JPH0316762B2 - - Google Patents

Info

Publication number
JPH0316762B2
JPH0316762B2 JP58005814A JP581483A JPH0316762B2 JP H0316762 B2 JPH0316762 B2 JP H0316762B2 JP 58005814 A JP58005814 A JP 58005814A JP 581483 A JP581483 A JP 581483A JP H0316762 B2 JPH0316762 B2 JP H0316762B2
Authority
JP
Japan
Prior art keywords
alloy
less
present
permanent magnets
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58005814A
Other languages
Japanese (ja)
Other versions
JPS59132105A (en
Inventor
Masato Sagawa
Setsuo Fujimura
Yutaka Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP58005814A priority Critical patent/JPS59132105A/en
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to CA000431730A priority patent/CA1316375C/en
Priority to DE198383106573T priority patent/DE101552T1/en
Priority to DE8383106573T priority patent/DE3380376D1/en
Priority to EP83106573A priority patent/EP0101552B2/en
Publication of JPS59132105A publication Critical patent/JPS59132105A/en
Priority to US07/013,165 priority patent/US4770723A/en
Priority to US07/224,411 priority patent/US5096512A/en
Priority to SG48490A priority patent/SG48490G/en
Priority to HK682/90A priority patent/HK68290A/en
Publication of JPH0316762B2 publication Critical patent/JPH0316762B2/ja
Priority to US07/876,902 priority patent/US5194098A/en
Priority to US07/877,400 priority patent/US5183516A/en
Priority to US08/194,647 priority patent/US5466308A/en
Priority to US08/485,183 priority patent/US5645651A/en
Priority to US08/848,283 priority patent/US5766372A/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はFe、希土類元素を主体とする永久磁
石用合金、特にFe−B−R系永久磁石用合金に
関する。 従来から強磁性合金の一つとして永久磁石材料
が知られている。永久磁石材料は一般家庭の各種
電気製品から、大型コンピユータの周辺端末機ま
で、幅広い分野で使われるきわめて重要な電気・
電子材料の一つである。近年の電気、電子機器の
小型化、高効率化の要求にともない、永久磁石材
料はますます高性能化が求められるようになつ
た。 現在の代表的な永久磁石材料はアルニコ、ハー
ドフエライトおよび希土類コバルト系磁石材料で
ある。最近のコバルトの原料事情の不安定化にと
もない、コバルトを20〜30重量%含むアルニコ磁
石材料の需要は減り、鉄の酸化物を主成分とする
安価なハードフエライトが磁石材料の主流を占め
るようになつた。一方、希土類コバルト系磁石材
料はコバルトを50〜65重量%も含むうえ、希土類
鉱石中にあまり含まれていないSmを使用するた
め大変高価であるが、他の磁石材料に比べて、磁
気特性が格段に高いため、主として小型で、付加
価値の高い磁気回路に多く使われるようになつ
た。 希土類を用いた磁石材料がもつと広い分野で安
価に、かつ多量に使われるようになるためには、
高価なコバルトを含まず、かつ希土類金属とし
て、鉱石中に多量に含まれている軽希土類を主成
分とすることが必要である。このような永久磁石
材料の一つの試みとして、RFe2系化合物(ただ
しRは希土類元素を示す記号)が検討された。ク
ロート(J.J.Croat)はPro.4Fe0.6の超急冷リボン
が295KにてHc=2.8kOeの保磁力を示すことを報
告している(J.J.Croat Appl.Phys.Lett.37(12)
15 December 1980,1096〜1098頁)。その後
Nd0.4Fe0.6の超急冷リボンにおいても295Kにて
Hc=7.45kOeの保磁力を示すことを報告してい
る(J.J.Croat Appl.Phys.Lett.39(4)15
August 1981,357〜358頁)。しかし、これらの
超急冷リボンは、いずれも(BH)maxが低い
(4MGOe未満)。 さらに、クーン(N.C.Koon)等は(Fe0.
82La0.180.9Tb0.05La0.05の超急冷アモルフアスリ
ボンを627℃で焼鈍すると、Hc=9kOeにも達す
ることを見い出した(Br=5kG)。但し、この場
合、磁化曲線の角形性が悪いため(BH)maxは
低い(N.C.Koon他、Appl.Phys.Lett.39(10),
1981,840〜842頁)。 また、カバコフ(L.Kabacoff)等は(Fe0.8B0.
21-xPrx(x=1〜0.3原子比)の組成の超急冷ア
モルフアスリボンを作製し、その非晶質合金が
50e程度のHcを有することを報告している。(L.
Kabakoff他:J.Appl.Phys.53(3)March 1982,
2255〜2257頁)。 以上に示す超急冷リボンのほとんどが希土類と
しては軽希土類を主成分とするものであるが、い
ずれも従来から慣用される永久磁石材料と比べて
(BH)maxが低く、実用永久磁石材料として使
用することは困難であつた。また、これらの超急
冷リボンはそれ自体として一般のスピーカやモー
タ等に使用可能な実用永久磁石(体)ではなく、
これらのリボンから任意の形状・寸法を有する実
用永久磁石を得ることができなかつた。 本発明は、このような要請に応えるべき新規な
実用永久磁石用合金、特に磁気異方性永久磁石材
料として有用なものを提供することを基本目的と
する。特に、Feを主体とし、Rとして資源的に
豊富な軽希土類元素を有効に使用できるものを得
ることを目的とする。 このような永久磁石用合金として、本発明者
は、先に、Nd,Prを中心とする特定の希土類元
素とFeとBとを特定比をもつて必須とする強磁
性合金、特に磁気異方性ないし磁界中配向能力を
有する、全く新しい種類の実用強磁性合金を開発
し、本願と同一出願人により出願した(特願昭57
−145072の分割出願としての特願昭59−246897)。
尚、このFe−B−R三元系合金においてボロン
(B)は、従来の、例えば非晶質合金作成時の非
晶質促進元素又は粉末冶金法における焼結促進元
素として添加されるものではなく、Fe−B−R
三元系合金のベースとなる室温以上で磁気的に安
定で高い磁気異方性を有するR−Fe−B三元化
合物の必須構成元素である。この合金は実用上十
分に高いキユリー温度(約300℃以上)を有する。 上述のFe−B−R三元系強磁性合金は必ずし
もCoを含む必要がなく、またRとしては資源的
に豊富なNd,Prを主体とする軽希土類を用いる
ことができ、必ずしもSmを必要とせず或いはSm
を主体とする必要もないので原料が安価であり、
きわめて有用である。しかも、この強磁性合金を
用いて得られるFe−B−R系磁気異方性焼結永
久磁石の磁気特性はハードフエライト磁石以上の
特性を有し(保磁力iHc≧1kOe、残留磁束密度
Br≧4kG、最大エネルギ積(BH)max≧
4MGOe)特に好ましい組成範囲においては希土
類コバルト磁石と同等以上の極めて高いエネルギ
積を示すことができる。 このFe−B−R三元系強磁性合金はそれ自体
として有用であるが、本発明により、さらにこの
三元素Fe・B・Rに他の少量元素X(Cu,P,
C,Sの1種以上)を含有した合金であつてもそ
の含有量を所定値以下に限定することにより、ハ
ードフエライトと同等以上の磁気特性を有する永
久磁石、特に磁気異方性焼結体永久磁石を実現で
きることが明らかとなり、前述した目的を達成す
るものである。即ち、本発明の永久磁石用合金は
次の通りである。 本願の第1発明:原子百分比でR(RはNdと
Prの一種又は二種)8〜30%、B2〜28%、下記
所定%以下(0%を除く)の元素Xの一種又は二
種以上(但し元素Xが二種以上のときは、X合量
は4.0%以下)、及び残部実質的にFeから成ること
を特徴とする永久磁石用合金; Cu 3.5%, S 2.5%, C 4.0%,及びP 3.5%。 本願の第2発明:原子百分比でR(RはNd,
Pr,Dy,Ho,Tb,La,Ce,Gd,Yのうち少な
くとも一種で、かつRの50%以上はNdとPrの一
種又は二種)8〜30%、B2〜28%、下記所定%
以下(0%を除く)の元素Xの一種又は二種以上
(但し元素Xが二種以上のときは、X合量は4.0%
以下)、及び残部実質的にFeから成ることを特徴
とする永久磁石用合金; Cu 3.5%, S 2.5%, C 4.0%,及びP 3.5%。 少量元素XのCu,S,C,P等は、工業的に
FeBR系磁石を製造する場合原料、製造工程等に
起因して含有されることが多々ある。例えばFeB
を原料に用いた場合S,Pが含有されることが多
く、Cは粉末冶金プロセスにおける有機バインダ
(成形助剤)の残滓として含有されることが多い。
これらの少量元素Xの影響は、本発明により、第
1図に示す通りその含有量の増大に伴なつて残留
磁束密度Brが低下する傾向を示すことが認めら
れた。その結果、原子百分比(以下他に明記ない
場合同じ)にてS2.5%以下、C4.0%以下、P3.5%
以下且つS,P,C合計で4%以下においてハー
ドフエライト(Br約4kG)と同等以上の特性が
得られる。 また、Xとして、Cuは純度の低い安価な原料
鉄中に多量に含まれておりCuは3.5%以下含むこ
とができ、かつX(S,C,P,Cu)の合計は4
%以下とすることにより、ハードフエライトと同
等以上のBrが得られる。 かくて本発明はFe−B−R三元系合金におい
て更に特定の少量元素Xを含有したものであつ
て、Fe−B−R化合物をベースとした新規なFe
−B−R−X系永久磁石用合金を提供するもので
ある。Fe−B−R三元系合金と同様に本発明の
Fe−B−R−X系永久磁石用合金も高い異方性
磁界を示し磁界中配向能力を有するので、特に異
方性磁石用材料として有用である。 本発明によれば、従来ハードフエライトと同等
以上の磁気特性を有し、Sm−Co磁石材料に代替
可能な工業上極めて有用な新規な高性能永久磁石
材料を提供する。 本発明の永久磁石用合金はFe−B−R−X系
であり、必ずしもCoを含む必要がなく、またR
としては資源的に豊富なNd,Prを主体とする軽
希土類を用いることができ、必ずしもSmを必要
とせず或いはSmを主体とする必要もないので原
料が安価であり、きわめて有用である。実施例か
ら明らかな通り、本発明の合金は磁界中配向能力
を有する。 本発明のFe−B−R−X系永久磁石合金にお
いて、R,Bの組成範囲は、Fe−B−R三元系
合金の組成と基本的に同じ範囲(8〜30%R、2
〜28%B)を有する。即ち、異方性焼結磁石とし
て、Bは2%未満では保磁力iHcは1kOe以上が
得られず、又Bは28%をこえるとハードフエライ
トの残留磁束密度Br約4kG以上にすることはで
きない。R8%未満では保磁力を1kOe以上とする
ことができず、またRは30%をこえると燃えやす
く工業的取扱い、製造上困難となり、且つ製品コ
ストの上昇を招来するので好ましくない。この
B,R範囲において異方性焼結体磁石の最大エネ
ルギー積(BH)maxはハードフエライト(〜
4MGOe程度)と同等以上になる。 又本発明のFe−B−R−X永久磁石の温度特
性を改善するためFeの一部をCo50%以下に置き
換えてもよい。Coの含有は、Fe−B−R−X系
合金のキユリー点を上昇させる効果がある。 さらに、本発明の好ましい態様として、
Br7kG以上の範囲が、S1.5%以下、C3.0%以下、
P2.0%以下、Cu2.3%以下、かつS,C,P,Cu
合計3.0%以下の場合(XをS,C,P,Cuの2
種以上とした場合)、に夫々得られる。 本発明のFe−B−R−X系合金を用いて、先
に出願したFe−B−R系合金と同様に実用永久
磁石を製造できる。例えば、合金を溶成、冷却、
例えば鋳造し生成合金を粉末化した後、成形焼結
することにより適当なミクロ組織を形成すること
によつて、最も効果的に実用高性能永久磁石を得
ることができる。 本発明の永久磁石用合金はその形態は問わず、
鋳塊あるいは粉体等の公知の形態を含む任意の形
態からなる永久磁石材料を包含する。 本発明の永久磁石用合金において希土類元素R
はYを包含し、軽希土類及び重希土類を包含する
希土類元素であり、そのうち一種以上を用いる。
即ちこのRとしては、Nd,Pr,La,Ce,Tb,
Dy,Ho,Er,Eu,Sm,Gd,Pm,Tm,Yb,
Lu及びYが包含される。Rとしては、通常Nd,
Prの一種又は二種をもつて足りるが、これら
Nd,PrをRの50%以上として他のDy,Ho,
Tb,La,Ce,Gd,Yのうち少なくとも一種を
混合して用いることができる。実用上は二種以上
の混合物(ミツシユメタル、ジジム等)を入手上
の便宜等の理由により用いることができる。な
お、このRは純希土類元素でなくともよく、工業
上入手可能な範囲で製造上不可避な不純物(他の
希土類元素、Ca,Mg,Fe,Ti,C,O等)を
含有するもので差支えない。このようにRとして
は工業上入手し易いものを主体として用いること
ができる点で本発明は極めて有利である。 B(ホウ素)としては、純ボロン又はフエロボ
ロンを用いることができ、不純物としてAl,Si,
C等を含むものも用いることができる。 本発明の永久磁石用合金の組成範囲の限定理由
は後述する実施例によつて詳細に説明するが、特
に本発明を最も効果的に用いた場合、すなわち、
磁気異方性焼結永久磁石として用いた場合にハー
ドフエライトと同等以上の磁気特性を得ることが
可能な組成範囲を選定した。即ち、本発明の永久
磁石用合金は、8〜30%R、2〜28%B、所定%
以下X、残部Fe(原子百分率)において、保磁力
Hc≧1kOe、残留磁束密度Br>4kGの磁気特性を
示し、最大エネルギ積(BH)maxはハードフエ
ライト(〜4MGOe程度)と同等以上の異方性焼
結磁石とすることができる。 Nd,PrをRの主成分(即ち全R中Nd,Prの
一種以上が50%以上)とし、11〜24%R、3〜27
%B、X2.5%以下(Cu2.0%以下、S1.5%以下、
C2.5%以下、P2.0%以下)、残部Feの組成は、異
方性焼結体としたとき最大エネルギ積(BH)
max≧7MGOeを示し、好ましい範囲である。 最も好ましくは、Nd,PrをRの主成分(同
上)とし、12〜20%R、4〜24%B、X2.0%以
下(S1.0%以下、C2.0%以下、P1.5%以下、
Cu1.0%以下)、残部Feの組成であり、異方性焼
結体としたとき最大エネルギ積(BH)max≧
10MGOeを示し、(BH)maxは最高25MGOe以
上に達する。 本発明の合金を用いてなる永久磁石は、良好な
角形性を示し(第2図参照)、既述の通り好まし
い範囲内においては、希土類コバルト磁石に匹敵
する高い磁気特性を示すものである。 本発明の上記少量元素Xのうち、P,Sについ
ては、焼結時の焼結温度を下げる効果があつて焼
結が容易となり、本発明の範囲内での含有によ
り、ハードフエライト以上の磁気特性が確保され
有利である。Cの含有は焼結温度をやや上昇気味
であるが、既述の通り、粉末冶金法で一般的に用
いられる有機バインダーからのカーボンが完全に
消失しなくてもよいので製造工程上有利である。 さらに、本発明のFe−B−R−X系永久磁石
用合金においてはTi4.5%以下、Ni4.5%以下、
Bi5%以下、V9.5%以下、Nb12.5%以下、Ta10.5
%以下、Cr8.5%以下、Mo9.5%以下、W9.5%以
下、Mn3.5%以下、Al9.5%以下、Sb2.5%以下、
Ge7%以下、Sn3.5%以下、Zr5.5%以下及び
Hf5.5%以下の少くとも1種以上を含有してもよ
い。より高いiHcを有する永久磁石材料を提供し
得るものを包含し、苛酷な環境下で使用される永
久磁石材料として特に好適である。本発明の永久
磁石用合金は、Fe,B,R,Xの外、Ca,Mg,
O,Si等工業的に製造上不可避な不純物の存在を
許容できる。これらの不純物は、原料或いは製造
工程から混入することが多く、合計5%以下とす
ることが好ましい。 このように、上記少量元素Xの所定の含有は、
純度の低い原料の使用を可能とし、かつ安価に製
造可能とするので工業上極めて有利であり、少量
元素Xの制御によつて、特にFe−B−R−X系
の高残留磁化、高保磁力、高エネルギー積を有す
る磁気異方性焼結体永久磁石が安定した品質をも
つて提供される。 以下本発明の態様及び効果について、実施例に
従つて説明する。但し実施例及び記載の態様は、
本発明をこれらに限定するものではない。 <実施例> 原料として、下記のものを用い、永久磁石用合
金の原子組成が第1,2表になるように原料を秤
量した後、高周波誘導炉により溶成し、水冷銅鋳
型で鋳造して種々のFe−B−R−X合金を作製
した。 Fe:純度99.9重量%以上の電解鉄 B:フエロボロン合金(B19.4重量%含有)及
び純度99.9重量%の純ボロン R:純度99.7重量%以上 S:純度99重量%以上 P:フエロP(P26.7重量%含有) C:純度99重量%以上 Cu:純度99.9重量%以上の電解Cu この合金を用いて永久磁石試料を次のように作
成 (1) 粉砕1Kgインゴツトスタンプミルにより35メ
ツシユスルーまで粗粉砕し、次いでボールミル
により3時間磁界中配向可能な結晶粒子に微粉
砕(1〜30μm); (2) 磁界(10kOe)中配向・成形(1.5ton/cm2
て加圧); (3) 焼結1000〜1200℃の不活性ガス雰囲気中又は
真空中で1〜2時間焼結した後、放冷。 上記試料について、iHc,Br,(BH)maxを
夫々測定し、そのうち代表的な試料についての結
果を第1,2表に示す。第1,2表において試料
No.1〜36は本発明例であり、試料No.C37〜C40は
比較例である。なお前記永久磁石試料の作成工程
において微粉砕後の合金(粉末状態)での特性を
調べたところ、iHc1kOe以上の高い値を示して
いた。 さらに原子百分率でNd15原子%、B8原子%残
部Feから成る磁石合金組成において配合原料を
変えて、磁石合金中の少量元素X(P,C,S,
Cu)を変化させて、磁石合金中のP,C,S,
Cu量と異方性焼結永久磁石の残留磁束密度との
関係を第1図に示す。(なお、Xとして2種以上
含む場合には、夫々の元素の特性曲線を合成した
ものとほぼ同様なBr曲線を示す。) 第1,2表、第1図よりBrはXの増大に伴な
つて低下するが、C4%、P3.5%、S2.5%、Cu3.5
%以下であればBrが4kG(ハードフエライトのBr
に相当)より大きな特性を維持できることが分か
る。 さらに好ましい範囲は、Brを7kGの段階をも
つて区画することにより第1,2表及び第1図か
ら明らかに読むことができる。 本発明の永久磁石用合金は、そのベースとなる
Fe−B−R三元系において、8〜30%R、2〜
28%B、残部Fe(原子百分率)の全範囲におい
て、所定%以下の元素Xの存在が許容されること
が認められる。 次に、第2図に代表例として、少量元素Xとし
てのP,C,S,Cuが夫々0.5原子%入つた
Nd15Fe76.5B8P0.5(試料No.1)、Nd15Fe76.5B8S0.5
(試料No.17)、Nd15Fe76.5B8C0.5(試料No.9)及び
Nd15Fe76.5B8Cu0.5(試料No.25)合金から成る焼結
磁石の初磁化・減磁曲線を示す。いずれも永久磁
石材料として有用な高い角形性を示している。
The present invention relates to an alloy for permanent magnets mainly containing Fe and rare earth elements, particularly to an Fe-BR alloy for permanent magnets. Permanent magnet materials have been known as one of the ferromagnetic alloys. Permanent magnet materials are extremely important electrical and electrical components used in a wide range of fields, from various household appliances to peripheral terminals for large computers.
It is one of the electronic materials. In recent years, with the demand for smaller size and higher efficiency of electrical and electronic equipment, permanent magnet materials are required to have even higher performance. Current typical permanent magnet materials are alnico, hard ferrite, and rare earth cobalt-based magnet materials. With the recent instability in the raw material situation for cobalt, the demand for alnico magnet materials containing 20 to 30% by weight of cobalt has decreased, and inexpensive hard ferrite, whose main component is iron oxide, has become the mainstream magnet material. It became. On the other hand, rare earth cobalt magnet materials contain 50 to 65% by weight of cobalt and use Sm, which is not contained in rare earth ores, so they are very expensive, but they have better magnetic properties than other magnet materials. Because it is much more expensive, it has come to be used primarily in small, high-value-added magnetic circuits. In order for magnetic materials using rare earth elements to be used in large quantities and at low cost in a wide range of fields, it is necessary to
It is necessary that it does not contain expensive cobalt and that the main component is a light rare earth metal, which is contained in large amounts in ores. As one attempt at such a permanent magnet material, an RFe 2 compound (where R is a symbol representing a rare earth element) was investigated. JJCroat has reported that an ultra-quenched ribbon of Pro. 4 Fe 0. 6 exhibits a coercive force of Hc = 2.8 kOe at 295 K (JJCroat Appl. Phys. Lett. 37 (12)
15 December 1980, pp. 1096-1098). after that
Even in the ultra-quenched ribbon of Nd 0.4 Fe 0.6 at 295K
It is reported that the coercive force is Hc=7.45kOe (JJCroat Appl.Phys.Lett.39(4)15
August 1981, pp. 357-358). However, all of these ultra-quenched ribbons have low (BH)max (less than 4 MGOe). Furthermore, N.C. Kuhn et al.
We found that when an ultra-quenched amorphous amorphous ribbon of 82La0.18)0.9Tb0.05La0.05 is annealed at 627 , Hc reaches as high as 9kOe (Br=5kG). However, in this case, the (BH)max is low due to the poor squareness of the magnetization curve (NCKoon et al., Appl. Phys. Lett. 39 (10),
1981, pp. 840-842). Also, L. Kabacoff et al. (Fe 0 . 8 B 0 .
2 ) An ultra-quenched amorphous ribbon with a composition of 1-x Pr x (x = 1 to 0.3 atomic ratio) was prepared, and the amorphous alloy was
It has been reported that it has an Hc of about 50e. (L.
Kabakoff et al.: J.Appl.Phys.53(3) March 1982,
pp. 2255-2257). Most of the ultra-quenched ribbons listed above have light rare earths as their main components, but all of them have lower (BH)max than conventionally used permanent magnet materials, so they cannot be used as practical permanent magnet materials. It was difficult to do so. In addition, these ultra-quenched ribbons are not practical permanent magnets (body) that can be used in general speakers, motors, etc.
It has not been possible to obtain practical permanent magnets having arbitrary shapes and dimensions from these ribbons. The basic object of the present invention is to provide a novel alloy for practical permanent magnets that should meet such demands, particularly one useful as a magnetically anisotropic permanent magnet material. In particular, the purpose is to obtain a material mainly composed of Fe, which can effectively use resource-rich light rare earth elements as R. As such an alloy for permanent magnets, the present inventor first developed a ferromagnetic alloy that essentially requires specific rare earth elements, mainly Nd and Pr, and Fe and B in a specific ratio, particularly magnetic anisotropy. We have developed a completely new type of practical ferromagnetic alloy that has the ability to orient in a magnetic field, and filed an application by the same applicant as the present application (Japanese Patent Application No. 1983).
-145072 (Japanese Patent Application No. 59-246897 as a divisional application).
In this Fe-B-R ternary alloy, boron (B) is not added in the conventional way, for example, as an amorphous promoting element when creating an amorphous alloy or as a sintering promoting element in powder metallurgy. No, Fe-B-R
It is an essential constituent element of the R-Fe-B ternary compound that is magnetically stable above room temperature and has high magnetic anisotropy, which is the base of the ternary alloy. This alloy has a sufficiently high Curie temperature (approximately 300°C or higher) for practical use. The above-mentioned Fe-B-R ternary ferromagnetic alloy does not necessarily need to contain Co, and as R, light rare earths mainly consisting of Nd and Pr, which are abundant in resources, can be used, and Sm is not necessarily required. Without or Sm
Since there is no need to use mainly
Extremely useful. Moreover, the magnetic properties of the Fe-BR-based magnetically anisotropic sintered permanent magnet obtained using this ferromagnetic alloy are superior to those of hard ferrite magnets (coercive force iHc≧1kOe, residual magnetic flux density
Br≧4kG, maximum energy product (BH) max≧
4MGOe) In a particularly preferred composition range, it can exhibit an extremely high energy product equal to or higher than that of rare earth cobalt magnets. This Fe-B-R ternary ferromagnetic alloy is useful as such, but according to the present invention, other minor elements X (Cu, P,
Even if it is an alloy containing one or more of C and S, by limiting the content to a predetermined value or less, a permanent magnet, especially a magnetically anisotropic sintered body, which has magnetic properties equivalent to or better than hard ferrite. It has become clear that permanent magnets can be realized, which achieve the above-mentioned objectives. That is, the alloy for permanent magnets of the present invention is as follows. First invention of the present application: R in atomic percentage (R is Nd and
(one or two types of Pr) 8-30%, B2-28%, one or two or more types of element 4.0% or less), and the remainder substantially consists of Fe; Cu 3.5%, S 2.5%, C 4.0%, and P 3.5%. Second invention of the present application: R (R is Nd,
At least one of Pr, Dy, Ho, Tb, La, Ce, Gd, Y, and 50% or more of R is one or two of Nd and Pr) 8-30%, B2-28%, specified percentage below
One or more of the following elements X (excluding 0%) (however, if there are two or more types of element X, the total amount of
(below), and the remainder substantially consists of Fe; Cu 3.5%, S 2.5%, C 4.0%, and P 3.5%. Minor elements X such as Cu, S, C, and P are industrially
When manufacturing FeBR magnets, it is often contained due to raw materials, manufacturing processes, etc. For example, FeB
When used as a raw material, S and P are often contained, and C is often contained as a residue of an organic binder (molding aid) in the powder metallurgy process.
As for the influence of these small amounts of element X, according to the present invention, it has been recognized that the residual magnetic flux density Br tends to decrease as its content increases, as shown in FIG. As a result, the atomic percentage (the same applies below unless otherwise specified) is S2.5% or less, C4.0% or less, P3.5%
Properties equal to or higher than those of hard ferrite (Br about 4 kG) can be obtained when the total amount of S, P, and C is below 4%. In addition, as X, Cu is contained in a large amount in low-purity and inexpensive raw material iron, and Cu can be contained at 3.5% or less, and the total of X (S, C, P, Cu) is 4
% or less, it is possible to obtain Br equivalent to or higher than that of hard ferrite. Thus, the present invention is a Fe-B-R ternary alloy further containing a specific small amount of element X, and a novel Fe-B-R compound based on Fe-B-R.
-B-R-X alloy for permanent magnets is provided. Similar to the Fe-BR-R ternary alloy, the present invention
The Fe-B-R-X alloy for permanent magnets also exhibits a high anisotropic magnetic field and has the ability to align in a magnetic field, so it is particularly useful as a material for anisotropic magnets. According to the present invention, there is provided a novel high-performance permanent magnet material that has magnetic properties equivalent to or better than conventional hard ferrite, and is industrially extremely useful and can be substituted for Sm-Co magnet materials. The alloy for permanent magnets of the present invention is Fe-B-R-X system, does not necessarily contain Co, and does not necessarily contain Co.
As the material, light rare earths mainly composed of Nd and Pr, which are abundant in resources, can be used, and since Sm is not necessarily required or does not need to be mainly composed of Sm, the raw material is inexpensive and extremely useful. As is clear from the examples, the alloy of the present invention has the ability to align in a magnetic field. In the Fe-B-R-X permanent magnet alloy of the present invention, the composition range of R and B is basically the same range as the composition of the Fe-B-R ternary alloy (8 to 30% R, 2
~28% B). That is, as an anisotropic sintered magnet, if B is less than 2%, a coercive force iHc of 1 kOe or more cannot be obtained, and if B is more than 28%, the residual magnetic flux density Br of hard ferrite cannot be made to be more than about 4 kG. . If R is less than 8%, the coercive force cannot be increased to 1 kOe or more, and if R is more than 30%, it is undesirable because it becomes flammable, makes industrial handling and manufacturing difficult, and increases product cost. In this B and R range, the maximum energy product (BH) max of the anisotropic sintered magnet is hard ferrite (~
4MGOe). Further, in order to improve the temperature characteristics of the Fe-B-R-X permanent magnet of the present invention, a portion of Fe may be replaced with 50% or less of Co. Inclusion of Co has the effect of raising the Curie point of the Fe-B-R-X alloy. Furthermore, as a preferred embodiment of the present invention,
The range of Br7kG or more is S1.5% or less, C3.0% or less,
P2.0% or less, Cu2.3% or less, and S, C, P, Cu
If the total is 3.0% or less (X is 2 of S, C, P, Cu)
(if the number of seeds or more), each can be obtained. Using the Fe-B-R-X alloy of the present invention, practical permanent magnets can be manufactured in the same manner as the Fe-B-R alloy previously filed. For example, melting an alloy, cooling it,
For example, a practical high-performance permanent magnet can be obtained most effectively by casting, pulverizing the resulting alloy, and then shaping and sintering it to form an appropriate microstructure. The alloy for permanent magnets of the present invention does not matter its form,
It includes permanent magnetic materials in any form, including known forms such as ingots or powders. Rare earth element R in the alloy for permanent magnets of the present invention
is a rare earth element that includes Y and includes light rare earth elements and heavy rare earth elements, and one or more of them is used.
That is, this R includes Nd, Pr, La, Ce, Tb,
Dy, Ho, Er, Eu, Sm, Gd, Pm, Tm, Yb,
Lu and Y are included. R is usually Nd,
It is sufficient to have one or two types of Pr, but these
Other Dy, Ho, with Nd, Pr being 50% or more of R
At least one of Tb, La, Ce, Gd, and Y can be used as a mixture. In practice, a mixture of two or more types (Mitsushimetal, didymium, etc.) can be used for reasons such as convenience of availability. Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in manufacturing (other rare earth elements, Ca, Mg, Fe, Ti, C, O, etc.) within the industrially available range. do not have. As described above, the present invention is extremely advantageous in that R that is industrially easily available can be mainly used. As B (boron), pure boron or ferroboron can be used, and as impurities Al, Si,
Those containing C or the like can also be used. The reasons for limiting the composition range of the alloy for permanent magnets of the present invention will be explained in detail with reference to Examples described below, but in particular, when the present invention is used most effectively, that is,
We selected a composition range that would provide magnetic properties equivalent to or better than hard ferrite when used as a magnetically anisotropic sintered permanent magnet. That is, the alloy for permanent magnets of the present invention contains 8 to 30% R, 2 to 28% B, and a predetermined percentage.
Hereinafter, X, the balance Fe (atomic percentage), coercive force
It can be an anisotropic sintered magnet that exhibits magnetic properties of Hc≧1kOe, residual magnetic flux density Br>4kG, and has a maximum energy product (BH) max equivalent to or higher than that of hard ferrite (about 4MGOe). Let Nd and Pr be the main components of R (i.e. 50% or more of Nd and Pr in all R), 11 to 24% R, 3 to 27
%B, X2.5% or less (Cu2.0% or less, S1.5% or less,
(C2.5% or less, P2.0% or less), the remaining Fe composition is the maximum energy product (BH) when made into an anisotropic sintered body.
max≧7MGOe, which is a preferable range. Most preferably, Nd and Pr are the main components of R (same as above), 12 to 20% R, 4 to 24% B, X2.0% or less (S1.0% or less, C2.0% or less, P1.5 %below,
The composition is Cu (1.0% or less), the balance is Fe, and the maximum energy product (BH) max ≥ when made into an anisotropic sintered body.
10MGOe, and (BH)max reaches a maximum of 25MGOe or more. A permanent magnet made using the alloy of the present invention exhibits good squareness (see FIG. 2), and as described above, within the preferred range, exhibits high magnetic properties comparable to rare earth cobalt magnets. Of the above-mentioned minor elements It is advantageous because the characteristics are secured. Although the inclusion of C slightly increases the sintering temperature, as mentioned above, it is advantageous in the manufacturing process because carbon from the organic binder commonly used in powder metallurgy does not have to completely disappear. . Furthermore, in the Fe-B-R-X alloy for permanent magnets of the present invention, Ti is 4.5% or less, Ni is 4.5% or less,
Bi5% or less, V9.5% or less, Nb12.5% or less, Ta10.5
% or less, Cr8.5% or less, Mo9.5% or less, W9.5% or less, Mn3.5% or less, Al9.5% or less, Sb2.5% or less,
Ge7% or less, Sn3.5% or less, Zr5.5% or less and
It may contain at least one type of Hf of 5.5% or less. These include those that can provide permanent magnetic materials with higher iHc, and are particularly suitable as permanent magnetic materials used in harsh environments. In addition to Fe, B, R, and X, the alloy for permanent magnets of the present invention includes Ca, Mg,
The presence of industrially unavoidable impurities such as O and Si can be tolerated. These impurities are often mixed in from raw materials or manufacturing processes, and the total amount is preferably 5% or less. In this way, the predetermined content of the minor element X is
It is extremely advantageous industrially because it allows the use of low-purity raw materials and can be manufactured at low cost.By controlling the small amount of element , a magnetically anisotropic sintered permanent magnet having a high energy product is provided with stable quality. Hereinafter, aspects and effects of the present invention will be explained according to examples. However, the embodiments and descriptions are as follows:
The present invention is not limited to these. <Example> The following materials were used as raw materials. After weighing the raw materials so that the atomic composition of the alloy for permanent magnets was as shown in Tables 1 and 2, the materials were melted in a high-frequency induction furnace and cast in a water-cooled copper mold. Various Fe-B-R-X alloys were produced using the following methods. Fe: Electrolytic iron with a purity of 99.9% by weight or more B: Ferroboron alloy (contains 19.4% by weight of B) and pure boron with a purity of 99.9% by weight R: 99.7% by weight or more in purity S: 99% by weight or more in purity P: Ferro P (P26 (Contains .7% by weight) C: Purity of 99% by weight or more Cu: Electrolytic Cu with purity of 99.9% by weight or more Permanent magnet samples are made using this alloy as follows (1) Pulverized with a 1Kg ingot stamp mill up to 35 mesh through Coarsely pulverize, then finely pulverize into crystal particles (1 to 30 μm) that can be oriented in a magnetic field for 3 hours using a ball mill; (2) Orientation and shaping in a magnetic field (10 kOe) (pressurized at 1.5 ton/cm 2 ); (3) ) Sintering After sintering in an inert gas atmosphere at 1000 to 1200°C or in vacuum for 1 to 2 hours, let it cool. The iHc, Br, and (BH)max of the above samples were measured, and the results for representative samples are shown in Tables 1 and 2. In Tables 1 and 2, the sample
Samples Nos. 1 to 36 are examples of the present invention, and samples Nos. C37 to C40 are comparative examples. In addition, when the properties of the alloy (powder state) after being finely pulverized in the production process of the permanent magnet sample were investigated, it showed a high value of iHc1kOe or more. Furthermore, by changing the blended raw materials in a magnet alloy composition consisting of 15 atomic % Nd, 8 atomic % B and the balance Fe, small amounts of elements X (P, C, S,
P, C, S,
Figure 1 shows the relationship between the amount of Cu and the residual magnetic flux density of an anisotropic sintered permanent magnet. (If two or more types of Although it decreases over time, C4%, P3.5%, S2.5%, Cu3.5
% or less, Br is 4kG (hard ferrite Br
It can be seen that greater characteristics can be maintained (equivalent to ). Further preferred ranges can be clearly read from Tables 1 and 2 and FIG. 1 by partitioning Br in steps of 7 kG. The alloy for permanent magnets of the present invention is the base thereof.
In the Fe-B-R ternary system, 8-30% R, 2-
It is recognized that in the entire range of 28% B and the balance Fe (atomic percentage), the presence of element X at a predetermined % or less is allowed. Next, as a representative example, Fig. 2 shows that P, C, S, and Cu as minor elements X each contain 0.5 at%.
Nd 15 Fe 76 . 5 B 8 P 0 . 5 (Sample No. 1), Nd 15 Fe 76 . 5 B 8 S 0 . 5
(Sample No. 17), Nd 15 Fe 76 . 5 B 8 C 0 . 5 (Sample No. 9) and
The initial magnetization and demagnetization curves of a sintered magnet made of Nd 15 Fe 76 . 5 B 8 Cu 0 . 5 (Sample No. 25) alloy are shown. All exhibit high squareness useful as permanent magnet materials.

【表】【table】

【表】 以上詳述の通り、本発明は、新規なFe−B−
R−X系強磁性合金、即ちFeを主体としCoを必
須とせず、またRとしても資源的に豊富であり工
業上入手し易い希土類元素(Nd,Pr)を主体と
したFe−B−R化合物をベースとした永久磁石
用合金であり、特に磁気異方性永久磁石材料とし
て有用である。これを用いることによりハードフ
エライト以上の磁気特性を有し、Sm−Co系材料
にも代替し得るFe−B−R−X系磁気異方性焼
結永久磁石の提供も可能としたもので、工業的に
極めて高い価値をもつものである。特に永久磁石
材料としての利点は、従来のSm−Co系と対比す
るとその主成分元素の点で極めて顕著になる。加
えて、純度の低い原料の使用を可能とし、かつ安
価に製造可能であるため工業上極めて有利であり
実用的価値を高めることにも寄与し得る。
[Table] As detailed above, the present invention provides novel Fe-B-
R-X ferromagnetic alloy, i.e., Fe-B-R, which is mainly composed of Fe and does not require Co, and R is mainly composed of rare earth elements (Nd, Pr), which are rich in resources and easy to obtain industrially. It is a compound-based alloy for permanent magnets, and is particularly useful as a magnetically anisotropic permanent magnet material. By using this, it has become possible to provide Fe-B-R-X magnetically anisotropic sintered permanent magnets that have magnetic properties superior to hard ferrite and can be substituted for Sm-Co materials. It has extremely high industrial value. In particular, its advantages as a permanent magnet material are extremely significant when compared with conventional Sm-Co based materials in terms of its main constituent elements. In addition, since it allows the use of raw materials with low purity and can be produced at low cost, it is extremely advantageous industrially and can also contribute to increasing practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例Nd15Fe77-aB8Xa
の合金から成る異方性焼結体についてXの原子百
分率a(横軸)に対する残留磁化Br(縦軸kG)の
変化を示すグラフ、第2図は本発明の代表的な実
施例の試料No.1,9,17及び25についての初磁
化・減磁曲線を示すグラフ(横軸磁界kOe、縦軸
磁化kG)、を夫々示す。
Figure 1 shows the residual magnetization Br ( vertical axis kG ) versus the atomic percentage a of Figure 2 is a graph showing the initial magnetization/demagnetization curves for samples No. 1, 9, 17, and 25 of typical examples of the present invention (horizontal axis: magnetic field kOe, vertical axis: magnetization kG). ), respectively.

Claims (1)

【特許請求の範囲】 1 原子百分比でR(RはNdとPrの一種又は二
種)8〜30%、B2〜28%、下記所定%以下(0
%を除く)の元素Xの一種又は二種以上(但し元
素Xが二種以上のときは、X合量は4.0%以下)、
及び残部実質的にFeから成ることを特徴とする
永久磁石用合金; Cu 3.5%, S 2.5%, C 4.0%,及びP 3.5%。 2 原子百分比でR(RはNd,Pr,Dy,Ho,
Tb,La,Ce,Gd,Yのうち少なくとも一種で、
かつRの50%以上はNdとPrの一種又は二種)8
〜30%、B2〜28%、下記所定%以下(0%を除
く)の元素Xの一種又は二種以上(但し元素Xが
二種以上のときは、X合量は4.0%以下)、及び残
部実質的にFeから成ることを特徴とする永久磁
石用合金; Cu 3.5%, S 2.5%, C 4.0%,及びP 3.5%。
[Claims] 1. R (R is one or both of Nd and Pr) 8 to 30%, B2 to 28%, below specified % (0
%) of one or more types of element X (however, when there are two or more types of element X, the total amount of X is 4.0% or less),
An alloy for permanent magnets, characterized in that the remainder essentially consists of Fe; Cu 3.5%, S 2.5%, C 4.0%, and P 3.5%. 2 R in atomic percentage (R is Nd, Pr, Dy, Ho,
At least one of Tb, La, Ce, Gd, Y,
and 50% or more of R is one or both of Nd and Pr)8
~30%, B2~28%, one or more types of element An alloy for permanent magnets, characterized in that the balance essentially consists of Fe; 3.5% Cu, 2.5% S, 4.0% C, and 3.5% P.
JP58005814A 1982-08-21 1983-01-19 Permanent magnet Granted JPS59132105A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP58005814A JPS59132105A (en) 1983-01-19 1983-01-19 Permanent magnet
CA000431730A CA1316375C (en) 1982-08-21 1983-07-04 Magnetic materials and permanent magnets
DE198383106573T DE101552T1 (en) 1982-08-21 1983-07-05 MAGNETIC MATERIALS AND PERMANENT MAGNETS.
DE8383106573T DE3380376D1 (en) 1982-08-21 1983-07-05 Magnetic materials, permanent magnets and methods of making those
EP83106573A EP0101552B2 (en) 1982-08-21 1983-07-05 Magnetic materials, permanent magnets and methods of making those
US07/013,165 US4770723A (en) 1982-08-21 1987-02-10 Magnetic materials and permanent magnets
US07/224,411 US5096512A (en) 1982-08-21 1988-07-26 Magnetic materials and permanent magnets
SG48490A SG48490G (en) 1982-08-21 1990-07-02 Magnetic materials,permanent magnets and methods of making those
HK682/90A HK68290A (en) 1982-08-21 1990-08-30 Magnetic materials,permanent magnets and methods of making those
US07/876,902 US5194098A (en) 1982-08-21 1992-04-30 Magnetic materials
US07/877,400 US5183516A (en) 1982-08-21 1992-04-30 Magnetic materials and permanent magnets
US08/194,647 US5466308A (en) 1982-08-21 1994-02-10 Magnetic precursor materials for making permanent magnets
US08/485,183 US5645651A (en) 1982-08-21 1995-06-07 Magnetic materials and permanent magnets
US08/848,283 US5766372A (en) 1982-08-21 1997-04-29 Method of making magnetic precursor for permanent magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58005814A JPS59132105A (en) 1983-01-19 1983-01-19 Permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008373A Division JPH031502A (en) 1990-01-19 1990-01-19 Permanent magnet

Publications (2)

Publication Number Publication Date
JPS59132105A JPS59132105A (en) 1984-07-30
JPH0316762B2 true JPH0316762B2 (en) 1991-03-06

Family

ID=11621546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58005814A Granted JPS59132105A (en) 1982-08-21 1983-01-19 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS59132105A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204862A (en) * 1984-03-28 1985-10-16 Toshiba Corp Rare earth element-iron type permanent magnet alloy
JPH0624163B2 (en) * 1985-09-17 1994-03-30 ティーディーケイ株式会社 permanent magnet
US5538565A (en) * 1985-08-13 1996-07-23 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US6136099A (en) * 1985-08-13 2000-10-24 Seiko Epson Corporation Rare earth-iron series permanent magnets and method of preparation
US5213631A (en) * 1987-03-02 1993-05-25 Seiko Epson Corporation Rare earth-iron system permanent magnet and process for producing the same
ATE107076T1 (en) * 1987-03-02 1994-06-15 Seiko Epson Corp RARE-EARTH-IRON-TYPE PERMANENT MAGNET AND ITS PROCESS OF PRODUCTION.
US5147473A (en) 1989-08-25 1992-09-15 Dowa Mining Co., Ltd. Permanent magnet alloy having improved resistance to oxidation and process for production thereof
DE3928389A1 (en) * 1989-08-28 1991-03-14 Schramberg Magnetfab PERMANENT MAGNET
JPWO2002103719A1 (en) * 2001-06-19 2004-10-07 三菱電機株式会社 Rare earth permanent magnet material

Also Published As

Publication number Publication date
JPS59132105A (en) 1984-07-30

Similar Documents

Publication Publication Date Title
JPS6134242B2 (en)
JPH0510806B2 (en)
JPH0510807B2 (en)
JPH0319296B2 (en)
US4747874A (en) Rare earth-iron-boron permanent magnets with enhanced coercivity
JPH0232761B2 (en)
JPH0316761B2 (en)
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH0316762B2 (en)
JPH0518242B2 (en)
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
US5230749A (en) Permanent magnets
US4954186A (en) Rear earth-iron-boron permanent magnets containing aluminum
JPH0535210B2 (en)
JPH0316763B2 (en)
JPH0535211B2 (en)
JPH0461042B2 (en)
JPS6365742B2 (en)
JPH0536495B2 (en)
JP2001006911A (en) Manufacture of rare earth permanent magnet
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
US4878958A (en) Method for preparing rare earth-iron-boron permanent magnets
JPH0422006B2 (en)
JPH0467324B2 (en)
JPH0316764B2 (en)