which is contained in large amounts in ores. + RF e Z-based compounds (where R is a symbol representing a rare earth element) have been studied as one attempt at such a permanent magnet material.

クロh (J、 J、 Croat)はPr   Fe
   の超0.4     0.6 急冷リボンが295KにてHe−2,8kOcの保磁力
を示すことを報告している(J、 J、 Croat 
 Appl。
Croat (J, J, Croat) is Pr Fe
reported that a super-0.4 0.6 quenched ribbon exhibits a coercive force of He-2,8 kOc at 295 K (J, J, Croat
Appl.

Phys、 Lctt、 37 (12) 15 De
cember 1980.1098〜1098頁)。そ
の後Nd   Fe   の超急冷リボ0.4  0.
8 ンにおいても295KにてHc= 7.45 kocの
保磁力を示すことを報告している(J、 J、 Cro
at  Appl。
Phys, Lctt, 37 (12) 15 De
cember 1980. pp. 1098-1098). After that, NdFe super-quenched ribo 0.40.
It has been reported that the coercive force of Hc = 7.45 koc is exhibited at 295 K even at 800 nm (J, J, Cro
at Appl.

Pbys、Lett、39  (4)15  Augu
st  1981.357〜35B頁)。しかし、これ
らの超急冷リボンは、いずれも(Bll)waxが低い
(4MGOe未満)。
Pbys, Lett, 39 (4) 15 Aug.
st 1981.357-35B). However, all of these ultra-quenched ribbons have low (Bll) wax (less than 4 MGOe).

さらに、クーン(N、 C,Koon)等は(FeO,
82)   Tb   La   の超急冷アモルファ
0.18 0,9  0.05  0.05スリボンを
627℃で焼鈍すると、 lie −9koeにも達す
ることを見い出した( Br −5kG)。但し、この
場合、磁化曲線の角形性が悪いため(I311)wax
は低い(N、 C,Koon他、  Appl、 Ph
ys、 t、ctt、 39(10)、 1981.8
40〜842頁)。
Furthermore, Kuhn (N, C, Koon) et al.
82) It was found that when an ultra-quenched amorphous 0.18 0.9 0.05 0.05 ribbon of TbLa is annealed at 627°C, it reaches lie -9koe (Br -5kG). However, in this case, because the squareness of the magnetization curve is poor (I311) wax
is low (N, C, Koon et al., Appl, Ph
ys, t, ctt, 39(10), 1981.8
40-842).

また、カバコツ(L、 Kabacorf’)等は(F
 e o、gB   )   Pr  (x=o〜0.
3原子比)の組0.2 1−X   X 成の超急冷アモルファスリボンを作製し、その非晶質合
金が50c程度のHeを有することを報告している。(
L、 Kabakol’r他:  J、 Appl、 
Phys、 53 (3)Marcb 1982.22
55〜2257頁)。
In addition, Kabakotsu (L, Kabacorf') etc. are (F
e o, gB ) Pr (x=o~0.
reported that an ultra-quenched amorphous ribbon with a composition of 0.2 1-X (
L, Kabakol'r et al.: J, Appl.
Phys, 53 (3) Marcb 1982.22
55-2257).

以J−に示す超急冷リボンのほとんどが希土類としては
軽希土類を主成分とするものであるが、いずれも従来か
ら慣用される永久磁石材料と比べて(all)o+ax
が低く、実用永久磁石材料として使用することは困難で
あった。また、これらの超急冷リボンはそれ自体として
一般のスピーカやモータ等に使用可能な実用永久磁石(
体)ではなく、これらのリボンからf[意の形状・寸法
をaする実用永久磁石を得ることができなかった。
Most of the ultra-quenched ribbons shown in J- below are mainly composed of light rare earths, but all of them have (all)o+ax compared to conventional permanent magnet materials.
was difficult to use as a practical permanent magnet material. In addition, these ultra-quenched ribbons themselves can be used as practical permanent magnets (
However, it was not possible to obtain a practical permanent magnet with the desired shape and dimensions from these ribbons.

本発明は、このような要請に応えるべき新規な強磁性合
金、特に永久磁石材料として有用なものを提供すること
を基本目的とする。特に、Feを主体とし、Rとして資
源的に豊富な軽希土類元素を有効に使用できるものを得
ることを目的とする。
The basic object of the present invention is to provide a novel ferromagnetic alloy that should meet such demands, particularly one useful as a permanent magnet material. In particular, the object is to obtain a material that is mainly composed of Fe and can effectively use light rare earth elements, which are abundant in resources, as R.

このような強磁性合金として2本発明者は、先に、Nd
、Prを特徴とする特定の希土類元素とFeとBとを特
定比をもって必須とする強磁性合金、特に磁気異方性な
いし磁界中配向能力を有する。全く新しい種類の実用強
磁性合金を開発し。
The present inventor has previously developed two such ferromagnetic alloys, including Nd
, a ferromagnetic alloy that essentially includes a specific rare earth element characterized by Pr, and Fe and B in a specific ratio, and particularly has magnetic anisotropy or the ability to orient in a magnetic field. Developed a completely new type of practical ferromagnetic alloy.

本願と同一出願人により出願した(特願昭57−145
072の分割出願としての特願昭59−246897)
Filed by the same applicant as the present application (Japanese Patent Application No. 57-145
Patent application No. 59-246897 as a divisional application of No. 072)
.

尚、このFe−B−R三元系合金においてボロン(B)
は、従来の2例えば非晶質合金作成時の非品質促進元素
又は粉末冶金法における焼結促進元素として添加される
ものではなく、Fe−B−R三元系合金のベースとなる
室温以上で磁気的に安定で高い磁気異方性を有するR−
Fe−B三元化合物の必須構成元素である。この合金は
実用上十分に高いキュリー;3度(約300℃以上)を
有する。
In this Fe-B-R ternary alloy, boron (B)
is not added as a non-quality promoting element in the production of an amorphous alloy or as a sintering promoting element in powder metallurgy, but is added as a base material for Fe-B-R ternary alloy at room temperature or above. R- which is magnetically stable and has high magnetic anisotropy
It is an essential constituent element of the Fe-B ternary compound. This alloy has a Curie temperature of 3 degrees (approximately 300° C. or higher) which is sufficiently high for practical use.

上述のFe−B−R三元系強磁性合金は必ずしもCoを
含む必要がなく、またRとしては資源的に豊富なNd、
Prを主体とする軽希土類を用いることができ、必ずし
もSmを必要とせず或いはSmを主体とする必要もない
ので原料が安価であり、きわめてa用である。しかも、
この強磁性合金を用いて得られるFe−B−R系磁気異
方性焼結永久磁石の磁気特性はハードフェライト磁石以
上の特性を有しく保磁力111c≧1 koe *残留
磁束密度Br≧4 kG、最大エネルギ積(Bll)s
ax≧4MGOe)特に好ましい組成範囲においては希
土類コバルト磁石と同等以上の極めて高いエネルギ積を
示すことができる。
The above-mentioned Fe-B-R ternary ferromagnetic alloy does not necessarily need to contain Co, and as R, Nd, which is rich in resources,
It is possible to use a light rare earth element mainly composed of Pr, and it does not necessarily require Sm or need to be mainly composed of Sm, so the raw material is inexpensive, and it is very suitable for A. Moreover,
The magnetic properties of the Fe-B-R magnetically anisotropic sintered permanent magnet obtained using this ferromagnetic alloy are better than those of hard ferrite magnets. , maximum energy product (Bll)s
ax≧4MGOe) In a particularly preferred composition range, it can exhibit an extremely high energy product equivalent to or higher than that of a rare earth cobalt magnet.

以上の通りこのFe−B−R系強磁性合金は従来のアル
ニコや希土類コバルト磁石材料に置き変わり得る新しい
強磁性合金であるが、一方、このFe−B−R三元系強
磁性合金のキュリ一点(温度)は、特願昭59−246
897に開示の通り一般に300℃前後、最高370℃
である。このキュリ一点は、従来のアルニコ系ないしR
−Co系の永久磁石材料の約800℃のキュリ一点と比
べてかなり低いものである。従って、Fe−B−R系永
久磁石(Jr)i料)は、従来のアルニコ系やR−Co
系磁石(材料)に比して磁気特性の温度依存性が大であ
り、高温においては磁気特性の低下が生ずる。本発明者
の研究の結果によれば、Fe−B−R系焼結磁石(材料
)は約100℃以上の温度で使用するとその温度特性が
劣化するため、約70℃以下の通常の温度範囲で使用す
ることが適当であることが判明した。
As mentioned above, this Fe-B-R ferromagnetic alloy is a new ferromagnetic alloy that can replace conventional alnico and rare earth cobalt magnet materials. One point (temperature) is a patent application filed in 1984-246.
As disclosed in 897, generally around 300℃, maximum 370℃
It is. This curie is a traditional alnico or R
This is considerably lower than the Curie point of about 800° C. for -Co-based permanent magnet materials. Therefore, the Fe-B-R permanent magnet (Jr material) is different from conventional alnico or R-Co.
The temperature dependence of the magnetic properties is greater than that of other magnets (materials), and the magnetic properties deteriorate at high temperatures. According to the results of research conducted by the present inventor, Fe-B-R based sintered magnets (materials) deteriorate in temperature characteristics when used at temperatures above about 100°C. It was found to be suitable for use in

この様に永久磁石材料にとって磁気特性の温度依存性が
大きい、即ちキュリ一点が低いことはその使用範囲が狭
められることとなり、Fe−B−R系永久磁石材料を広
範囲の用途に使用するためにはキュリ一点を上昇せしめ
、温度特性を改善することが必要であった。
As described above, the large temperature dependence of the magnetic properties of permanent magnet materials, that is, the low Curie point, narrows the range of their use, and in order to use Fe-B-R permanent magnet materials in a wide range of applications. It was necessary to improve the temperature characteristics by raising the temperature by one point.

本発明は、かかるFe−B−R系永久磁石材料において
、その温度特性を改良することを併せて目的とする。
Another object of the present invention is to improve the temperature characteristics of such Fe-B-R permanent magnet materials.

本発明はFe−B−R系強磁性合金においてキュリ一温
度を改良する為に、Feの一部をC。
In the present invention, in order to improve the Curie temperature in a Fe-BR-based ferromagnetic alloy, a part of Fe is replaced with C.

で置換することが効果的であることを知見するとともに
、Ai、Ti、V、Cr、Mn、Zr。
It has been found that it is effective to substitute with Ai, Ti, V, Cr, Mn, Zr.

Hf、Nb、Ta、Mo、Ge、Sb、Sn。Hf, Nb, Ta, Mo, Ge, Sb, Sn.

Bi、Ni及びWよりなる群から選択された特定の添加
元素Mを所定%をもって加えることにより、先願(特願
昭57−145072)に係るFe−B−R三元系強磁
性合金と同様に、前述した目的を達成するものである。
By adding a specific additive element M selected from the group consisting of Bi, Ni, and W at a predetermined percentage, the same as the Fe-B-R ternary ferromagnetic alloy according to the previous application (Japanese Patent Application No. 57-145072) can be obtained. This is to achieve the above-mentioned purpose.

即ち1本発明の強磁性合金は次の通りである。That is, one ferromagnetic alloy of the present invention is as follows.

第1発明:原子百分比でR(RはNdとPrの一種又は
二種)8〜30%、82〜28%、下記所定%以下(0
%を除く)の添加光f:Mの一種又は二種以上(但し添
加元素Mが二種以上のときは1M合量は当該添加元素の
うち最大所定%を有するものの当該所定%以下)、及び
残部実質的にFeから成り、前記Feの一部を全組成に
対して50%以下(0%を除く)のCoで置換したこと
を特徴とする強磁性合金; Aぶ 9.5%、   Ti4.5%。
First invention: R (R is one or two of Nd and Pr) 8 to 30%, 82 to 28% in atomic percentage, below the specified % (0
%) doped light f: one or more types of M (however, when there are two or more types of added elements M, the total amount of 1M is not more than the specified % of the maximum specified % of the added elements), and A ferromagnetic alloy characterized in that the remainder substantially consists of Fe, and a portion of the Fe is replaced with 50% or less (excluding 0%) of the total composition; A 9.5%, Ti4 .5%.

■9.5%、    Cr8.5%。■9.5%, Cr8.5%.

Mn  8  %、    Zr5.5%。Mn 8%, Zr 5.5%.

Hf5.5%、   N b 12.5%。Hf 5.5%, Nb 12.5%.

T a 10.5%、   Mo9.5%。Ta 10.5%, Mo 9.5%.

Ge  7  %、    Sb2.5%。Ge 7%, Sb 2.5%.

Sn3.5%、   Bi5  %。Sn3.5%, Bi5%.

Ni  8  %、及びW  9.5%゜第2発明:原
子百分比でR(RはNd、Pr。
Ni 8% and W 9.5%゜Second invention: R in atomic percentage (R is Nd, Pr.

Dy、Ha、Tb、La、Ce、Gd、Yのうち少なく
とも一種で、かつRの50%以上はNdとPrの一種又
は二M)8〜30%、82〜28%、下記所定%以下(
0%を除く)の添加元素Mの一種又は二種以上(但し添
加元素Mが二種以上のときは9M合量は当該添加元素の
うち最大所定%を存するものの当該所定%以下)、及び
残部実質的にFeから成り、前記Feの一部を全組成に
対して50%以下(0%を除く)のCoで置換したこと
を特徴とする強磁性合金(添加元素Mの所定%は第1発
明におけるものと同じ)。
At least one of Dy, Ha, Tb, La, Ce, Gd, Y, and 50% or more of R is one or two of Nd and Pr) 8-30%, 82-28%, below the specified percentage (
(excluding 0%) of one or more of the additive elements M (however, if there are two or more types of additive elements M, the total amount of 9M is the maximum prescribed % of the said additive elements but not more than the prescribed %), and the remainder A ferromagnetic alloy consisting essentially of Fe, characterized in that a part of the Fe is replaced with 50% or less (excluding 0%) of the total composition (the predetermined percentage of the additive element M is the first same as in invention).

本出願人の先願に係るFe−B−R系合金と同様に1本
発明のFe−Co−B−R−M系合金を用いて実用永久
磁石を製造できる。例えば9合金を溶成、冷却1例えば
鋳造し、生成合金を粉末化した後磁界中にて成形し焼結
することにより適当なミクロ組織を形成することによっ
て、最も効果的に実用高性能永久磁石を得ることができ
る。
Practical permanent magnets can be manufactured using the Fe-Co-B-R-M alloy of the present invention, similar to the Fe-B-R alloy according to the applicant's earlier application. For example, 9 alloys are melted and cooled 1. For example, by casting the resulting alloy, pulverizing the resulting alloy, and then forming and sintering it in a magnetic field to form an appropriate microstructure, it is possible to most effectively produce a practical high-performance permanent magnet. can be obtained.

本発明においては、Feの一部を全組成に対して50%
以下のCoで置換することによって(Fe、Co)−B
−R化合物を基礎とした新規なF e−Co−B−R−
M系強磁性合金を提供するものである。
In the present invention, a part of Fe is 50% of the total composition.
(Fe, Co)-B by substituting with Co below
Novel Fe-Co-B-R- based on -R compound
The present invention provides an M-based ferromagnetic alloy.

このCoの含有によって、Fe−B−R系をベースとし
て実用上充分に高いキュリ一点を備え温度依存性を軽減
させることができる。さらに所定のMを食付することに
よってFe−B−R三元系と同様に従来のハードフェラ
イト磁性材料と同等以上の磁気特性(保磁力等)を備え
た全く新規な強磁性合金を提供できる。Mとしては、前
記の如(A、g、Ti、V、Cr、Mn、Ni、Ge。
By containing this Co, it is possible to provide a sufficiently high Curie point for practical use based on the Fe-B-R system and reduce temperature dependence. Furthermore, by adding a predetermined amount of M, it is possible to provide a completely new ferromagnetic alloy that has magnetic properties (coercive force, etc.) that are equivalent or superior to conventional hard ferrite magnetic materials, similar to the Fe-B-R ternary system. . M is as described above (A, g, Ti, V, Cr, Mn, Ni, Ge.

Nb、Mo、Sb、Sn、Zr、Hf、Ta。Nb, Mo, Sb, Sn, Zr, Hf, Ta.

W、Biがあり、その一種又は二種以上を用いる。加え
て、  111cは一般に温度上昇と共に低下するが上
記MのうちV、Ta、Nb、Cr、W。
There are W and Bi, and one or more of them are used. In addition, 111c generally decreases as the temperature rises, but among the above M, V, Ta, Nb, Cr, and W.

MO,A、5等の含有によって常温時の l Hcを高
めることにより、高温度に曝されても減磁が実質的に生
じないようにすることができる。従って。
By increasing the l Hc at room temperature by including MO, A, 5, etc., it is possible to substantially prevent demagnetization even when exposed to high temperatures. Therefore.

苛酷な環境2例えば磁石の薄型化に併う強い反磁界、コ
イルや他の磁石によって加えられる強い逆磁界2 これ
らに加えて機器の高速化、高負荷化による高温環境等に
さらされてもこれらの用途に適合しうる永久磁石材料が
4本発明により提供される。Fe−B−R三元系と同様
に本発明のFe−Co−B−R−M系合金も高い異方性
磁界を示し磁界中配向能力を有するので、特に異方性磁
石用材料としてa用である。
Harsh environments 2 For example, strong demagnetizing fields due to thinner magnets, strong reverse magnetic fields applied by coils and other magnets 2 In addition to these, exposure to high-temperature environments due to higher speeds and higher loads of equipment, etc. The present invention provides four permanent magnetic materials that are suitable for use in the following applications. Like the Fe-B-R ternary system, the Fe-Co-B-R-M alloy of the present invention exhibits a high anisotropic magnetic field and has the ability to orient in a magnetic field, so it is particularly suitable as a material for anisotropic magnets. It is for use.

なおMとして2種以上用いる場合1M合量は。In addition, when two or more types of M are used, the total amount of 1M is as follows.

当該添加元素のうち最大所定値を釘するものの所定%以
下とし、夫々は前記の所定値以下とする。
The maximum predetermined value of the additive elements is set to a predetermined percentage or less of the additive, and each of the additive elements is set to be below the predetermined value.

また、このMの添加は、夫々の態様において残留磁化B
rの漸次の低下を招くので1Mの含有量は。
In addition, the addition of M increases the residual magnetization B in each embodiment.
The content of 1M is because it causes a gradual decrease in r.

少くとも残留磁化Brが従来のハードフェライトのBr
値と同等量」−の範囲としかつ従来品と同等以上の高保
磁力を示す磁気異方性磁石を提供できるものが本発明の
対象として把握される。かくて本発明合金は従来のフェ
ライト磁石と同等以上の磁気特性(エネルギ積約4 M
GOc以上)を示す永久磁石を提供可能なものである。
At least the residual magnetization Br is higher than that of conventional hard ferrite.
The object of the present invention is to provide a magnetically anisotropic magnet having a coercive force equivalent to or higher than that of conventional products. Thus, the alloy of the present invention has magnetic properties equivalent to or better than conventional ferrite magnets (energy product of approximately 4 M
GOc or higher) can be provided.

本発明の強磁性合金において、その形態は問わず、鋳塊
あるいは粉体等の公知の形態の永久磁石用の素材の他、
任意の形態からなる永久磁石材料をも包含する。
In the ferromagnetic alloy of the present invention, regardless of its form, in addition to materials for permanent magnets in known forms such as ingots or powder,
It also includes permanent magnetic materials in any form.

本発明の強磁性合金の組成範囲の限定理由は後述する実
施例によって詳細に説明するが、特に本発明を最も効果
的に用いた場合、すなわち、磁気異方性焼結永久磁石と
して用いた場合にハードフェライトと同等以上の磁気特
性を得ることが可能な組成範囲を選定した。
The reasons for limiting the composition range of the ferromagnetic alloy of the present invention will be explained in detail in the Examples described below, but especially when the present invention is used most effectively, that is, when used as a magnetically anisotropic sintered permanent magnet. We selected a composition range that would allow us to obtain magnetic properties equivalent to or better than hard ferrite.

本発明のFe−Co−B−R−M系合金において、R,
Bの組成範囲は2本出願人の先願に係るFe−B−R系
合金の場合と基本的に同様にして定められる。即ち、異
方性焼結体としたとき保磁力111c≧1 kocを満
たすためBは2%以上(原子比、以下特記なき場合同じ
)とし、ハードフェライトの残留磁束密度Br (約4
 kG)以上とするためにBは28%以下とする。Rは
、保磁力を1 koc以上とするため8%以上必要であ
り、また燃え易く工業的取扱、製造上の困難のため、3
0%以下とする。このB、R範囲において最大エネルギ
積(B If )ffiaXはハードフェライトと同等
量」二となる。
In the Fe-Co-BRM-based alloy of the present invention, R,
The composition range of B is determined basically in the same manner as in the case of the Fe-B-R alloy according to the second applicant's earlier application. That is, in order to satisfy the coercive force 111c≧1 koc when made into an anisotropic sintered body, B should be 2% or more (atomic ratio, the same applies below unless otherwise specified), and the residual magnetic flux density Br of hard ferrite (approximately 4
KG) or more, B should be 28% or less. R is required to be 8% or more in order to make the coercive force 1 koc or more, and because it is easily flammable and difficult to industrially handle and manufacture, R is 3.
0% or less. In this B and R range, the maximum energy product (B If)ffiaX is equivalent to that of hard ferrite.

本発明の強磁性合金は、既述の8〜30%R,2〜28
%B、残部Feの全範囲において、Co及び添加元素M
の含有の角°幼性が認められており、このFe−B−R
の範囲外では、q効ではない。
The ferromagnetic alloy of the present invention has an R of 8 to 30%, 2 to 28% as described above.
%B, balance Fe in the entire range, Co and additive element M
It has been recognized that the inclusion of Fe-B-R
Outside the range of , there is no q effect.

本発明の強磁性合金は工業的に入手可能な材料を用いて
製造可能であり、その出発原料として次の如き金属を用
いることができる。
The ferromagnetic alloy of the present invention can be manufactured using industrially available materials, and the following metals can be used as starting materials.

希土類元素Rとしては、軽希土類及び重希土類更にはY
を包含する希土類元素であり、そのうち所定の一種以」
二を用いる。即ちこのRとしては。
Rare earth elements R include light rare earths, heavy rare earths, and Y
Rare earth elements that include
Use 2. That is, as this R.

Nd、Pr、La、Ce、Tb、Dy、Ho。Nd, Pr, La, Ce, Tb, Dy, Ho.

Er、Eu、Sm、Gd、Pm、Tm、Yb。Er, Eu, Sm, Gd, Pm, Tm, Yb.

Lu及びYが包含される。Rとしては、Nd。Lu and Y are included. As R, Nd.

Prの一種または二種をもって足りる。Nd。One or two types of Pr are sufficient. Nd.

Prは資源的にSmなどに比べて豊富であり。Pr is more abundant as a resource than Sm.

しかも一般に用途が余りないため、余剰気味であり、こ
のような軽希土類元素を1本発明の強磁性合金の中心的
元素とすることは、極めて有利である。さらに、これら
Nd、PrをRの50%以上として他のDy、Ho、T
b、La、Ce、Gd。
In addition, since there are generally few uses for these elements, there is a surplus, and it is extremely advantageous to use such a light rare earth element as a central element in the ferromagnetic alloy of the present invention. Furthermore, with these Nd and Pr at 50% or more of R, other Dy, Ho, T
b, La, Ce, Gd.

Yのうち少なくとも一種を混合して用いることができる
。実用上は二種以上の混合物(ミツシュメタル、ジジム
等)を入手上の便宜等の理由により用いることができる
。なお、このRは純希土類元素でなくともよく、工業上
入手可能な範囲で製造上不可避な不純物(他の希土類元
素、Ca。
At least one type of Y can be mixed and used. Practically speaking, a mixture of two or more types (Mitsuhmetal, Didim, etc.) can be used for reasons such as availability. Note that this R does not have to be a pure rare earth element, but may contain impurities (other rare earth elements, Ca, etc.) that are unavoidable in production within an industrially available range.

Mg、Fe、Ti、C,O等)を倉荷するもので差支え
ない。
There is no problem with the storage of Mg, Fe, Ti, C, O, etc.).

B(ホウ素)としては、純ボロン又はフェロボロンを用
いることができ、不純物としてAJ。
Pure boron or ferroboron can be used as B (boron), and AJ as an impurity.

St、C等を含むものも用いることができる。Those containing St, C, etc. can also be used.

Coとしては、市販の工業用グレードのCoを用いるこ
とができる。また、これら構成元素の2以上から成る合
金も用いることができる。
As Co, commercially available industrial grade Co can be used. Furthermore, an alloy consisting of two or more of these constituent elements can also be used.

尚1本発明の強磁性合金はC,S、P、Ca。Note that the ferromagnetic alloys of the present invention are C, S, P, and Ca.

Mg、o、si等工業的製造上不可避な不純物の存在を
許容できる。これらの不純物は、原料或いは製造工程か
ら混入することが多く1合計5%以下が好ましい。また
Bの一部をC,P、St等により置換することも可能で
ある。
The presence of impurities such as Mg, O, and Si that are unavoidable in industrial production can be tolerated. These impurities are often mixed in from raw materials or manufacturing processes, and the total amount of these impurities is preferably 5% or less. It is also possible to partially replace B with C, P, St, or the like.

〈実施例〉 以下本発明について、実験例及び実施例を引照しつつ詳
述するが1本発明はこれらに限定されるものではない。
<Examples> The present invention will be described in detail below with reference to experimental examples and examples, but the present invention is not limited thereto.

種々の添加元素Mを含むFe−Co−B−R−M合金(
但しMは一種又は二種以上)試料を次の方法で作成した
Fe-Co-BRM alloy containing various additive elements M (
(However, M is one or more types) Samples were prepared by the following method.

合金を高周波溶解し、水冷銅鋳型に鋳造。The alloy is radio-frequency melted and cast into water-cooled copper molds.

出発原料はFeとして純度99 、9%の電解鉄、Bと
してフェロボロン合金及び99%の純度のボロンを用い
、Rとして純度99.7%以上のもの(不純物は主とし
て他の希土類金属)、Coとして純度99 、9%の電
解Coを使用した。添加元素Mとして、純度99%のT
i、Mo、B i、Mn、Sb。
The starting materials used were Fe with a purity of 99% and 9% electrolytic iron, B with a ferroboron alloy and boron with a purity of 99%, R with a purity of 99.7% or more (impurities were mainly other rare earth metals), and Co with a purity of 99.7% or more. Electrolytic Co with a purity of 99 and 9% was used. As the additive element M, T with a purity of 99%
i, Mo, B i, Mn, Sb.

Ni、Ta、98%のW、 99.9%のAJ、95%
のHf、99.9%のGe、Sn、またVとして81.
2%のVを含むフェロバナジウム、Nbとして67.6
%のNbを含むフェロニオブ、Crとして61.9%の
Crを含むフェロクロム及びZrとして75.5%のZ
rを含むフェロジルコニウムを使用した(なお純度は重
量%); この合金を用いて永久磁石試料を次のように作成した。
Ni, Ta, 98% W, 99.9% AJ, 95%
Hf, 99.9% Ge, Sn, and V as 81.
Ferrovanadium with 2% V, 67.6 as Nb
% Nb as ferroniobium, 61.9% Cr as ferrochrome and Zr as 75.5% Z
Ferrozirconium containing r was used (purity is % by weight); a permanent magnet sample was created using this alloy as follows.

(1)粉砕ニスタンプミルにより35メツシユスルーま
でに粗粉砕し1次いでボールミルにより3時間磁界中配
向可能な結晶粒子に微粉砕(3〜lO趨); (2)磁界中(1okoe)配向、成形(L、5t/C
m2にて加圧); (3)焼結 1000〜1200℃1時間Ar中。焼結
後放冷。
(1) Coarsely pulverize to 35 mesh through using a Nistump mill, then finely pulverize into crystal grains that can be oriented in a magnetic field for 3 hours using a ball mill (3 to 1O); (2) Orientation and shaping in a magnetic field (1okoe) (L, 5t/C
(3) Sintering 1000-1200°C for 1 hour in Ar. Allow to cool after sintering.

多種多用な組成の上記試料について1llc、 Br。1llc, Br for the above samples of various compositions.

(1311) a a x等の測定により詳細な磁石特
性の検討を行った結果、CoとともにMを1種あるいは
2 M1以−1−含むF e −Co −B −R−M
系合金において、高い永久磁石特性を示す領域が存在す
ることが判明した。前述の工程と同様にして製造した試
料により、  (81,5−x) Fe−10Co−8
8−xNd−0,5A、gの系においてXを0〜40に
変化させてNdEiltとDr、  II[cとの関係
を調べた。その結果を第6図に示す。さらに、  (7
4,5−x) Fe−IOc o −x B −15N
 d −0,5A pの系においてXをθ〜35に変化
させてBWとDr、  l1lcとの関係を調べ、その
結果を第7図に示す。Fe−Co−B−R−M系におけ
るB、RのBr、  111cに対する基本的傾向は、
Nd以外の希土類元素、A1以外のMの場合でも基本的
に第6.7図と同様である。’>’S 1表に代表的な
試料について、永久磁石特性として最も重要な最大エネ
ルギ積(B H)ta a xを示す。第1表中、Fe
は残部である。尚、前記永久磁石試料の作成工程におい
て微粉砕後の合金(粉末状態)での特性を調べたところ
、  111cは1 koc以上を示していた。
(1311) As a result of a detailed investigation of the magnetic properties through measurements such as a a
It has been found that there are regions in the alloys that exhibit high permanent magnetic properties. (81,5-x) Fe-10Co-8 using a sample produced in the same manner as the above-mentioned process.
In the 8-xNd-0,5A,g system, X was varied from 0 to 40 to investigate the relationship between NdEilt and Dr, II[c. The results are shown in FIG. Furthermore, (7
4,5-x) Fe-IOc o -x B -15N
In the system of d -0,5A p, the relationship between BW, Dr, and l1lc was investigated by changing X to θ~35, and the results are shown in FIG. The basic tendency of B and R to Br and 111c in the Fe-Co-BRM system is as follows:
The case of rare earth elements other than Nd and M other than A1 is basically the same as that shown in Fig. 6.7. '>'S Table 1 shows the maximum energy product (B H) ta a x, which is the most important permanent magnet characteristic, for typical samples. In Table 1, Fe
is the remainder. In addition, when the characteristics of the alloy (powder state) after being finely pulverized in the process of creating the permanent magnet sample were investigated, 111c showed 1 koc or more.

第1表から、  Fe−Co−B−R−M系磁石は広い
組成範囲にわたって10MGOe以上の高いエネルギ積
を有していることが分る。この表には主としてNd、P
rを含む合金の例を掲裁したが、他の所定Rとの組合せ
についても本発明合金は良好な。
From Table 1, it can be seen that the Fe-Co-BRM magnet has a high energy product of 10 MGOe or more over a wide composition range. This table mainly includes Nd, P
Although examples of alloys containing r have been listed, the alloys of the present invention are also good in combination with other predetermined R.

永久磁石特性を示す。しかし、既述の通り、 NdやP
rは、希土類鉱石中に比較的多量に含まれており、こと
にNdは大量に使用される用途がまだ知られていないの
で、これらを主体として使用できることは他の希少な希
土類(Sm、Y、等)を主原料としなければならない永
久磁石材料と比較するとはるかに存利である。
Indicates permanent magnet characteristics. However, as mentioned above, Nd and P
r is contained in relatively large amounts in rare earth ores, and Nd in particular has not yet been known to be used in large quantities. , etc.) are required as the main raw materials.

Fe−Co−B−R−M系強磁性合金において、Coは
含’Qmが25%以下のとき(Bll)waxにあまり
大きい役割を果たさない。例えば、試料に4gとNα5
0.魔58とNα60.及び&68と魔70等を夫々比
較すると、これらの合金の組成差はほとんどC。
In the Fe-Co-BRM-based ferromagnetic alloy, Co does not play a very large role in wax when the Qm content is 25% or less (Bll). For example, the sample contains 4g and Nα5.
0. Demon 58 and Nα60. Comparing &68 and Ma70, etc., the compositional difference between these alloys is mostly C.

量の差だけ(I CoとLOCo)で、この差によって
、 (B II ) m a Xは1,5%程度しか違
わない。Co(1)役割は、これらの合金のキュリ一点
を上げることである。
The only difference in quantity (I Co and LOCo) is such that (B II ) m a X differs by only about 1.5%. The role of Co(1) is to raise the performance of these alloys by one point.

一般にFe合金へのCoの添加の際、Co添加量の増大
に従いキュリ一点(Tc)が上昇するものと下降するも
のと両方が認められている。そのためFeをCoで置換
することは、一般的には複雑な結果を生来し、その結果
の予測は困難である。
Generally, when Co is added to an Fe alloy, it is recognized that the Curie point (Tc) both increases and decreases as the amount of Co added increases. Therefore, replacing Fe with Co generally produces complex results, which are difficult to predict.

例えばRF e s化合物のFeをCoで置換して行く
と、Conの増大に併いTeはまず上昇するがFeをl
/2置換したR(Fe   C。
For example, when Fe in an RF e s compound is replaced with Co, Te initially increases as Con increases, but as Fe is
/2 substituted R(Fe C.

O,50,5)3付 近で極大に達し、その後低下してしまう。またF e 
2 B合金の場合には、FeのCoによる置換によりT
cは単調に低下する。
It reaches a maximum near O, 50, 5) 3, and then decreases. Also F e
In the case of 2B alloy, T is replaced by Co for Fe.
c decreases monotonically.

本発明によるFe−Co−B−R−M系強磁性合金にお
いては、第1図として例示する系(76−x)Fe−x
Co−8B−15Nd−IMにおいて明らかな通り、C
o置換量(x)の増大に併いTcは当初急速に増大し、
以後徐々に増大する。
In the Fe-Co-BRM-based ferromagnetic alloy according to the present invention, the system (76-x) Fe-x illustrated as an example in FIG.
As is clear in Co-8B-15Nd-IM, C
As the amount of o substitution (x) increases, Tc initially increases rapidly,
After that, it gradually increases.

この傾向はRの種類によらず同様な傾向が確認される。This tendency is confirmed to be similar regardless of the type of R.

又Coの置換量はわずか(例えば0.1〜1%)でもT
c増大に有効でありCoの置換量により約310〜約7
50℃の任意のTcをもつ強磁性合金が得られる。又第
1図よりキュリ一点はCo含有量の増大にともなって大
きく上昇していくことが分るが、この傾向は添加元素M
によってあまり変化しないことが確認される。
Moreover, even if the amount of Co substitution is small (for example, 0.1 to 1%), T
It is effective for increasing c and varies from about 310 to about 7 depending on the amount of Co substitution.
A ferromagnetic alloy with an arbitrary Tc of 50°C is obtained. Furthermore, from Fig. 1, it can be seen that the Curie point increases greatly as the Co content increases, but this tendency does not change as the additive element M
It is confirmed that it does not change much.

Co9Qr;iが25%を超えると(Bll)sawは
徐々に低下していき、35%を超えると急激な低下が起
こる。これは、主として磁性材料の 111cの低下に
よる。Coff1が50%になると(Bll)a+Hx
は4 MGOo程度(ハードフェライトのレベル)にま
で低下する。
When Co9Qr;i exceeds 25%, (Bll)saw gradually decreases, and when it exceeds 35%, a rapid decrease occurs. This is mainly due to the decrease in 111c of the magnetic material. When Coff1 reaches 50% (Bll) a+Hx
decreases to about 4 MGOo (hard ferrite level).

したがって、Comは50%が限度である。さらにCo
nが35%以下の方が所定量の添加元素Mを含む場合に
も(Bll)waxが最高級アルニコの10MGOeを
超え、原料価格も低くなるので、望ましい。なお好まし
い添加元素Mの場合、Co35%でなお20MGOo近
く出る(試料に57.87等)。
Therefore, the limit for Com is 50%. Furthermore, Co
It is preferable that n is 35% or less because even when a predetermined amount of the additive element M is included, the (Bll)wax exceeds 10 MGOe of the highest grade alnico and the raw material price is lower. In addition, in the case of the preferable additive element M, nearly 20 MGOo is still produced at 35% Co (57.87 etc. in the sample).

本発明のFe−Co”−B−R−M系強磁性合金はCo
を含有しないFe−B−R三元系強磁性合金と比較して
キュリ一点が高く良好な温度特性を示し、 Brはほぼ
同程度、  l1lcは同等以上或いは少し低いが、C
o添加により角形性が改善されるため、(Co量の多い
場合を除き) (Bll)a+axは同等か或いはそれ
以上である。
The Fe-Co"-BRM-based ferromagnetic alloy of the present invention is Co
Compared to the Fe-B-R ternary ferromagnetic alloy that does not contain Fe-B-R, the Curie point is higher and it shows better temperature characteristics, Br is almost the same, l1lc is equal to or higher than or slightly lower, but C
Since the squareness is improved by the addition of o, (except when the amount of Co is large) (Bll)a+ax is equal to or greater than that.

またCoはFeに比べて耐食性を有するので。Also, Co has higher corrosion resistance than Fe.

Coを含有することにより耐食性を付与することも可能
となる。即ち、更に得られた焼結体(第1表磁5)を8
0℃、相対湿度90%の恒温恒湿槽に200時間置き、
酸化による重量変化を測定した処9本発明に係る試料(
Nα5)はCoを含まない試料(Fe−8B−15Nd
)に比べて’ifi fit増加の割合が著しく低く、
又Coの添加量に応じてその効果が顕著に認められた。
By containing Co, it is also possible to impart corrosion resistance. That is, the obtained sintered body (first surface magnet 5) was
Place it in a constant temperature and humidity chamber at 0℃ and 90% relative humidity for 200 hours.
Measurement of weight change due to oxidation 9 Samples according to the present invention (
Nα5) is a sample containing no Co (Fe-8B-15Nd
), the rate of increase in 'ifi fit' is significantly lower than that of
Further, the effect was significantly observed depending on the amount of Co added.

又Coは5%未満でもTc増大に寄与し、特に5%以」
二でBrの温度係数的0.1%/℃以下を示し、25%
以下では他の特性を損うことなく、Teの増大に寄与す
る。
Furthermore, even if Co is less than 5%, it contributes to an increase in Tc, especially if it is more than 5%.
In 2, the temperature coefficient of Br is 0.1%/℃ or less, and 25%
The following contributes to increasing Te without impairing other properties.

第2図に、  Fe−Co−B−R−M系合金からなる
焼結磁石の代表例及び比較のためにMを含まないFe−
Co−B−R系磁石の代表例の減磁曲線を示す。図中1
は添加元素Mを含まない磁石。
Figure 2 shows a representative example of a sintered magnet made of a Fe-Co-BRM-based alloy, and a Fe-Co-BRM alloy containing no M for comparison.
The demagnetization curve of a typical example of a Co-BR magnet is shown. 1 in the diagram
is a magnet that does not contain the additive element M.

2はNb添加(試料Nα53)磁石、3はW添加(試料
Nα83)磁石の減磁曲線である。
2 is the demagnetization curve of the Nb-added (sample Nα53) magnet, and 3 is the W-added (sample Nα83) magnet.

これら以外のV、Ta、Cr、Mo、AJにおいても同
様に 1llc向上効果が認められた。これらのM添加
による 1lleの向上は、磁石の安定性を増し、その
用途が拡大される。しかし、これらのMは非磁性の元素
であるため、添加量の増大によって、 Brが低下して
いき、そのため(BH)waxが減少する。(Bll)
a+axは少し低くなっても、高い 111cが必要と
される用途は最近ことに多くなってきたため、これらの
Mを含む合金は大変a用であるが。
A similar 1llc improvement effect was also observed for V, Ta, Cr, Mo, and AJ other than these. The improvement in 1lle due to the addition of M increases the stability of the magnet and expands its applications. However, since M is a non-magnetic element, as the amount added increases, Br decreases, and therefore (BH)wax decreases. (Bll)
These M-containing alloys are very useful for a, as there have recently been many applications that require a high 111c even if a+ax is a little lower.

但しく1311)mixは4 MGOe以上の範囲が冑
用である。
However, for 1311) mix, the range of 4 MGOe or more is for helmets.

次に添加元素Mの夫々の添加のBrに及ぼす効果を明ら
かにするため、その添加量を変化させて実験によりB「
の変化を測定し、その結果を第3図〜第5図に示す。B
i、Mn、Niを除く添加元素M (Ti、Zr、Hf
、V、Ta、Nb、Cr。
Next, in order to clarify the effect of each addition of the additive element M on Br, an experiment was conducted by varying the amount of addition of the additive element M.
The changes were measured and the results are shown in FIGS. 3 to 5. B
Additional elements M excluding i, Mn, and Ni (Ti, Zr, Hf
, V, Ta, Nb, Cr.

W、Mo、Sb、Sn、Ge、Ai)の添加量の上限は
、第3図〜第5図に示す通り、異方性焼結体としたとき
ハードフェライトのB「約4kGと同等以上の範囲とし
て定められる。さらに、 Brの観点からの好ましい範
囲は、 Brを8.5. 8.10kG等の段階をもっ
て区画することにより夫々第3図〜第5図から明らかに
読むことができる。これらの図からハードフェライトの
レベルのエネルギ積(Bll)max約4 MGOeと
同等以上の範囲として添加元素Mの添加はの上限は次の
ようになる。
The upper limit of the addition amount of W, Mo, Sb, Sn, Ge, Ai) is as shown in Figs. Furthermore, the preferred range from the viewpoint of Br can be clearly read from Figures 3 to 5 by dividing Br into stages such as 8.5, 8.10 kG, etc. From the figure, the upper limit of the addition of the additive element M is as follows, assuming that the energy product (Bll) at the level of hard ferrite is equal to or higher than approximately 4 MGOe.

Ai!9.5%、    Ti4.5%。Ai! 9.5%, Ti4.5%.

■9.5%、    Cr8.5%。■9.5%, Cr8.5%.

Mn8%、     Zr5.5%。Mn 8%, Zr 5.5%.

Hf5.5%、    N b 12.5%。Hf 5.5%, Nb 12.5%.

T  a  10.5%、      Mo9.5%。T a 10.5%, Mo 9.5%.

Ge  7   %、      Sb2.5%。Ge 7%, Sb 2.5%.

Sn3.5%、      Bi  5   %。Sn 3.5%, Bi 5%.

Ni  8  %、及びW9.5%。Ni 8%, and W 9.5%.

Mn、Niは多量に添加すると、  IHcが減少する
がNiは強磁性元素であるため、 Brは余り低下しな
い(第4図参照)。そのため、Niの上限はI Hcを
1 kOc以上とするため8%とし、  l1lcの減
少の観点からはNiは4.5%以下が好ましい。
When large amounts of Mn and Ni are added, IHc decreases, but since Ni is a ferromagnetic element, Br does not decrease much (see Figure 4). Therefore, the upper limit of Ni is 8% in order to keep I Hc at 1 kOc or more, and from the viewpoint of reducing l1lc, Ni is preferably 4.5% or less.

Mn添加はBr減少に与える影響はNiよりは大である
が急激ではない。かくて、Mnの上限は Itlcを1
 kOe以上とするため8%とし、  l1lcの減少
の観点からはMn  3.5%以下が好ましい。
Although Mn addition has a larger effect on Br reduction than Ni, it is not as drastic. Thus, the upper limit of Mn is Itlc = 1
The Mn content is preferably 8% in order to achieve kOe or more, and 3.5% or less is preferable from the viewpoint of reducing l1lc.

Biについては、その蒸気圧が極めて高<Bi5%を超
える合金の製造が、事実上不可能であり5%以下とする
As for Bi, it is virtually impossible to manufacture an alloy in which the vapor pressure is extremely high and exceeds Bi5%, so it is set at 5% or less.

上記元素を2種以上含有する場合には、第3〜5図に示
す各添加元素の特性曲線を合成したものとほぼ同様なり
「曲線を示す。それぞれの元素の含有量は上記%以下で
、かつ、その含量が各元素に対する上記%の最大値以下
となるようにする。
When two or more of the above elements are contained, the curve is almost similar to the one obtained by synthesizing the characteristic curves of each added element shown in Figs. 3 to 5.The content of each element is below the above percentage, In addition, the content is set to be less than or equal to the maximum value of the above percentages for each element.

M添加量のさらに望ましい範囲は、  (T311)w
axがf& 4級アルニコの10MGOeを越える範囲
から決められる。(Bit)waxが10MGOe以上
であるためには、 Brは[f、5kG以上とすること
が好ましい。
A more desirable range of the amount of M added is (T311)w
It is determined from the range where ax exceeds 10 MGOe of f & 4th class alnico. In order for (Bit) wax to be 10 MGOe or more, Br is preferably set to [f, 5 kG or more.

第3図〜第5図からB「が(i、5kGとなるM添加量
の上限が次のように望ましい範囲として決定される(但
しMn、Niはl1lcの観点から定められる)。
From FIGS. 3 to 5, the upper limit of the amount of M added that makes B"(i, 5 kG) is determined as a desirable range as follows (however, Mn and Ni are determined from the viewpoint of l1lc).

八ぶ7.5%、   Ti  4  %。Yabu 7.5%, Ti 4%.

■ 8 %、   Cr8.5%゜M n3.5%、   Zr4.5%。■ 8%, Cr8.5%゜M n3.5%, Zr4.5%.

Hf4.5%、   N b 10.5%。Hf 4.5%, Nb 10.5%.

Ta9.5%、   Mo 7.59o。Ta 9.5%, Mo 7.59o.

G e 5.5%.   S b  1.5%゜Sn2
.5%、   Bi  5  %。
G e 5.5%. S b 1.5%゜Sn2
.. 5%, Bi 5%.

Ni4.5%、及びW 7.5%。Ni 4.5%, and W 7.5%.

さらにRの範囲を11〜24%、Bの範囲を4〜24%
、残部Fe(Coの置換量を35%以下)とすることで
(1311)llax 10MGOe以上の磁気異方性
焼結永久磁石を得ることができる。より好ましい態様に
おいて2本発明の強磁性合金は(I311)wax 1
5.2G。
Furthermore, the range of R is 11-24% and the range of B is 4-24%.
, the balance being Fe (the amount of Co substitution is 35% or less), it is possible to obtain a magnetically anisotropic sintered permanent magnet with (1311)llax 10 MGOe or more. In a more preferred embodiment, the ferromagnetic alloy of the present invention is (I311) wax 1
5.2G.

25、30さらに33MGOc以上の各特性を示す磁気
異方性焼結永久磁石を提供できる。
It is possible to provide a magnetically anisotropic sintered permanent magnet exhibiting characteristics of 25, 30, and 33 MGOc or higher.

添加元素Mはその添加量の増大と共に、一般にBrが減
少しているが、好ましい範囲内では(Bll)ffla
xはM無添加の場合と同等程度の値となり、最高33M
GOc以上にも達する。又特定のMの添加による保磁力
の増大は、既述の通り、その磁気特性の安定化に資する
のでCoによるキュリ一点の上昇と相俟って、実用的に
極めて安定なかつ高エネルギ積の磁気異方性焼結永久磁
石が得られる。
Generally, as the amount of additive element M increases, Br decreases, but within a preferable range, (Bll)ffla
The value of x is about the same as in the case without M addition, and the maximum value is 33M.
Reach GOc or higher. In addition, as mentioned above, the increase in coercive force due to the addition of a specific M contributes to stabilizing the magnetic properties, and together with the increase in the Curie point due to Co, it is possible to create a magnetic field that is extremely stable and has a high energy product in practical terms. An anisotropic sintered permanent magnet is obtained.

なおMの添加口は、 Br減少傾向、 (BH)+ea
xへの影響を考慮すると、0.1〜3%が最も望ましい
In addition, the addition port of M is Br decreasing trend, (BH) + ea
Considering the influence on x, 0.1 to 3% is most desirable.

又Mとしては第3図〜第5図より明らかな様にV、Ta
、Nb、Cr、W、Mo、Mn、Ni。
Also, as for M, as is clear from Figures 3 to 5, V, Ta
, Nb, Cr, W, Mo, Mn, Ni.

Aj)は比較的多量に添加してもB「を著しく低下させ
ることなく (例えば8%添加してもBrは4kG以上
)、特にNi、Mnを除(V、Ta、Nb。
Even if Aj) is added in a relatively large amount, it does not significantly reduce B (for example, even if 8% is added, Br is 4kG or more), especially excluding Ni and Mn (V, Ta, Nb.

Cr、W、Mo、Aj!は広い範囲において目IC向上
に寄1テする。
Cr, W, Mo, Aj! This contributes to improving IC over a wide range of areas.

(以下余白) 第1表(1) 第1表(2) 第1表(3) 第1表(4) 第1表(5) 第1表(8) 第1表(7) 以上詳述の通り2本発明は、新規なFe−C。(Margin below) Table 1 (1) Table 1 (2) Table 1 (3) Table 1 (4) Table 1 (5) Table 1 (8) Table 1 (7) As detailed above, two aspects of the present invention are novel Fe-C.

−B−R−M系強磁性合金、即ちFeを主体とし、また
Rとしても資源的に豊富であり]二業上入手し易い希土
類元素(Nd、P r)を主体とした(Fe、Co)−
B−R化合物をベースとする強磁性合金であり、特に永
久磁石材料としてq用である。これを用いることにより
ハードフェライト以上の磁気特性を有し、Sm−Co系
材料にも代替し得るFe−Co−B−R−M系磁気異方
性焼結体永久磁石の提供も可能としたもので、工業的に
極めて高い価値をもつものである。特に永久磁石材料と
しての利点は、従来のSm−Co系と対比するとその主
成分元素の点で極めて顕著になる。加えて、Fe−B−
R三元系強磁性合金と対比してみても、Coの含有によ
り実用上充分高いキュリ一点を備え、さらに特定の添加
元素Mの含有によって焼結磁石の保磁力の増大も可能な
らしめ、応用範囲を拡げ実用的価値を高めることにも寄
与し得る。
- B-RM-based ferromagnetic alloy, i.e. mainly composed of Fe, and also rich in resources as R], mainly composed of rare earth elements (Nd, Pr) that are easily available in the industry (Fe, Co )−
It is a ferromagnetic alloy based on a BR compound, and is particularly suitable for q as a permanent magnet material. By using this, we have also made it possible to provide Fe-Co-BRM-based magnetically anisotropic sintered permanent magnets that have magnetic properties superior to hard ferrite and can be substituted for Sm-Co-based materials. It has extremely high industrial value. In particular, its advantages as a permanent magnet material are extremely significant when compared with conventional Sm--Co based elements. In addition, Fe-B-
Even when compared with R ternary ferromagnetic alloys, the inclusion of Co provides a sufficiently high Curie point for practical use, and furthermore, the inclusion of a specific additive element M makes it possible to increase the coercive force of the sintered magnet. It can also contribute to expanding the scope and increasing the practical value.

【図面の簡単な説明】 第1図は(7B−x) Fe−xCo−8B −15N
 d −I M系合金からなる異方性焼結磁石について
Co含有!(横軸)とキュリ一点(縦軸)との関係を示
すグラフ。 第2図は2Mを含有しない試料(57Fe−20Co 
−8B −15N d ) 、試料453 (58F 
e −20Co −8B −15N d −I N b
 )及び試料Na83(58Fe−20Co−8B−1
5Nd−IW)からなる異方性焼結磁石について、減磁
曲線(横軸磁界H(kOe)、縦軸磁化4 yr I 
(kG))を示すグラフ。 第3〜5図は、  (62〜x) Fe−15co−8
B−15N d −x M系合金からなる異方性焼結磁
石について、添加元素Mの添加量(横軸)と残留磁化B
r(kG)との関係を示すグラフ。 第6図は、  (81,5−x) Fe−10Co−8
8−xNd−0,5AJ系合金からなる異方性焼結磁石
において、Ncl(横軸原子%)と 111c、 Br
との関係を示すグラフ。 第7図は、  (74,5−x) Fe−10Co−x
B −15N d −0,5Aβ系合金からなる異方性
焼結磁石において、BR(横軸原子%)とIHc、 B
rとの関係を示すグラフ、及び 第8図は、  (94,5−x−y) Fe−5Co 
−y B −x N d −0,5A I系合金からな
る異方性焼結磁石において、  (94,5−x−y)
 Fe−yB’ −xNd三成分に対する(BH)ma
x等高線図。 を夫々に示す。 出願人  住友特殊金属株式会社 代理人   弁理士  加 藤 朝 道(他1名) 第1図 Coノ策壬百会比 X(%) 第3図 X(%) 第4図′ 第5図 第6図 Nd量 (原子%) (81,5−x) F e ・10Co ・8 B−x
Nd Φ0.5AJ第7図 日量(涼÷%)
[Brief explanation of the drawings] Figure 1 shows (7B-x) Fe-xCo-8B-15N
Anisotropic sintered magnet made of d-IM alloy contains Co! (horizontal axis) and one curri point (vertical axis). Figure 2 shows a sample containing no 2M (57Fe-20Co
-8B -15N d ), sample 453 (58F
e -20Co -8B -15N d -IN b
) and sample Na83 (58Fe-20Co-8B-1
5Nd-IW), the demagnetization curve (horizontal axis magnetic field H (kOe), vertical axis magnetization 4 yr I
(kG)). Figures 3 to 5 show (62~x) Fe-15co-8
Regarding the anisotropic sintered magnet made of B-15N d -x M-based alloy, the amount of additive element M added (horizontal axis) and residual magnetization B
Graph showing the relationship with r (kG). Figure 6 shows (81,5-x) Fe-10Co-8
In an anisotropic sintered magnet made of 8-xNd-0,5AJ alloy, Ncl (horizontal axis atomic %), 111c, Br
A graph showing the relationship between Figure 7 shows (74,5-x) Fe-10Co-x
In an anisotropic sintered magnet made of B-15N d -0,5Aβ alloy, BR (horizontal axis atomic %) and IHc, B
The graph showing the relationship with r and FIG. 8 are (94,5-x-y) Fe-5Co
-y B -x N d -0,5A In an anisotropic sintered magnet made of I-based alloy, (94,5-x-y)
(BH)ma for Fe-yB'-xNd three components
x contour map. are shown for each. Applicant Sumitomo Special Metals Co., Ltd. Agent Patent Attorney Asami Kato (and 1 other person) Figure 1 Co-planning ratio X (%) Figure 3 X (%) Figure 4' Figure 5 Figure 6 Figure Nd amount (atomic %) (81,5-x) F e ・10Co ・8 B-x
Nd Φ0.5AJ Figure 7 Daily amount (coolness ÷%)

Claims (2)

【特許請求の範囲】[Claims] (1)原子百分比でR(RはNdとPrの一種又は二種
)8〜30%、B2〜28%、下記所定%以下(0%を
除く)の添加元素Mの一種又は二種以上(但し添加元素
Mが二種以上のときは、M合量は当該添加元素のうち最
大所定%を有するものの当該所定%以下)、及び残部実
質的にFeから成り、前記Feの一部を全組成に対して
50%以下(0%を除く)のCoで置換したことを特徴
とする強磁性合金; Al9.5%、Ti4.5%、 V9.5%、Cr8.5%、 Mn8%、Zr5.5%、 Hf5.5%、Nb12.5%、 Ta10.5%、Mo9.5%、 Ge7%、Sb2.5%、 Sn3.5%、Bi5%、 Ni8%、及びW9.5%。
(1) In atomic percentage, R (R is one or two of Nd and Pr) 8-30%, B2-28%, and one or more additive elements M (excluding 0%) below the specified percentage below ( However, when there are two or more types of additive elements M, the total amount of M is the maximum predetermined percentage of the additive elements, but not more than the predetermined percentage), and the remainder substantially consists of Fe, with a part of the Fe being included in the total composition. A ferromagnetic alloy characterized in that 50% or less (excluding 0%) of Co is substituted with Co; Al9.5%, Ti4.5%, V9.5%, Cr8.5%, Mn8%, Zr5 .5%, Hf5.5%, Nb12.5%, Ta10.5%, Mo9.5%, Ge7%, Sb2.5%, Sn3.5%, Bi5%, Ni8%, and W9.5%.
(2)原子百分比でR(RはNd、Pr、Dy、Ho、
Tb、La、Ce、Gd、Yのうち少なくとも一種で、
かつRの50%以上はNdとPrの一種又は二種)8〜
30%、B2〜28%、下記所定%以下(0%を除く)
の添加元素Mの一種又は二種以上(但し添加元素Mが二
種以上のときは、M合量は当該添加元素のうち最大所定
%を有するものの当該所定%以下)、及び残部実質的に
Feから成り、前記Feの一部を全組成に対して50%
以下(0%を除く)のCoで置換したことを特徴とする
強磁性合金; Al9.5%、Ti4.5%。 V9.5%、Cr8.5%。 Mn8%、Zr5.5%、 Hf5.5%、Nb12.5%、 Ta10.5%、Mo9.5%、 Ge7%、Sb2.5%、 Sn3.5%、Bi5%、 Ni8%、及びW9.5%。
(2) R in atomic percentage (R is Nd, Pr, Dy, Ho,
At least one of Tb, La, Ce, Gd, Y,
and 50% or more of R is one or two of Nd and Pr)8~
30%, B2-28%, below specified % (excluding 0%)
(However, when there are two or more types of additive elements M, the total amount of M is not more than the specified % of the maximum specified % of the added elements), and the remainder is substantially Fe. 50% of the total composition
A ferromagnetic alloy characterized by the following (excluding 0%) substitution with Co: Al 9.5%, Ti 4.5%. V9.5%, Cr8.5%. Mn8%, Zr5.5%, Hf5.5%, Nb12.5%, Ta10.5%, Mo9.5%, Ge7%, Sb2.5%, Sn3.5%, Bi5%, Ni8%, and W9. 5%.
JP62329641A 1987-12-28 1987-12-28 Ferromagnetic alloy Granted JPS63241142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62329641A JPS63241142A (en) 1987-12-28 1987-12-28 Ferromagnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329641A JPS63241142A (en) 1987-12-28 1987-12-28 Ferromagnetic alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58005813A Division JPS59132104A (en) 1982-08-21 1983-01-19 Permanent magnet

Publications (2)

Publication Number Publication Date
JPS63241142A true JPS63241142A (en) 1988-10-06
JPH0535211B2 JPH0535211B2 (en) 1993-05-26

Family

ID=18223611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329641A Granted JPS63241142A (en) 1987-12-28 1987-12-28 Ferromagnetic alloy

Country Status (1)

Country Link
JP (1) JPS63241142A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010860A1 (en) * 2005-07-15 2007-01-25 Neomax Co., Ltd. Rare earth sintered magnet and method for production thereof
JP2007049010A (en) * 2005-08-11 2007-02-22 Neomax Co Ltd Rear earth sintered magnet and manufacturing method thereof
JP2007154241A (en) * 2005-12-02 2007-06-21 Neomax Co Ltd Rare-earth sintered magnet and producing method thereof
JP2009302318A (en) * 2008-06-13 2009-12-24 Hitachi Metals Ltd RL-RH-T-Mn-B-BASED SINTERED MAGNET
US20130299562A1 (en) * 2011-01-14 2013-11-14 Sabastian Piegert Cobalt-based alloy comprising germanium and method for soldering

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010860A1 (en) * 2005-07-15 2007-01-25 Neomax Co., Ltd. Rare earth sintered magnet and method for production thereof
US9551052B2 (en) 2005-07-15 2017-01-24 Hitachi Metals, Ltd. Rare earth sintered magnet and method for production thereof
JP2007049010A (en) * 2005-08-11 2007-02-22 Neomax Co Ltd Rear earth sintered magnet and manufacturing method thereof
JP2007154241A (en) * 2005-12-02 2007-06-21 Neomax Co Ltd Rare-earth sintered magnet and producing method thereof
JP2009302318A (en) * 2008-06-13 2009-12-24 Hitachi Metals Ltd RL-RH-T-Mn-B-BASED SINTERED MAGNET
US20130299562A1 (en) * 2011-01-14 2013-11-14 Sabastian Piegert Cobalt-based alloy comprising germanium and method for soldering
US8763885B2 (en) * 2011-01-14 2014-07-01 Siemens Aktiengesellschaft Cobalt-based alloy comprising germanium and method for soldering

Also Published As

Publication number Publication date
JPH0535211B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
JP2001189206A (en) Permanent magnet
JPS5964733A (en) Permanent magnet
JPH0232761B2 (en)
JPH0316761B2 (en)
JPH03236202A (en) Sintered permanent magnet
JPH0316762B2 (en)
JPS63241142A (en) Ferromagnetic alloy
JPH0474426B2 (en)
JPS63241141A (en) Ferromagnetic alloy
JPS6077959A (en) Permanent magnet material and its manufacture
JPS609104A (en) Permanent magnet
JPH0316763B2 (en)
JPH03170643A (en) Alloy for permanent magnet
JPH044386B2 (en)
JPH052735B2 (en)
JPS6365742B2 (en)
JPS59218705A (en) Permanent magnet material and manufacture thereof
JPS59163804A (en) Permanent magnet
JPH0474425B2 (en)
JPS62170455A (en) Permanent magnet alloy
JPH0316765B2 (en)
JPS601808A (en) Permanent magnet
JPS63213637A (en) Ferromagnetic alloy
JPH031502A (en) Permanent magnet
JPH0320044B2 (en)