JPH03170643A - Alloy for permanent magnet - Google Patents

Alloy for permanent magnet

Info

Publication number
JPH03170643A
JPH03170643A JP2206044A JP20604490A JPH03170643A JP H03170643 A JPH03170643 A JP H03170643A JP 2206044 A JP2206044 A JP 2206044A JP 20604490 A JP20604490 A JP 20604490A JP H03170643 A JPH03170643 A JP H03170643A
Authority
JP
Japan
Prior art keywords
rare earth
alloy
permanent magnet
magnets
earth elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2206044A
Other languages
Japanese (ja)
Other versions
JPH0536495B2 (en
Inventor
Setsuo Fujimura
藤村 節夫
Masato Sagawa
眞人 佐川
Yutaka Matsuura
裕 松浦
Hitoshi Yamamoto
日登志 山本
Masao Togawa
戸川 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP58141850A external-priority patent/JPS6034005A/en
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2206044A priority Critical patent/JPH03170643A/en
Publication of JPH03170643A publication Critical patent/JPH03170643A/en
Publication of JPH0536495B2 publication Critical patent/JPH0536495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To manufacture the permanent magnet in which the amt. of expensive Co to be used is reduced and having excellent magnetic characteristics at low cost by subjecting the powder of an alloy obtd. by mixing specified rare earth elements, B and Fe in specified ratios and melting the mixture to orientating, compacting and sintering in a magnetic field. CONSTITUTION:An Fe-rare earth-B series alloy contg., by atom%, 12.5 to 20.0% lanthanoide series rare earth elements (in which the amt. of one or more kinds among Dy, Tb, Gd, Ho, Er, Tm and Yb is regulated to 0.05 to 5% and the balance one or more kinds of Nd and Pr, or the total amt. of Nd and Pr is regulated to >=80% and the balance at least one kind among the rare earth elements including Y except the above Dy to Yb), 4 to 20% B and the balance Fe in which a part is substituted by Co by <=35% for the total compsn. as well as, as the elements to be added, contg. specified amounts of at least one kind among Ti, Zr, Hf, Cr, Mn, Ni, Ta, Ge, Sn, Sb, Bi, Mo, Nb, Al, V and W is refined, is cooled to pulverize and is thereafter orientated, compacted and sintered in a magnetic field. The permanent magnet in which the amt. of expensive Co to be used is reduced and having excellent magnetic characteristics can be obtd.

Description

【発明の詳細な説明】 本発明は高価で資源希少なコバルトを多量に使用しない
,希土類・鉄系高性能永久磁石材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rare earth/iron-based high-performance permanent magnet material that does not use a large amount of cobalt, which is expensive and a scarce resource.

永久磁石材料は一般家庭の各種電気製品から,自動車や
通信器部品,大型コンピュータの周辺端末機まで.幅広
い分野で使われるきわめて重要な電気・電子材料の一つ
である。近年の電気,電子機器の高性能化・小型化の要
求にともない,永久磁石材料もまた高性能化が求められ
ている。
Permanent magnet materials are used in everything from various household electrical appliances to automobile and communication device parts to peripheral terminals for large computers. It is one of the extremely important electrical and electronic materials used in a wide range of fields. With the recent demand for higher performance and smaller size of electrical and electronic equipment, permanent magnet materials are also required to have higher performance.

現在の代表的な永久磁石材料はアルニコ,ハードフエラ
イトおよび希土類コバルト磁石である。
Current typical permanent magnet materials are alnico, hard ferrite, and rare earth cobalt magnets.

最近のコバルトの原料事情の不安定化にともない,コバ
ルトを20〜30屯瓜%含むアルニコ磁石の需要は減り
,鉄の酸化物を主成分とする安価なハードフエライトが
磁石材料の主流を占めるようこなった。一方,希土類コ
バルト磁石は最大エネルギー積20MGOe以上を有す
る高性能磁石であるが,コバルトを50〜65重量%も
含むうえ,希土類鉱石中にあまり含まれていないSII
lを多量に使用するため大変高価である。しかし,他の
磁石に比べて,磁気特性が格段に高いため,主として小
型で,付加価値の高い磁気回路に多く使われるようにな
った。
With the recent instability of the raw material situation for cobalt, the demand for alnico magnets containing 20 to 30 tons of cobalt has decreased, and cheap hard ferrite, whose main component is iron oxide, is now becoming the mainstream magnet material. became. On the other hand, rare earth cobalt magnets are high-performance magnets with a maximum energy product of 20 MGOe or more, but they also contain 50 to 65% by weight of cobalt, and SII, which is not contained in rare earth ores,
It is very expensive because it uses a large amount of l. However, because their magnetic properties are much higher than that of other magnets, they have come to be used mainly in small, high-value-added magnetic circuits.

希土類コバルト磁石のような高性能磁石がもつと広い分
野で安価に,かつ多量に使われるようになるためには,
高価なコバルトを含まず,かつ希土類金属として,鉱石
中に多量に含まれているネオジムやプラセオジムのよう
な軽希土類元素を中心成分とすることが必要である。
In order for high-performance magnets such as rare earth cobalt magnets to be used in large quantities and at low cost in a wide range of fields, it is necessary to
It is necessary that the material does not contain expensive cobalt and contains light rare earth elements such as neodymium and praseodymium, which are contained in large amounts in ores, as rare earth metals.

このような希土類コバルト磁石に代る永久磁石材料の試
みは,まず希土類・鉄二元系化合物についてなされた。
Attempts to create permanent magnet materials to replace such rare earth cobalt magnets were first made with rare earth/iron binary compounds.

希土類・鉄系化合物は希土類コバルト系化合物と比べて
存在する化合物の種類が少なく,また一般的にキュリ一
点も低い。そのため,希土類コバルト化合物の磁石化に
用いられている鋳造法や粉末冶金的手法では,希土類秩
系化合物においては,従来いかなる方法も成功していな
い。
Rare earth/iron compounds exist in fewer types than rare earth/cobalt compounds, and generally have a lower Curie point. Therefore, none of the casting methods and powder metallurgy methods used to magnetize rare earth cobalt compounds have been successful for rare earth cobalt compounds.

クラーク(A. E. Clark)はスバッタしたア
モルファスTbFe2が4.21で30kOeの高い保
磁力(lle)を有することを見出し,300〜350
℃で熱処理することによって室温でIlc − 3.4
kOe.最大エネルギー積((BH)IaX) − 7
MGOeを示すことを示した(Appl. Phys.
 Lett. 23(if), 1973. 842 
−645)。
A.E. Clark found that spattered amorphous TbFe2 had a high coercive force (lle) of 4.21 and 30 kOe, and 300-350
Ilc-3.4 at room temperature by heat treatment at °C
kOe. Maximum energy product ((BH)IaX) − 7
MGOe (Appl. Phys.
Lett. 23(if), 1973. 842
-645).

クロート(J. J. Croat)等はNd. Pr
の軽希土類元素を用いたNdFe及びPrFeの超急冷
リボンがI!c=7 . 5 kOeを示すことを報告
している。しかし, Brは5kG以下で( B II
 ) m a xは3〜4MGOeを示すにすぎない(
Appl. Phys. Lett. 37. 198
0. 109B. J.AI)p1. Phys. 5
3. (3) 1982. 2404 − 241)8
)。
J. J. Croat et al. Pr
Ultra-quenched ribbons of NdFe and PrFe using light rare earth elements of I! c=7. 5 kOe. However, when Br is less than 5kG (B II
) m a x only shows 3 to 4 MGOe (
Appl. Phys. Lett. 37. 198
0. 109B. J. AI) p1. Phys. 5
3. (3) 1982. 2404-241)8
).

このように,予め作成したアモルファスを熱処理する方
法と超急冷法の二つが,希土類・鉄系磁石を得る最も有
望な手段として知られていた。
In this way, the two methods of heat-treating pre-prepared amorphous material and ultra-quenching were known as the most promising means of obtaining rare earth/iron magnets.

しかし,これらの方法で得られる材料はいずれも薄膜又
は薄帯であり,スビーカやモータなどの一般の磁気回路
に用いられる磁石材料ではない。
However, the materials obtained by these methods are all thin films or ribbons, and are not magnetic materials used in general magnetic circuits such as speakers and motors.

さらにクーン(N. C. Koon)等はLaを加え
ることによって重希土類元素を含有したFeB系合金の
超急冷リボンを得て+  (Feo.sa B o.+
s ) 0.9 Tbo.osLa0.。,の組成のリ
ボンを熱処理することにより,11c=9koeに達す
ることを見出した(Br−5kG,Appl. Phy
s. Lett. 39 (10). 1981. 8
40 −842)。
Furthermore, N.C. Koon et al. obtained ultra-quenched ribbons of FeB-based alloys containing heavy rare earth elements by adding La.
s) 0.9 Tbo. osLa0. . , it was found that 11c=9koe could be reached by heat-treating a ribbon with a composition of (Br-5kG, Appl. Phy
s. Lett. 39 (10). 1981. 8
40-842).

カバコフ(L. Kabacof’f’)等は, Po
B系合金でアモルファス化が容易になることに注目し,
(Feo.Bo、2 ) 1−X Pry  (x −
 0 〜0.3原子比)の組成の超急冷リボンを作成し
たが,室温でのHeは数Oeのレベルのものしか得られ
なかった(J. Appl. Phys. 53 (3
) 1982. 2255 〜2257)。
L. Kabacof'f' et al.
Noting that B-based alloys facilitate amorphization,
(Feo.Bo, 2) 1-X Pry (x-
Although we created an ultra-quenched ribbon with a composition of 0 to 0.3 atomic ratio), only a few Oe of He could be obtained at room temperature (J. Appl. Phys. 53 (3)
) 1982. 2255-2257).

これらのスパッタングによるアモルファス薄膜及び超急
冷リボンから得られる磁石は,薄く,寸法的な制約を受
け,それ自体として一般の磁気回路に使用可能な実用永
久磁石ではない。即ち,従来のフエライトや希土類コバ
ルト磁石のような任意の形状・寸法を有するバルク永久
磁石体を得ることができない。また,ス・バッタ薄膜及
び超急冷リボンはいずれも本質上等方性であり.室温で
の磁石特性は低く,これらから高性能の磁気異方性永久
磁石を得ることは,事実上不可能である。
Magnets obtained from these sputtered amorphous thin films and ultra-quenched ribbons are thin and subject to dimensional limitations, and as such are not practical permanent magnets that can be used in general magnetic circuits. That is, it is impossible to obtain a bulk permanent magnet body having arbitrary shapes and dimensions, such as conventional ferrite and rare earth cobalt magnets. Furthermore, both the grasshopper thin film and the ultra-quenched ribbon are isotropic in nature. Magnetic properties at room temperature are poor, and it is virtually impossible to obtain high-performance magnetically anisotropic permanent magnets from these materials.

最近,永久磁石はますます過酷な環境−たとえば.磁石
の薄型化にともなう強い反磁界,コイルや他の磁石によ
って加えられる強い逆磁界,これらに加えて機器の高速
化,高負荷化により高温度の環境−にさらされることが
多くなり,多くの用途において,特性安定化のために,
一層の高保磁力化が必要とされる。(一般に永久磁石の
idleは温度上昇にともない低下する。そのため室温
におけるIHeが小さければ,永久磁石が高温度に露さ
れると減磁が起こる。しかし,室温におけるiHcが十
分高ければ実質的にこのような減磁は起こらない。) フエライトや希土類コバルト磁石では,高保磁力化を図
るため,添加元素や異なる組成系を利用しているが,そ
の場合一般に飽和磁化が低下し,(Bi)島ax も低
い。
Recently, permanent magnets are exposed to increasingly harsh environments - for example. In addition to strong demagnetizing fields caused by thinner magnets and strong reverse magnetic fields applied by coils and other magnets, devices are increasingly exposed to high-temperature environments due to faster speeds and higher loads. In order to stabilize the characteristics in the application,
An even higher coercive force is required. (In general, the idle of a permanent magnet decreases as the temperature rises. Therefore, if IHe at room temperature is small, demagnetization will occur when the permanent magnet is exposed to high temperature. However, if iHc at room temperature is high enough, this (No such demagnetization occurs.) In ferrite and rare earth cobalt magnets, additive elements and different composition systems are used to increase the coercive force, but in this case, the saturation magnetization generally decreases and the (Bi) island ax is also low.

本発明はかかる従来法の欠点を解消した新規な実用永久
磁石用合金を提供することを基本的目的とする。
The basic object of the present invention is to provide a new alloy for practical permanent magnets that eliminates the drawbacks of the conventional method.

かかる観点より,本発明者等は先にR−Fe二元系をベ
ースとして,キュリー点が高く,且つ室温付近で安定な
化合物合金ないしは磁石を作ることを目標とし,多数の
系を探った結果,特にFeBR系化合物及びFeBRM
系化合物が磁石化に最適であることを見出した(特願昭
57− 145072,特願昭57−200204)。
From this point of view, the present inventors first aimed to create a compound alloy or magnet that has a high Curie point and is stable around room temperature using the R-Fe binary system as a base, and as a result of exploring numerous systems. , especially FeBR-based compounds and FeBRM
It was discovered that these compounds are most suitable for magnetization (Japanese Patent Application No. 145072/1982, Japanese Patent Application No. 200204/1983).

ここでRとはYを包含する希土類元素の内,少なくとも
一種以上を示し,特にNd, Prの軽希土類元素が望
ましい。Bはホウ素を示す。MはTI,Zr, !If
. Cr, Mn. Nf. Ta, Ge, Sn,
 Sb, B1, Mo,Nb,M,V,Wの内から選
ばれた一種以上を示す。
Here, R represents at least one kind of rare earth elements including Y, and light rare earth elements such as Nd and Pr are particularly preferable. B represents boron. M is TI, Zr, ! If
.. Cr, Mn. Nf. Ta, Ge, Sn,
Indicates one or more selected from Sb, B1, Mo, Nb, M, V, and W.

このFeBR系磁石は実用に十分な 300℃以上のキ
ュリ一点を有し.且つ,R−Pa二元系では従来或功し
ていなかったフエライトや希土類コバルトと同じ粉末冶
金的手法によって得られる。
This FeBR magnet has a single Curie point of over 300°C, which is sufficient for practical use. In addition, it can be obtained by the same powder metallurgical method as ferrite and rare earth cobalt, which have not been successful in the R-Pa binary system.

またRとしてNdやP『なとの資源的に豊富な軽希土類
元素を中心組成とし,高価なCoやSsを必ずしも含有
せず,従来の希土類コバルト磁石の最高特性((BH)
+gax− 31MGOe)をも大幅に越える(BH)
Ilax3BMGOe以上もの特性を有する。
In addition, R has the main composition of resource-rich light rare earth elements such as Nd and P, does not necessarily contain expensive Co or Ss, and has the highest characteristics ((BH)) of conventional rare earth cobalt magnets.
+gax- 31MGOe) significantly exceeds (BH)
It has better characteristics than Ilax3BMGOe.

さらに.本発明者等はこれらFeBR系.’ FeBR
M系化合物合金ないしは磁石が従来のアモルファス薄膜
や超急冷リボンとはまったく異なる結晶性のXl1回折
パターンを示し,磁気異方性を有する新規な磁気異方性
を有する正方品系結晶構造を主t口として有することを
見出した(特願昭58−94878)。
moreover. The present inventors have developed these FeBR systems. 'FeBR
The M-based compound alloy or magnet exhibits a crystalline Xl1 diffraction pattern that is completely different from that of conventional amorphous thin films or ultra-quenched ribbons, and has a novel tetragonal crystal structure with magnetic anisotropy. (Japanese Patent Application No. 58-94878).

これらのFeBR系, PaBRM系合金のキュリー点
は一般に300℃前後〜370℃であるが,さらにこれ
らの系においてFoを置換して50原子%以下のCoを
含有する永久磁石用合金は,より高いキュリー点を有し
,同一出願人により出願されている( FeCoBR系
特願昭57− 186883号, FoCoBRM系特
願昭58− 5813号)。
The Curie point of these FeBR-based and PaBRM-based alloys is generally around 300°C to 370°C, but permanent magnet alloys containing 50 atomic percent or less of Co by replacing Fo in these systems have higher Curie points. It has a Curie point and was filed by the same applicant (FeCoBR patent application No. 186883-1983, FoCoBRM patent application No. 58-5813).

本発明はさらに,前述のFeCoBR及びFeCoBR
M系合金磁石において得られる高いキュリー点と,これ
らとほぼ同等以上の高い最大エネルギー積(BH)wa
xを保有しさらにその温度特性,特にif{cを向上せ
しめ得る永久磁石用合金を提供することを具体的目的と
する。
The present invention further provides the above-mentioned FeCoBR and FeCoBR.
The high Curie point obtained in M-based alloy magnets and the high maximum energy product (BH) wa that is almost equal to or higher than these.
A specific object of the present invention is to provide an alloy for permanent magnets which has x and can further improve its temperature characteristics, especially if{c.

本発明によれば.RとしてNdやPrなどの軽希土類を
中心としたFeCoBR及びFeCoBRM系磁石用合
金に,Rの一部として重希土類を中心としたR,として
Dy. Tb, Cd, no. Er, Ta. Y
bの内一種を含有することによって, FeCoBR系
, FeCoBRM系において高い(BH)waxを保
有したままIHcをさらに向上せしめた。
According to the invention. As R, FeCoBR and FeCoBRM alloys for magnets mainly contain light rare earth elements such as Nd and Pr, and as part of R, R mainly contains heavy rare earth elements as Dy. Tb, Cd, no. Er, Ta. Y
By containing one of b, IHc was further improved while maintaining high (BH) wax in FeCoBR and FeCoBRM systems.

即ち,本発明による永久磁石用合金は次の通りである。That is, the alloy for permanent magnets according to the present invention is as follows.

合金組成が原子百〜分比でR(下記R1とR2とからな
る) 12.5〜20%,R10.05〜5%、B4〜
20%,残部実質的にFeから成り,前記Feの一部を
全組成に対して35%以下(0%を除く)のCoで置換
したことを特徴とする永久磁石用合金;但し,R,はD
y, Tb. Gd, Ho, Br. Tm, Yb
の内一種以上+R2はNdとPrの一種以上.又はNd
とPrの合計が80%以上で残りがR,以外のYを包含
する希土類元素の少なくとも一種。
Alloy composition is R (consisting of R1 and R2 below) in atomic ratio of 12.5 to 20%, R10.05 to 5%, B4 to
An alloy for permanent magnets, characterized in that the remainder essentially consists of Fe, and a portion of the Fe is replaced with 35% or less (excluding 0%) of Co; however, R, is D
y, Tb. Gd, Ho, Br. Tm, Yb
+R2 is one or more of Nd and Pr. or Nd
and Pr in a total of 80% or more, and the remainder is R and at least one rare earth element containing Y other than R.

合金組成が原子百分比でR(下記R1とR2とからなる
’) 12.5〜20%,R10.05〜5%、B4〜
20%,下記の所定%以下の添加元素Mの一種以上(但
し,Mとして二種以上の前記添加元素を含む場合は,M
合量は当該添加元素のうち最大値を有するものの原子百
分比以下),残部実質的にPaから成り,前記Feの一
部を金川成に対して35%以下(O%を除く)のCoで
置換したことを特徴とする永久磁石用合金; 但し,R1はDy. Tb, Gd. llo, Er
. Tm. Ybの内一種以上+R2はNdとP『の一
種以上,又はNdとP『の合計が80%以上で残りがR
,以外のYを包含する希土類元素の少なくとも一種であ
り,添加元索Mは下記の通り: Ti   3%,      Zr   3.3%,H
r3.   3.3%,,Cr   4.5%,Mn 
  6%,      Ni   [1%,Ta   
7%,      Ge   3.5%8n   1.
5%,     sb   t%,Bi   5%, 
     MO   5.2%Nb   9%,M5%
, ■5.5%,     W5%, また,最終製品中には下記の数値以下の代表的な不純物
が含有されてもよい。
Alloy composition is R (consisting of R1 and R2 below) in atomic percentage: 12.5-20%, R10.05-5%, B4-
20%, one or more of the additive elements M below the specified percentage (however, if M includes two or more of the above additive elements, M
The total amount is less than the atomic percentage of the one having the maximum value among the added elements), the remainder substantially consists of Pa, and a part of the Fe is replaced with Co of 35% or less (excluding O%) with respect to the Kanagawa composition. An alloy for permanent magnets, characterized in that R1 is Dy. Tb, Gd. llo, Er
.. Tm. One or more of Yb + R2 is one or more of Nd and P'', or the total of Nd and P'' is 80% or more and the rest is R
, and the addition source M is as follows: Ti 3%, Zr 3.3%, H
r3. 3.3%, Cr 4.5%, Mn
6%, Ni [1%, Ta
7%, Ge 3.5%8n 1.
5%, sb t%, Bi 5%,
MO 5.2%Nb 9%, M5%
, ■5.5%, W5%, In addition, the final product may contain typical impurities below the values shown below.

Cu     2%,         02%,P 
   2%,         Ca     4%,
Mg     4%,         02%,Sl
     5%,         32%,但し,不
純物の合計は5%以下とする。
Cu 2%, 02%, P
2%, Ca 4%,
Mg 4%, 02%, Sl
5%, 32%, however, the total amount of impurities shall be 5% or less.

これらの不純物は原料または製造工程中に混入すること
が予想されるが,上記限界量以上になると特性が低下す
る。これらの内,Slはキュリー点を上げ,また耐食性
を向上させる効果を有するが,,5%を越えるとill
cが低下する。Ca, MgはR原料中に多く含まれる
ことがあり,またfHcを増す効果も有するが,製品の
耐食性を低下させるため多量に含有するのは望ましくな
い。
These impurities are expected to be mixed into the raw materials or during the manufacturing process, but if the amount exceeds the above limit, the properties will deteriorate. Among these, Sl has the effect of raising the Curie point and improving corrosion resistance, but if it exceeds 5%, ill
c decreases. Although Ca and Mg are often contained in large amounts in the R raw material and have the effect of increasing fHc, it is undesirable to contain them in large amounts because they reduce the corrosion resistance of the product.

なお,本発明においてボロン(B)は.従来の磁性材料
におけるように,例えば非晶質合金作成時の非品質化促
進元素又は粉末冶金法における焼結促進元素として添加
されるものではなく,本発明に係るR − Fe(Co
) − B正方品化合物の必須構成元素である(なお,
 CoはFeの一部を置換)。
In the present invention, boron (B) is . Unlike conventional magnetic materials, R-Fe(Co) according to the present invention is not added, for example, as an element that promotes deterioration when creating an amorphous alloy or as an element that promotes sintering in powder metallurgy.
) - It is an essential constituent element of the B tetragonal compound (in addition,
Co replaces part of Fe).

本発明の新規な化合物に基づく合金は粉末化した後成形
焼結することによってもっとも効果的に実用永久磁石を
得ることが可能である。
It is possible to most effectively obtain a practical permanent magnet by pulverizing the alloy based on the novel compound of the present invention and then shaping and sintering it.

上紀紹成による永久磁石用合金は,特に最も効果的に用
いた場合,即ち磁気異方性焼結永久磁石として用いた場
合,最大エネルギー積(Bil)a+ax 20MGO
e以上を有したまま,保磁力i1lc lOkOe以上
を有する高性能磁石が得られる。
The alloy for permanent magnets developed by Shosei Joki has a maximum energy product (Bil) a+ax of 20MGO, especially when used most effectively, i.e., when used as a magnetically anisotropic sintered permanent magnet.
A high-performance magnet having a coercive force of i1lclOkOe or more can be obtained while having a coercive force of i1lc1OkOe or more.

本発明の永久磁石用合金は室温以上で磁気的に安定で,
磁気異方性を有するFe(Co) − B − R正方
晶化合物を含むものであれば,その形態は問わず,鋳塊
あるいは粉体等の公知の形態の永久磁石用の素材の他,
 Fe(Co) − B − R正方晶化合物を含む任
意の形態からなる永久磁石用材料をも包含する。
The alloy for permanent magnets of the present invention is magnetically stable above room temperature,
As long as it contains Fe(Co)-B-R tetragonal compound having magnetic anisotropy, it can be used in any form, including materials for permanent magnets in known forms such as ingots or powders,
It also includes materials for permanent magnets in any form containing Fe(Co)-B-R tetragonal compounds.

以下に本発明をさらに詳述する。The present invention will be explained in further detail below.

FcBR系合金を用いてなる磁石は前述の通り高い(B
H)maxを有するが. Itlcは従来の高性能磁石
の代表である8112 COLT型磁石と同等程度(5
〜IOkoe)であった。
As mentioned above, magnets made using FcBR alloys are expensive (B
H) has max. Itlc is equivalent to the 8112 COLT type magnet, which is a typical high-performance magnet (5
~IOkoe).

これは強い減磁界を受けたり,温度が−1−昇すること
によって減磁されやすいこと,即ち安定性が良くないこ
とを示している。磁石のHlcは一般に温度上昇と共に
低下する。例えば前述の30MGOe級のSm2Co1
7型磁石やFeBR系磁石では100℃ではおよそ5k
Oe程度の値しか保有しない。(表4)電算機用磁気デ
ィスクアクチュエー夕や自動車用モータ等では強い減磁
界や温度上昇があるため,このようなillcでは使用
できない。高温においても尚一層の安定性を得るために
は高いキュリー点を有すると共に室温付近でのIHcの
値をもっと大きくする必要がある。
This indicates that the magnet is easily demagnetized by being subjected to a strong demagnetizing field or by increasing the temperature by -1, that is, the stability is poor. The Hlc of a magnet generally decreases with increasing temperature. For example, the aforementioned 30MGOe class Sm2Co1
For type 7 magnets and FeBR magnets, it is approximately 5k at 100°C.
It only holds a value of about Oe. (Table 4) Magnetic disk actuators for computers, motors for automobiles, etc. cannot be used in such illcs because they have strong demagnetizing fields and temperature rises. In order to obtain further stability even at high temperatures, it is necessary to have a high Curie point and to increase the IHc value near room temperature.

また,室温付近においても,磁石の時間経過による劣化
(経時変化)や衝撃や接触などの物理的な擾乱に対して
も一般的にillcが高い方が安定であることがよく知
られている。
Furthermore, it is well known that, even near room temperature, the higher the illc, the more stable the magnet is in general against deterioration over time (change over time) and physical disturbances such as impact and contact.

以上のことから,本発明者等はFeCoBR53E分系
を中心に更に詳しい検討を行った結果,希土類元素中の
Dy, Tb, Gd, Ilo, Er, Tom,
 Ybの内一種以上と, NdやP『などの軽希土類元
素等を組合わせることによって, FeBR系, Fe
CoBR系合金を用いた磁石では得られなかった高い保
磁力を得ることができた。
Based on the above, the present inventors conducted a more detailed study focusing on the FeCoBR53E subsystem, and found that the rare earth elements Dy, Tb, Gd, Ilo, Er, Tom,
By combining one or more of Yb and light rare earth elements such as Nd and P, FeBR series, Fe
It was possible to obtain a high coercive force that could not be obtained with a magnet using a CoBR alloy.

更に,本発明よる成分系では, iHcの増大のみなら
ず,減磁曲線の角形性の改善,即ち(OH)maxの一
層増大の効果をも具備することが判った。
Furthermore, it has been found that the component system according to the present invention has the effect of not only increasing iHc but also improving the squareness of the demagnetization curve, that is, further increasing (OH)max.

なお本発明者等はFeCoBR系合金を用いた磁石のi
llcを増大させるために様々の検討を行った結果,以
下の方法が有効であることを既に知った。
In addition, the present inventors have developed a magnet using a FeCoBR alloy.
As a result of various studies to increase llc, we have already learned that the following method is effective.

即ち, (1)R又はBの含有量を多くする。That is, (1) Increase the content of R or B.

(2〉添加元素Mを加える。( FeCoBRM系磁石
)しかしながら,R又はBの含有量を増加する方法は,
各々111cを増大するが,含有量が多くなるにつれて
Brが低下し,その結果(Bil)maxの値も低くな
る。
(2> Adding the additive element M. (FeCoBRM magnet) However, the method of increasing the content of R or B is as follows:
111c respectively, but as the content increases, Br decreases, and as a result, the value of (Bil)max also decreases.

また,添加元素MもlHc増大の効果を有するが,添加
量の増加につれて(BH)+axが低下し飛耀的な改善
効果には繋がらない。
Further, the additive element M also has the effect of increasing lHc, but as the amount added increases, (BH)+ax decreases and does not lead to a dramatic improvement effect.

本発明の永久磁石用合金においては,重希土類を中心と
する希土類元素R1の含有と+R2としてNd, Pr
を主体とすることと,さらにR,B,Coの所定範囲内
の組成とに基づき,時効処理を施した場合のIHeの増
大が顕著である。即ち,上記特定の組成の合金からなる
磁気異方性焼結体に時効処理を施すと. Brの値を損
ねることな< IHcを増大させ,さらに減磁曲線の角
形性改善の効果もあり. (Bil)waxはほぼ同等
かまたはそれ以上となり,その効果は顕著である。なお
, R,  B, Coの範囲と,  (Nd, Pr
又は両者)の量を規定することにより,時効処理前にお
いても111c約10kOe以上が達成され,R内にお
けるR1の所定の含有により時効処理の効果がさらに著
しく付加される。
The alloy for permanent magnets of the present invention contains rare earth elements R1, mainly heavy rare earth elements, and Nd and Pr as +R2.
The increase in IHe is remarkable when the aging treatment is performed based on the fact that R, B, and Co are mainly in the composition and the composition is within a predetermined range. That is, when a magnetically anisotropic sintered body made of an alloy with the above specific composition is subjected to aging treatment. It increases IHc without impairing the Br value, and also has the effect of improving the squareness of the demagnetization curve. (Bil) wax is almost the same or higher, and the effect is remarkable. In addition, the range of R, B, Co and (Nd, Pr
(or both), 111c of about 10 kOe or more can be achieved even before the aging treatment, and the effect of the aging treatment is further significantly added by the predetermined content of R1 in R.

即ち,本発明合金を用いることにより,(Bil)wa
x 20MGOe以上を保有したまま, Tc約3lO
〜約840℃かつIHc 10kOo以上で示される十
分な安定性を兼ね具え,従来の高性能磁石よりも広範な
用途に適用し得る高性能磁石を提供できる。
That is, by using the alloy of the present invention, (Bil)wa
x Tc approx. 3lO while retaining 20MGOe or more
It is possible to provide a high-performance magnet that has sufficient stability shown at ~840° C. and an IHc of 10 kOo or more, and can be applied to a wider range of applications than conventional high-performance magnets.

(BH)wax . iHcの最大値は各々40.6M
GOe (表2 ,’ kl7) , 20.OkOe
  C表2,Nal9)を示した。
(BH) wax. The maximum value of iHc is 40.6M each.
GOe (Table 2, 'kl7), 20. OkOe
C Table 2, Nal9) was shown.

本発明の永久磁石用合金に用いるRは+R1 とR2の
和より威るが,RとしてYを包含し. Nd,Pr. 
La, Ce, Tb, Dy. Ito. Er. 
Eu. Sn, Cd, Pm.Tm. Yb, Lu
の希土類元素である。そのうちR1はDy, Tb, 
Gd. llo, r2r, Tm. Ybの七種のう
ち少なくとも一種を用い+ R2は上記七種以外の希土
類元素を示し,特に軽希土類の内NdとP『の合計を8
0%以上包含するものを用いる。(但し, Saは高価
でありIHcを降下させるのでできる限り少ない方が好
まし<,Laは不純物としてよく希土類金属中に含まれ
るがやはり少ない方が好ましい。)これらRは純希土類
元索でなくてもよく,工業上入手可能な範囲で製造上不
可避な不純物(他の希土類元素, Ca. Mg, F
e, TI, C , O等)を含有するもので差支え
ない。
R used in the permanent magnet alloy of the present invention is greater than the sum of +R1 and R2, but R includes Y. Nd, Pr.
La, Ce, Tb, Dy. Ito. Er.
Eu. Sn, Cd, Pm. Tm. Yb, Lu
is a rare earth element. Among them, R1 is Dy, Tb,
Gd. llo, r2r, Tm. At least one of the seven types of Yb is used + R2 represents a rare earth element other than the above seven types, and in particular, among the light rare earths, the sum of Nd and P' is 8
Use one containing 0% or more. (However, since Sa is expensive and lowers IHc, it is preferable to have as little as possible. La is often included in rare earth metals as an impurity, but it is still preferable to have a small amount.) These R are not pure rare earth elements. Impurities that are unavoidable during manufacturing within the industrially available range (other rare earth elements, Ca. Mg, F.
(e, TI, C, O, etc.) may be used.

B(ホウ素)としては,純ボロン又はフエロボロンを用
いることができ,不純物としてM, 81,C等を含む
ものも用いることができる。
As B (boron), pure boron or ferroboron can be used, and those containing M, 81, C, etc. as impurities can also be used.

本発明の永久磁石用合金は,磁気異方性焼結永久磁石と
して用いた場合(以下同様),既述のRをR,とR2の
合計として原子百分比でR, 0.05〜5%, 11
2.5 〜20%、B4 〜20%, Co35%以下
,残部Feの組成において保磁力IHc約10kOe以
上,残留磁束密度Br9kG以」二,最大エネルギー積
(BH)wax 2DMGOe以上の高保磁力・高エネ
ルギー積を示す。
When the alloy for permanent magnets of the present invention is used as a magnetically anisotropic sintered permanent magnet (the same applies hereinafter), R is 0.05 to 5% in atomic percentage, where R is the sum of R and R2. 11
2.5 - 20%, B4 - 20%, Co 35% or less, balance Fe in the composition, coercive force IHc about 10 kOe or more, residual magnetic flux density Br 9 kG or more 2. Maximum energy product (BH) wax 2DMGOe or more High coercive force / high Shows the energy product.

R1の0.2〜3%.R13〜!9%,B5〜11%,
Co23%以下,残部Feの組成は最大エネルギー積(
Bit)wax 29MGOe以上を示し,好ましい範
囲である。
0.2-3% of R1. R13~! 9%, B5~11%,
The composition of Co23% or less and the balance Fe is the maximum energy product (
Bit) wax 29MGOe or more, which is a preferable range.

また,R,としてはDy, Tbが特に望ましい。Further, as R, Dy and Tb are particularly desirable.

Rの量を12.5%以上としたのは,Rがこの量よりも
少なくなると本系合金化合物中にFeが析出して保磁力
が急激に低下するためである。Rの上限を20%とした
のは.20%以上でも保磁力はlOkoe以上の大きい
値を示すがBrが低下して(BH)+ax20M(io
e以上に必要なBrが得られなくなるからである。
The reason why the amount of R is set to 12.5% or more is because if the amount of R is less than this amount, Fe will precipitate in the alloy compound of the present invention, and the coercive force will decrease rapidly. The reason for setting the upper limit of R to 20% is. Even if it is more than 20%, the coercive force shows a large value of lOkoe or more, but Br decreases and becomes (BH)+ax20M(io
This is because the required Br cannot be obtained in excess of e.

R1の量は上述Rに置換することによって捉えられる。The amount of R1 can be captured by substituting R as described above.

R,量は表2,Th2に示すように僅か0.2%の置換
でもHeが増加しており,さらに減磁曲線の角形性も改
善され(Bit)maxが増加していることが判る。R
1量の下限値はfile増加の効果と(811)wax
増大の効果を考慮して0.05%以上とする(第2図参
照)Rlffiが増加するにつれて. illeは上昇
していき(表2,Nα2〜7)(13tl)iaxは0
.4%をピークとしてわずかずつ減少するが.例えば3
%の置換でも( B tl ) m a xは29MG
Oc以上を示している(第2図参照)。
As for the amount of R, as shown in Table 2, Th2, He increases even with only 0.2% substitution, and it is also seen that the squareness of the demagnetization curve is improved and (Bit) max is increased. R
The lower limit of 1 amount is the effect of file increase and (811) wax
Considering the effect of increase, it is set to 0.05% or more (see Figure 2).As Rlffi increases. ille increases (Table 2, Nα2-7) (13tl) iax is 0
.. It peaks at 4% and then decreases little by little. For example 3
Even with % substitution, (B tl) max is 29MG
oc or higher (see Figure 2).

安定性が特に要求される用途にはIHcが高いほど,す
なわちR1を多く含有する方が有利であるが,しかしR
,を構成する元素は希土類鉱石中にもわずかしか含まれ
ておらず,大変高価である。
For applications where stability is particularly required, it is more advantageous to have a higher IHc, that is, to contain more R1.
The elements that make up , are only contained in rare earth ores and are very expensive.

従ってその上限は5%とする。Br;kは,4%以下に
なるとi H eがlOkoe以下になる。またB量の
増加もRffiの増加と同じ<illcを増加させるが
, Brが低下していく。(Bi!)IIlax 20
MGOe以上であるためには820%以下が必要である
Therefore, the upper limit is set at 5%. When Br;k becomes 4% or less, i He becomes less than lOkoe. Furthermore, an increase in the amount of B also increases <illc, which is the same as an increase in Rffi, but Br decreases. (Bi!)IIlax 20
In order to achieve MGOe or higher, 820% or lower is required.

本発明の永久磁石用合金では,35%以下のCoの含有
により(Bil)a+axを高く保持しつつ温度特性が
改善されるが,一般にFe合金にCoを添加すると,そ
の添加量に比較してキュリ一点が上昇するものと逆に下
降するものがあり添加効果を予測することは困難である
In the alloy for permanent magnets of the present invention, the temperature characteristics are improved while maintaining (Bil)a+ax high by containing 35% or less of Co. However, in general, when Co is added to an Fe alloy, the amount of Co added is It is difficult to predict the effect of addition, as there are cases where the Curi point increases and cases where it decreases.

本発明においてFeBR系中のFeの一部をCoで置換
したときのキュリー点は,第1図に示す通りCoの置換
量の増大に伴い徐々に増大する。Coの置換はわずか(
例えば0.1〜1%)でもキュリー点増大に有効であり
第1図に示すようにその置換量により約310〜約64
0℃の任意のキュリー点をもつ合金、が得られる。Fe
をCoで置換する場合, Co量の増大と共にlHcは
減少傾向を示すが,当初(BH)IIlaxは.減磁曲
線の角形性が改善されるためやや塘大する。
In the present invention, when part of the Fe in the FeBR system is replaced with Co, the Curie point gradually increases as the amount of Co substitution increases, as shown in FIG. Substitution of Co is slight (
For example, even 0.1 to 1%) is effective in increasing the Curie point, and as shown in Figure 1, it varies from about 310 to about 64% depending on the amount of substitution.
An alloy with an arbitrary Curie point of 0° C. is obtained. Fe
When replacing with Co, lHc shows a decreasing tendency as the amount of Co increases, but initially (BH)IIlax is . Since the squareness of the demagnetization curve is improved, it becomes slightly larger.

Co25%以下では, Coは他の磁気特性特に(BH
)mixに実質上影響を与えることなくキュリー点の増
大に寄与し,特にCo23%以下では同等以上である。
Below 25% Co, Co has other magnetic properties, especially (BH
) It contributes to an increase in the Curie point without substantially affecting the mix, and in particular, it is equivalent or higher at Co23% or less.

Co含有量が25%を越えると(Bit)maxは低下
していき35%を越えるとさらに低下し, ( D I
I )tIla Xは20MGOeより低くなる。また
,Co5%以上の含有にょりB『の温度係数(室温〜1
4(1℃の平均値)は約0.1%/℃以下になる。本発
明のPaCoBR系合金を用いた磁石はまた,常温着磁
後の10(1’cにおける翼露テストでは. Sl2 
COI?磁石,或いはR1成分を含まないFcBR磁石
と比べて極めて僅かな減磁率を示し,安定性が大きく改
善されている。
When the Co content exceeds 25%, (Bit) max decreases, and when it exceeds 35%, it decreases further, (DI
I) tIla X becomes lower than 20MGOe. In addition, the temperature coefficient (from room temperature to 1
4 (average value at 1°C) is approximately 0.1%/°C or less. The magnet using the PaCoBR alloy of the present invention also showed a blade dew test at 10 (1'c) after magnetization at room temperature.Sl2
COI? Compared to a magnet or an FcBR magnet that does not contain an R1 component, it exhibits an extremely small demagnetization rate and has greatly improved stability.

なおCoに関して同様の議論はFeCoBRM系につい
ても同様に成立ち,キュリー点増大の効果はMの添加元
素により多少の変動があるが基本的傾向は同じである。
Note that the same argument regarding Co holds true for the FeCoBRM system, and although the effect of increasing the Curie point varies somewhat depending on the added element of M, the basic tendency is the same.

添加元素Mは111cを増し,減磁曲線の角形性を増す
効果があるが.一方その添加瓜が増すに従い,r3『が
低下していくため,  (all)a+ax 20MG
Oe以上を有するにはBrQkG以上が必要であり,添
加量の各々の上限は先述の値以下と定められる。2種以
上のMを添加する場合のM合計の上限は,実際に添加さ
れた当該M元索の各上限値のうち最大値を有するものの
値以下となる。例えばTI, Nf, Nbを添加した
場合には. Nbの9%以下となる。Mとしては,  
V, Nb, Ta, Mo, W, Cr. Al.
 Snが好ましい。なお,一部のM (Sb. Sn等
)を除いて,Mの添加量は凡そ3%以内が好ましくMは
0.1〜3%(特に0.2〜2%)が好ましい。
The additive element M increases 111c and has the effect of increasing the squareness of the demagnetization curve. On the other hand, as the amount of melon added increases, r3' decreases, so (all)a+ax 20MG
In order to have Oe or more, BrQkG or more is required, and the upper limit of each addition amount is determined to be the above-mentioned value or less. When two or more types of M are added, the upper limit of the total M is less than or equal to the maximum value among the upper limit values of the M base lines actually added. For example, when TI, Nf, and Nb are added. It becomes 9% or less of Nb. As for M,
V, Nb, Ta, Mo, W, Cr. Al.
Sn is preferred. Note that, except for some M (Sb, Sn, etc.), the amount of M added is preferably about 3% or less, and preferably 0.1 to 3% (particularly 0.2 to 2%).

本発明の永久磁石用合金は最も効果的に実用永久磁石に
するため焼結体とすることが好ましく,その場合平均結
晶粒径は, FeCoBR系, FeCOBRM系いず
れにおいても1〜100a好ましくは2〜40μl,特
に好ましくは約3〜10μ国の範囲にあることが重要で
ある。焼結は900〜1200゜Cの温度で行うことが
できる。時効処理は焼結後350’C以上当該焼結温度
以下,好ましくは450〜800℃で行うことができる
。焼結に供する合金粉末は0.3〜8oμl(好ましく
は1〜40μ鵡,特に好ましくは2〜20μ1)の平均
粒度のものが適当である。焼結条件等については,すで
に同一出願人の出願に係る特願昭58−  88373
号, 5g−  9[)039号に開示されている。
The alloy for permanent magnets of the present invention is preferably made into a sintered body in order to most effectively produce a practical permanent magnet, and in that case, the average crystal grain size is 1 to 100a, preferably 2 to 100a, for both FeCoBR and FeCOBRM systems. It is important that the amount is 40 μl, particularly preferably in the range of about 3 to 10 μl. Sintering can be carried out at a temperature of 900-1200°C. The aging treatment can be carried out after sintering at a temperature of 350°C or higher and lower than the sintering temperature, preferably 450 to 800°C. The alloy powder used for sintering has an average particle size of 0.3 to 8 μl (preferably 1 to 40 μl, particularly preferably 2 to 20 μl). Regarding the sintering conditions, etc., we have already submitted patent application No. 1988-88373 filed by the same applicant.
No. 5g-9[)039.

以下本発明の態様及び効果について実施例に従って説明
する。試料はつぎの工程によって作成した。(純度は重
量%で表示) (1)合金を高周波溶解し,水冷銅鋳型に鋳造,出発原
料はFeとして純度99.9%の電解鉄,Bとしてフエ
ロボロン合金( 19.38%B, 5.32%M,0
。74%Si, 0.03%C,残部Fe) , Rと
して純度99.7%以上(不純物は主として他の希土類
金属)を使用。(Coは純度99.9%の電解Coを使
用)。
Hereinafter, aspects and effects of the present invention will be explained according to examples. The sample was prepared by the following steps. (Purity is expressed in weight%) (1) The alloy is melted at high frequency and cast in a water-cooled copper mold.The starting materials are electrolytic iron with a purity of 99.9% as Fe, and ferroboron alloy as B (19.38% B, 5. 32%M,0
. 74% Si, 0.03% C, balance Fe), R with a purity of 99.7% or higher (impurities are mainly other rare earth metals). (For Co, electrolytic Co with a purity of 99.9% is used).

(2〉粉砕 スタンプミルにより35メッシュスルーま
でに粗粉砕し.次いでボールミルにより3時間微粉砕(
3〜lOμm)。
(2> Grinding: Coarsely grind to 35 mesh through using a stamp mill. Then finely grind using a ball mill for 3 hours (
3-10 μm).

(3)磁界(10kOe )中配向・成形(1.5t/
cdにて加圧)。
(3) Orientation and forming in a magnetic field (10 kOe) (1.5 t/
pressurized with cd).

(4〉焼結 1000 〜l’200℃ 1時間Ar中
,焼結後放冷 得られた試料を加工研摩後,電磁石型の磁石特性試験器
によって磁石特性を調べた。
(4> Sintering After sintering and cooling in Ar at 1000 to l'200°C for 1 hour, the obtained sample was processed and polished, and its magnetic properties were examined using an electromagnetic type magnetic property tester.

実施例1. Rとして, Ndと他の希土類元素とを組合わせた合金
を作り,上記の工程により磁石化した。結果を表1に示
す。希土類元素Rの中でも. htt〜14に示すよう
にDy. Tb, Ho等, IHe改善に顕著な効果
を有する元素(R1)が存在することが判った。なお,
傘を付したものは比較例,を示す。またCo5%以上の
含有により. [3r温度係数は0.1%/℃以下とな
ることが表1から認められる′。
Example 1. As R, an alloy was made by combining Nd and other rare earth elements, and it was made into a magnet by the above process. The results are shown in Table 1. Among the rare earth elements R. As shown in http~14, Dy. It was found that there are elements (R1) such as Tb and Ho that have a remarkable effect on improving IHe. In addition,
Those with umbrellas indicate comparative examples. In addition, by containing 5% or more of Co. [It is recognized from Table 1 that the 3r temperature coefficient is 0.1%/°C or less'.

実施例2, Nd, Prを中心とした軽希土類元素に,実施例1で
挙げた希土類の種類及び含有量をもっと広汎に選んで合
金を作製し,前述の方法で磁石化した。
Example 2 Alloys were prepared using light rare earth elements, mainly Nd and Pr, and the types and contents of the rare earth elements listed in Example 1 were selected from a wider range, and magnetized by the method described above.

さらに,一層のiHc増大効果を持たせるため、B00
〜700℃×2時間, Ar中において熱処理を施した
。結果を表2に示す。
Furthermore, in order to have a further iHc increasing effect, B00
Heat treatment was performed in Ar at ~700°C for 2 hours. The results are shown in Table 2.

表2,k傘1は希土類としてNdだけを用いた比較例で
ある。胤2〜Na 7はDyをNdに置換していった場
合を示す。Dyffiの増加に伴ない1110は次第に
増大してゆくが(BH)waxは0.4%Dyのあたり
で最高値を示す(なお第2図も参照)。
Table 2, k-umbrella 1 is a comparative example using only Nd as the rare earth element. Seeds 2 to Na 7 show cases in which Dy is replaced with Nd. As Dyffi increases, 1110 gradually increases, but (BH) wax shows its highest value around 0.4% Dy (see also FIG. 2).

第2図によれば, Dyは0.05%から効果を示し始
め,0.1%,0.3%と増大に併いillcへの効果
を増大する(第2図の横軸をlogスケールに変換する
と明瞭になる) 。Gd (Nail) , Ho (
NalG) . Tb(Nal2) , Er (N(
113) , Yb (Nal4)等も同様の効果を有
するが, Dy, TbはHa増大に効果が特に顕著で
ある。R,の内, DL ’rb以外の元素も10kO
eを十分に越えるllleを有し,高い(Bil)II
axを有する。(Bil)saw k 3OMGOe級
で,これほどの高いillcを有する磁石材料はこれま
でにない。Ndに代えて, Prを用いても( Th 
15)或いは,  (Nd十Pr)をR2のうち80%
以上としても(Nal6) . ’(BH)a+ax2
0MGOc以上を示す。
According to Figure 2, Dy begins to show an effect at 0.05%, and as it increases to 0.1% and 0.3%, the effect on illc increases (the horizontal axis in Figure 2 is plotted on a log scale). (It becomes clearer when converted to ). Gd (Nail), Ho (
NalG). Tb(Nal2), Er(N(
113), Yb (Nal4), etc. have similar effects, but Dy and Tb have a particularly remarkable effect on increasing Ha. Among R, elements other than DL 'rb are also 10kO
has llle well above e and is high (Bil) II
It has an ax. (Bil) saw k 3 OMGOe class magnet material with such a high illc has never been found before. Even if Pr is used instead of Nd (Th
15) Or, (Nd + Pr) is 80% of R2
Even if it is above (Nal6). '(BH)a+ax2
Indicates 0MGOc or more.

第3図に典型的なif{cを有する0.8%Dy (表
1,k8)の減磁曲線を示す。Fe − B − Nd
系の例(表1,Na亭1)に比べてIHcが十分高くな
っている様子が判る。
FIG. 3 shows the demagnetization curve of 0.8% Dy (Table 1, k8) with typical if{c. Fe-B-Nd
It can be seen that the IHc is sufficiently higher than that of the system example (Table 1, Na-tei 1).

実施例3. 添加元素Mとして,純度99%のTI. Mo,旧,M
n, sb, Nl,Ta.Sn+ Ge− 98%の
W, 99.9%のM,95%(7)Ilr.またVと
しテRl.2%のvを含むフエロバナジウム, Nbと
して67.8%のNbを含むフエロニオプ, Crとし
て61.9%のC『を含むフェロクロムおよびZrとし
て75.5%の2『を含むフエロジルコニウムを使用し
た。
Example 3. As the additive element M, TI. Mo, old, M
n, sb, Nl, Ta. Sn+ Ge- 98% W, 99.9% M, 95% (7) Ilr. Also, V and Te Rl. ferrovanadium containing 2% v, ferroniope containing 67.8% Nb as Nb, ferrochrome containing 61.9% C' as Cr and ferrozirconium containing 75.5% 2' as Zr. used.

これらを前記と同様の方法で合金化し,さらに5■〜7
DO”Cで時効処理を行なった。結果を表3に示す。
These were alloyed in the same manner as above, and further 5■ to 7
Aging treatment was performed using DO''C. The results are shown in Table 3.

FeCoBR系に添加元素Mを加えたFeCoBRM系
合金についても,十分に高いIHcが得られることが確
かめられる。表3.Nl’lの減磁曲線を第3図曲線3
に示す。
It is confirmed that a sufficiently high IHc can also be obtained with the FeCoBRM alloy in which the additive element M is added to the FeCoBR alloy. Table 3. The demagnetization curve of Nl'l is shown in Figure 3, curve 3.
Shown below.

(以下余白) 2 表 3 X 4 以上,本発明はFeを主体とし,またRとしても資源的
に豊富であり工業上人手し易い希土類元素( Nd. 
Pr)を主体とした新規なFe(Co) − B − 
R正方晶化合物を含む永久磁石用合金を提供するもので
あり,この合金は特に永久磁石用素材として有用である
。これを用いることにより.高残留磁化,高保磁力.高
エネルギー積を有する磁気異方性焼結体永久磁石の提供
も可能としたものであり.しかも所定のR (R,,R
2)を組合せることにより温度特性(特に保磁力)を高
エネルギー積( B II )rs a xを保有した
まま一層高め,かつFeの一部をCoで置換することに
よりP e B R系に対してもキュリ一点を高めるこ
とを達成でき,従って工業的にきわめて高い価値をもつ
ものである。特に永久磁石材料としての利点は,従来の
Sm−Co系と対比するとその主成分元素の点で極めて
顕著である。
(The following is a blank space) 2 Table 3
A new Fe(Co)-B- based on Pr)
The present invention provides an alloy for permanent magnets containing an R-tetragonal compound, and this alloy is particularly useful as a material for permanent magnets. By using this. High residual magnetization, high coercive force. This also makes it possible to provide a magnetically anisotropic sintered permanent magnet with a high energy product. Moreover, the predetermined R (R,,R
By combining 2), the temperature characteristics (especially coercive force) can be further improved while maintaining a high energy product (B However, it is possible to improve the Curie point by one point, and therefore it has extremely high industrial value. In particular, its advantage as a permanent magnet material is extremely remarkable in terms of its main constituent elements when compared with conventional Sm--Co based materials.

極めて有用である。Extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は,本発明の一実施例においてFeをCoで置換
した場合のCo含有量とキュリ一点Tcの関係を示すグ
ラフ.第2図は,本発明の一実施例においてNdをR1
元素Dyで置換した場合のoy含有量とI If c 
, ( B 11 ) m a xとの関係を示すグラ
フ,第3図は,代表的実施例の減磁曲線を示すグラフを
夫々示す。
FIG. 1 is a graph showing the relationship between the Co content and the Curie point Tc when Fe is replaced with Co in an embodiment of the present invention. FIG. 2 shows that Nd is R1 in one embodiment of the present invention.
Oy content and I If c when substituted with element Dy
, (B11) max, and FIG. 3 is a graph showing the demagnetization curve of a typical example.

Claims (2)

【特許請求の範囲】[Claims] (1)合金組成が原子百分比でR(下記R_1とR_2
とからなる)12.5〜20%、R_10.05〜5%
、B4〜20%、残部実質的にFeから成り、前記Fe
の一部を全組成に対して35%以下(0%を除く)のC
oで置換したことを特徴とする永久磁石用合金;但し、
R_1はDy、Tb、Gd、Ho、Er、Tm、Ybの
内一種以上、R_2はNdとPrの一種以上、又はNd
とPrの合計が80%以上で残りがR_1以外のYを包
含する希土類元素の少なくとも一種。
(1) The alloy composition is R in atomic percentage (R_1 and R_2 below)
) 12.5-20%, R_10.05-5%
, B4-20%, the balance consisting essentially of Fe, the Fe
35% or less (excluding 0%) of the total composition
An alloy for permanent magnets, characterized in that o is substituted; however,
R_1 is one or more of Dy, Tb, Gd, Ho, Er, Tm, Yb, R_2 is one or more of Nd and Pr, or Nd
and Pr in a total of 80% or more, and the remainder is at least one rare earth element containing Y other than R_1.
(2)合金組成が原子百分比でR(下記R_1とR_2
とからなる)12.5〜20%、R_10.05〜5%
、B4〜20%、下記の所定%以下の添加元素Mの一種
以上(但し、Mとして二種以上の前記添加元素を含む場
合は、M合量は当該添加元素のうち最大値を有するもの
の原子百分比以下)、残部実質的にFeから成り、前記
Feの一部を全組成に対して35%以下(0%を除く)
のCoで置換したことを特徴とする永久磁石用合金; 但し、R_1はDy、Tb、Gd、Ho、Er、Tm、
Ybの内一種以上、R_2はNdとPrの一種以上、又
はNdとPrの合計が80%以上で残りがR_1以外の
Yを包含する希土類元素の少なくとも一種であり、添加
元素Mは下記の通り: Ti 3%, Zr 3.3%, Hr 3.3%, Cr 4.5%, Mn 5%, Ni 6%, Ta 7%, Ge 3.5%, Sn 1.5%, Sb 1%, Bi 5%, Mo 5.2%, Nb 9%, Al 5%, V 5.5%, W 5%。
(2) The alloy composition is R in atomic percentage (R_1 and R_2 below)
) 12.5-20%, R_10.05-5%
, B4 to 20%, one or more of the additive elements M below the specified percentage (however, if two or more of the above-mentioned additive elements are included as M, the total amount of M is the atom of the one having the maximum value among the additive elements) (% or less), the remainder substantially consists of Fe, and the part of said Fe is 35% or less (excluding 0%) of the total composition
An alloy for permanent magnets, characterized in that Co is substituted with Co; However, R_1 is Dy, Tb, Gd, Ho, Er, Tm,
One or more of Yb, R_2 is at least one of Nd and Pr, or at least one rare earth element in which the total of Nd and Pr is 80% or more and the remainder includes Y other than R_1, and the additional element M is as follows. : Ti 3%, Zr 3.3%, Hr 3.3%, Cr 4.5%, Mn 5%, Ni 6%, Ta 7%, Ge 3.5%, Sn 1.5%, Sb 1% , Bi 5%, Mo 5.2%, Nb 9%, Al 5%, V 5.5%, W 5%.
JP2206044A 1983-08-04 1990-08-03 Alloy for permanent magnet Granted JPH03170643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2206044A JPH03170643A (en) 1983-08-04 1990-08-03 Alloy for permanent magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58141850A JPS6034005A (en) 1983-08-04 1983-08-04 Permanent magnet
JP2206044A JPH03170643A (en) 1983-08-04 1990-08-03 Alloy for permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58141850A Division JPS6034005A (en) 1983-08-04 1983-08-04 Permanent magnet

Publications (2)

Publication Number Publication Date
JPH03170643A true JPH03170643A (en) 1991-07-24
JPH0536495B2 JPH0536495B2 (en) 1993-05-31

Family

ID=26474015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2206044A Granted JPH03170643A (en) 1983-08-04 1990-08-03 Alloy for permanent magnet

Country Status (1)

Country Link
JP (1) JPH03170643A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112852A (en) * 1983-08-04 1993-05-07 Sumitomo Special Metals Co Ltd Permanent magnet alloy
BE1007857A3 (en) * 1993-12-06 1995-11-07 Philips Electronics Nv Permanent magnet based on RE-FE-B
US7053743B2 (en) * 2001-04-03 2006-05-30 General Electric Company Permanent magnet assembly and method of making thereof
US7148689B2 (en) 2003-09-29 2006-12-12 General Electric Company Permanent magnet assembly with movable permanent body for main magnetic field adjustable
US7218195B2 (en) 2003-10-01 2007-05-15 General Electric Company Method and apparatus for magnetizing a permanent magnet
US7423431B2 (en) 2003-09-29 2008-09-09 General Electric Company Multiple ring polefaceless permanent magnet and method of making

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112852A (en) * 1983-08-04 1993-05-07 Sumitomo Special Metals Co Ltd Permanent magnet alloy
JPH089752B2 (en) * 1983-08-04 1996-01-31 住友特殊金属株式会社 Method for manufacturing R1R2FeCoB-based permanent magnet
BE1007857A3 (en) * 1993-12-06 1995-11-07 Philips Electronics Nv Permanent magnet based on RE-FE-B
US7053743B2 (en) * 2001-04-03 2006-05-30 General Electric Company Permanent magnet assembly and method of making thereof
US7148689B2 (en) 2003-09-29 2006-12-12 General Electric Company Permanent magnet assembly with movable permanent body for main magnetic field adjustable
US7423431B2 (en) 2003-09-29 2008-09-09 General Electric Company Multiple ring polefaceless permanent magnet and method of making
US7218195B2 (en) 2003-10-01 2007-05-15 General Electric Company Method and apparatus for magnetizing a permanent magnet
US8468684B2 (en) 2003-10-01 2013-06-25 General Electric Company Method and apparatus for magnetizing a permanent magnet

Also Published As

Publication number Publication date
JPH0536495B2 (en) 1993-05-31

Similar Documents

Publication Publication Date Title
EP0134304B1 (en) Permanent magnets
EP0134305B2 (en) Permanent magnet
EP0126179B2 (en) Process for producing permanent magnet materials
JPS6134242B2 (en)
JPH0319296B2 (en)
JPH0232761B2 (en)
JPH0316761B2 (en)
US5230749A (en) Permanent magnets
JPH03170643A (en) Alloy for permanent magnet
JPH045740B2 (en)
JPH0316762B2 (en)
JPH0678582B2 (en) Permanent magnet material
JPH045739B2 (en)
JPH0535210B2 (en)
JPH0536494B2 (en)
JPS6365742B2 (en)
JPH0467324B2 (en)
JPH044386B2 (en)
JPH0316763B2 (en)
JPH089752B2 (en) Method for manufacturing R1R2FeCoB-based permanent magnet
JPH045737B2 (en)
JPH044385B2 (en)
JPH044384B2 (en)
JPH0527241B2 (en)
JPH0527242B2 (en)