JPH044385B2 - - Google Patents
Info
- Publication number
- JPH044385B2 JPH044385B2 JP58090038A JP9003883A JPH044385B2 JP H044385 B2 JPH044385 B2 JP H044385B2 JP 58090038 A JP58090038 A JP 58090038A JP 9003883 A JP9003883 A JP 9003883A JP H044385 B2 JPH044385 B2 JP H044385B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- permanent magnet
- sintered
- powder
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 49
- 239000000203 mixture Substances 0.000 claims description 43
- 239000000843 powder Substances 0.000 claims description 39
- 229910045601 alloy Inorganic materials 0.000 claims description 36
- 239000000956 alloy Substances 0.000 claims description 36
- 239000002245 particle Substances 0.000 claims description 33
- 238000004519 manufacturing process Methods 0.000 claims description 26
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 18
- 239000000654 additive Substances 0.000 claims description 11
- 230000000996 additive effect Effects 0.000 claims description 11
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- 230000005291 magnetic effect Effects 0.000 description 39
- 238000005245 sintering Methods 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 150000002910 rare earth metals Chemical class 0.000 description 9
- 229910052779 Neodymium Inorganic materials 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229910001047 Hard ferrite Inorganic materials 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910052777 Praseodymium Inorganic materials 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910052772 Samarium Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910000828 alnico Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- -1 Pm Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 101100264195 Caenorhabditis elegans app-1 gene Proteins 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- 229910000604 Ferrochrome Inorganic materials 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 2
- 229910052765 Lutetium Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000722 Didymium Inorganic materials 0.000 description 1
- 241000224487 Didymium Species 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000628 Ferrovanadium Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- PNXOJQQRXBVKEX-UHFFFAOYSA-N iron vanadium Chemical compound [V].[Fe] PNXOJQQRXBVKEX-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
本発明はFeBR系を基礎とする永久磁石材料の
製造方法に関する。
従来、永久磁石の主要な材料としては、アルニ
コ、フエライト等が主流であつたが近年エレクト
ロニクスの発達とともに小型軽量化の要求が増大
してきた。
そのような要求を満たす永久磁石材料として高
残留磁束密度、高保磁力を有する希土類(R)コ
バルト磁石材料が開発され実用化されてきてい
る。以下本発明においてRは希土類金属を示す。
しかしながら、希土類コバルト磁石材料はSm
や重希土類のような高価な希土類と高価なコバル
トを多量に含有するため製品価格が非常に高く、
アルニコ、フエライトと置き換えるのに大きな障
害となつてきている。
希土類磁石材料がもつと広い分野で安価で、か
つ多量に使われるためには、高価なコバルトを含
まず且つ希土類元素の中では量的に豊富なNd、
Pr、等の軽希土類を主成分とすることが必要と
され、そのような永久磁石材料を得るためのさま
ざまな試みがなされている。
例えば、クラーク(A.E.Clark)は、スパツタ
リングによりTbFe2アモルフアスを作製し4.2〓
で29.5MGOeのエネルギー積をもち、300〜500℃
で熱処理すると、室温で保磁力Hc=3.4kOe、最
大エネルギー積(BH)max=7MGOeを示すこ
とを見い出した。同様な研究はSmFe2について
も行われ、77〓で9.2MGOeを示すことが報告さ
れている。
また、クーン(N.C.Koon)等は0.9(Fe、B)
−0.05Tb−0.05Laのリボンを超急冷法により作
製した後、875〓付近で焼鈍するとHcは9kOeを
こえることを見い出した。但しこの場合磁化曲線
の角形性と当然のことながら配向性が悪く、
(BH)maxは低い(N.C.Koon他、App1.Phys.
Lett.39(10)、1981、840〜842頁、IEEE
Transaction on Magnetics、vol.MAG−18、No.
6、1982、1448〜1450頁)。
さらにクロート(J.J.Croat)およびカバコフ
(L.Kabacoff)等はPrFeおよびNdFe組成につい
て超急冷法によりリボンを作製し、室温において
8kOe近い値を報告している(L.Kabacoff他、J.
App1.Phys.53(3)1981、2255〜2257頁、J.J.Croat
IEEE Vol.18No.6 1442〜1447)。
これらのFeBR系超急冷リボン又はRFe系スパ
ツタ薄膜からは任意の形状・寸法を有するバルク
永久磁石を得ることは出来ず、実用永久磁石材料
とはかなり難い。これまでに報告されたFeBR系
リボンの磁化曲線は角形性が悪く、従来慣用の磁
石材料に対抗できる実用永久磁石材料とはみなさ
れえない。また、上記スパツタ薄膜及び超急冷リ
ボンは、いずれも本質上等方性であり、これらか
ら磁気異方性の実用永久磁石材料を得ることは事
実上不可能である。
このように、これまで希土類鉄系合金の永久磁
石材料を得るため従来試みられた方法はいずれも
実用永久磁石材料を得るには不適当であつた。
本発明は、かかる従来法の困難を打開せんとす
るものであり、既述の通り、Fe、Rを用いた永
久磁石材料において、Rとして軽希土類を主とし
て用いることができ、従来のハードフエライトと
同等程度以上の優れた磁気特性を有し、資源的に
希少なCoを用いる必要のない新規な永久磁石材
料を得るための最適な製造方法を提供することを
基本的目的とする。
さらに、本発明は、先に本発明者が開発し出願
したFeBR三元系永久磁石材料に対し、本発明の
好ましい態様において、さらに優れた保磁力を付
与する実用永久磁石材料を得るための最適な製造
方法を提供することを併せて目的とする。
即ち、本発明の製造方法によれば、
原子百分比にて、8〜30%のR(但しRはYを
包含する希土類元素の少なくとも一種)、2〜28
%のB、所定%の添加元素Mの一種又は二種以上
(ここに所定%の添加元素Mは
Ti 4.5%以下、Ni 8.0%以下、
Bi 5.0%以下、V 9.5%以下、
Nb 12.5%以下、Ta 10.5%以下、
Cr 8.5%以下、Mo 9.5%以下、
W 9.5%以下、Mn 8.0%以下、
Al 9.5%以下、Sb 2.5%以下、
Ge 7.0%以下、Sn 3.5%以下、
Zr 5.5%以下、
及びHf 5.5%以下をいい、Mが二種以上のと
きMの合量は含有するMの当該各元素のうち最大
値を有するものの原子百分比以下)、
及び残部Fe及び製造上不可避の不純物からな
る組成(以下FeBRM組成という)を有し0.3〜
80μmの平均粒度を有する合金粉末を成形し、
900〜1200℃で焼結することにより、FeBRM系
永久磁石材料が製造されることを特徴とする。
以下合金組成に関し、他に明示ない限り、%は
原子百分比を表わす。
本発明の製法によつて得られるFeBRM系永久
磁石材料としては磁気異方性の永久磁石材料を少
なくとも包含する。
本発明者等は先にSm、Coを必ずしも用いる必
要のないFeBR系永久磁石材料を発明した(特願
昭57−145072)。このFeBR系永久磁石材料は、
従来知られているRCo5やR2Co17化合物とは異な
る新しい化合物を基礎とし、特にボロン(B)は、従
来の、たとえば非晶質合金作成時の非晶質促進元
素又は粉末冶金法における焼結促進元素として添
加されるものではなく、このFeBR系永久磁石材
料の実態的内容を構成する磁気的に安定で高い磁
気異方性定数を有するR−Fe−B化合物の必須
構成元素であることを明らかにした。
本発明者は、こうしたFeBR三元化合物に基づ
くFeBR系永久磁石材料について前記目的を達成
するために更に鋭意研究を重ねた結果、所定の元
素Mを含有してなるFeBRM系組成であつてかつ
所定粒径を有する合金粉末組成物を用い、これを
一定の条件下で粉末冶金的に処理したとき、従来
あるアルニコ、フエライトおよび希土類磁石材料
と同等、またはそれ以上の磁気特性が得られるだ
けでなく、任意の形状および実用寸法のバルク体
として成形出来、しかもFeBR系に対してもより
一層高い保磁力を発現するものを包含する材料を
量産性良く製造できることを詳細な研究の結果見
い出し本発明に至つたものである。
以下磁気異方性永久磁石材料を製造する場合を
基本として説明する。
すなわち本発明の製造方法によつて得られる永
久磁石材料は、本発明による上記FeBRM組成範
囲においてハードフエライトと同等以上の磁気特
性を有する、工業上有用な永久磁石材料となる。
保磁力iHc1kOe以上を満たすためBは2%以
上とし、ハードフエライトの残留磁束密度Br約
4kG以上とするためにBは28%以下とする。Rは
保磁力1kOe以上を満たすためには8%以上必要
であり、また燃えやすく工業的取扱い、製造上の
困難のため(かつ高価であるため)、30%以下と
する。軽希土類(特にNd、Pr)をRの主成分
(即ち全R中50原子%以上)とし、12〜24%のR、
3〜27%のB、残部(Fe+M)の組成は最大エ
ネルギー積(BH)max7MGOe以上とするため
に好ましい範囲である。
最も好ましくは、軽希土類(特にNd、Pr)を
Rの主成分とし、12〜20%のR、4〜24%のB、
残部(Fe+M)の組成であり、最大エネルギー
積(BH)max10MGOe以上を可能とし、(BH)
maxは最高33MGOe以上に達する。
最近永久磁石材料はますます過酷な環境(たと
えば磁石の薄型化にともなう強い反磁界、コイル
や他の磁石によつて加えられる強い逆磁界、これ
らに加え機器の高速化・高負荷による高温度の環
境)にさらされることが多くなり、多くの用途に
おいて特性安定化のために一層の高保磁力化が必
要とされる。
本発明においてFeBRM系永久磁石用合金粉末
組成物は上記特定の添加元素Mの一種または二種
以上を含有することにより、FeBR三元系永久磁
石材料よりもさらに高いiHcを与えることが可能
である(第4図参照)。但し、これらの添加元素
Mの添加は夫々の態様において残留磁化Brの漸
次の低下を招くことも明らかとなつた。従つて添
加元素Mの含有量は、少なくとも残留磁化Brが、
従来のハードフエライトの残留磁化Brと同等以
上の範囲で、かつ高保磁力を示すものが対象とな
る。
次に添加元素Mの夫々の添加の効果を明らかに
するためその添加量を変化させて実験によりBr
の変化を測定し、その結果を第1図〜第3図に示
す。Bi、Mn、Niを除く他の添加元素M(Ti、V、
Nb、Ta、Cr、Mo、W、Al、Sb、Ge、Sn、Zr、
Hf)の添加量の上限は、第1図〜第3図に示す
通り、ハードフエライトのBr約4kGと同等以上
の範囲として定められる。さらに、好ましい範囲
は、Brを6.5、8、10kG等の段階をもつて区画す
ることにより夫々第1図〜第3図から明らかに読
むことができる。
Mn、Niは多量に添加すると、iHcが減少する
がNiは強磁性元素であるため、Brは余り低下し
ない(第2図参照)。そのため、Niの上限はiHc
の観点から8%とし、同様の観点から4.5%以下
が好ましい。
Mn添加はBr減少に与える影響はNiより大であ
るが急激ではない。かくて、Mnの上限はiHcの
観点から8%とし、同様の観点から3.5%以下が
好ましい。
Biについては、その蒸気圧が極めて高くBi5%
を超える合金の製造が事実上不可能であり5%以
下とする。二種以上の添加元素を含む合金の場
合、Br4kG以上の条件を満たすためには、上述
の各元素の添加量の上限のうち、最大の値(%)
以下であることが必要である。
本発明において永久磁石用合金粉末組成物のR
としては資源的に豊富な、軽希土類を用いること
ができ、必ずしもSmを必要とせず、あるいはSm
を主体とする必要もないので原料が安価であり、
きわめて有用である。本発明の永久磁石に用いる
希土類元素RはYを包含し軽希土類及び重希土類
を包含する希土類元素であり、そのうち所定の一
種以上を用いる。即ちこのRとしてはNd、Pr、
La、Ce、Tb、Dy、Ho、Er、Eu、Sm、Gd、
Pm、Tm、Yb、Lu、及びYが包含される。Rと
しては軽希土類をもつて足り特にNd、Prが望ま
しい。また通例Rのうち一種をもつて足りるが、
実用上は二種以上の混合物(ミツシユメタル、ジ
ジム等)を入手上の便宜等の理由により用いるこ
とができる。なおRは純希土類元素でなくともよ
く工業上入手可能な範囲で製造上不可避な不純物
(他の希土類元素、Ca、Mg、Fe、Ti、C、O
等)を含有するもので差支えない。La、Ce、
Pm、Sm、Eu、Gd、Er、Tm、Yb、Lu、Yは
他の希土類(Nd、Pr、Tb、Dy、Ho)との混合
物として使用できる。
Bとしては純ボロン又はフエロボロンを用いる
ことができ、不純物としてAl、Si、C等を含む
ものも用いることができる。
本発明において永久磁石材料には製造上不可避
な不純物の存在を許容できる。C、S、P、Cu、
Ca、Mg、O、Si等を所定限度内で含むこともで
き製造上の便宜、低価格化に資する。Cは有機結
合剤からS、P、Cu、Ca、Mg、O、Si等は原
料、製造工程からも含有されることがある。C4.0
%以下、P3.5%以下、S2.5%以下、Cu3.5%以下、
Ca、Mg、各4%以下、Si5%以下(但しこれら
の合計は、各成分のうち最大値以下)とすること
が実用上好ましい。なお、合金粉末の状態におい
ては、処理工程、空気からの吸着成分(水分、酸
素等)が含まれ易いが、これらは焼結時に除去す
ることができる。但し、必要に応じ工程、保存に
注意する。
本発明の製造方法によつてFeBRM系永久磁石
材料の高特性を発現させることが可能となるので
あり、以下その製造方法について更に詳細に説明
する。
一般に希土類金属は化学的に非常に活性であ
り、空気中の酸素と結びつきやすく容易に酸素と
反応し希土類酸化物をつくるので、溶解、粉砕、
成形、焼結等の各工程を還元性雰囲気または非酸
化性雰囲気中で行うことが必要である。
まず、所定組成の合金組成の合金粉末を調製す
る。一例として、上記FeBRM組成範囲内で原料
を所定の組成に秤量配合した後、高周波誘導炉等
により溶解を行いインゴツトとし、次いで粉砕す
る。粉末平均粒度0.3〜80μmの範囲で保磁力
(iHc)は1KOe以上となる。平均粒度が0.3μmよ
り小さくなると酸化が急激に進行し、目的とする
合金が得られ難くなるため本発明において所定永
久磁石材料の高性能品の安定的製造上好ましくな
い。また粉末粒度80μmを越えると保磁力iHcは
1kOe以下となり磁石材料の性能保持上好ましく
ない。上記範囲内の粒度を有する粉末において本
発明の組成範囲内で組成の異なる二種類以上の粉
末を組成の調整または焼結時の緻密化を促進させ
るために混合して用いることもできる。即ち、R
リツチもしくはBリツチのもの等FeBR(又は
FeBRM)組成比の異なるものの混合物、又は
FeBR(又はFeBRM)合金粉末とFeBRM各合金
成分元素もしくはそれらの二以上から成る合金と
の混合分、等の粉末組成物が可能である。
なお粉砕は通常の粉砕でよいが湿式で行うこと
が好ましく、アルコール系溶媒、ヘキサン、トリ
クロルエタン、トリクロルエチレン、キシレン、
トルエン、フツ素系溶媒、パラフイン系溶媒など
を用いることができる。
上記FeBRM組成範囲内で、例えば原料を
Nd15原子%、B8原子%、M1原子%残部Feの組
成に秤量した後、溶解を行ないインゴツトを得
た。
このインゴツトの粉砕にあたつて、粉末粒度が
0.3〜137μmの範囲になるように粉砕条件を調整
した。ここで粉末粒度はフイツシヤー社のサブシ
ーブサイザーを用いて測定した平均粒度を示す。
尚、粒度が40μm以上の粉末はJIS標準ふるい又
はマイクロシーブを用いた。
ここで、得られた粉末を10kOeの磁界中で
2Ton/cm2の圧力をかけ成形体を作り、
Ar200Torr雰囲気中で1080℃および1100℃の各
温度で1時間焼結を行なうことにより、粉砕後の
粉末粒度が焼結体の保磁力(iHc)に及ぼす影響
を第5図に示す。
次いで得られた所定の粒度を有する合金粉末を
成形する。成形時の圧力は0.5〜8Ton/cm2の範囲
で行うことが好ましい。0.5Ton/cm2未満の圧力
では、成形体の充分な強度が得られず永久磁石材
料としての実用上その取扱いが極めて困難とな
る。また8Ton/cm2をこえると成形体の強度は非
常にあがりその取扱いの上で好ましくはなるが、
プレスのパンチ、ダイス金型の強度の点で連続的
に成形を行う時に問題となるので好ましくない。
但し成形圧力は限定的ではない。さらに加圧成形
時、磁気的異方性の磁石材料を製造する場合には
磁界中で行うのであるが、その時の磁界は凡そ7
〜13kOeの磁界中で行うことが好ましい。なお、
必要に応じ成形バインダ(助剤)を用いる。
得られた成形体は900〜1200℃の温度、好まし
くは1000〜1180℃で焼結する。
焼結温度が900℃未満では永久磁石材料として
十分な密度が得られず又所要の磁束密度が得られ
ない。また1200℃を越えると焼結体が変形し、配
向がくずれ磁束密度の低下と角形性の低下を来た
し好ましくない。また焼結時間は5分以上あれば
よいが余り長時間になると量産性に問題があるの
で好ましい焼結時間は30分〜8時間である。
焼結は還元性ないし非酸化性雰囲気で行う。焼
結雰囲気として不活性ガス雰囲気を用いる場合は
定圧又は加圧雰囲気でもよいが焼結体の緻密化を
図る方法として減圧雰囲気或いは減圧不活性雰囲
気で行うことも可能である。また焼結密度を上げ
る別の方法としては、還元性ガスであるH2ガス
雰囲気中で行うことも用いられる。以上の各工程
を経て高磁束密度で磁気特性のすぐれた磁気的に
異方性の永久磁石材料を得ることができる。
本発明の製法によつて永久磁石材料を焼結体と
して得られ焼結体の密度は理論密度の約80%のも
のが得られ、95%以上が磁気特性上好ましく、さ
らに好ましくは96%以上であり、最高99%以上に
も達する。
以下本発明の態様及び効果について、実施例に
従つて説明する。但し実施例及び記載の態様は、
本発明をこれらに限定するものではない。
(1) 出発原料はFeとして純度99.9%(重量%、以
下原料純度について同じ)の電解鉄、Bとして
フエロボロン合金(19.38%B、5.32%Al、0.74
%Si、0.03%C、残部Fe)、Rとして純度99%
以上(不純物は主として他の希土類金属)を使
用。
Mとしては純度99%のTi、Mo、Bi、Mn、
Sb、Ni、Ta、Ge、98%のW、99.9%のAl、
Sn、95%のHf、またVとして81.2%のVを含
むフエロバナジウム、Nbとして67.6%のNbを
含むフエロニオブ、Crとして61.9%のCrを含む
フエロクロムおよびZrとして75.5%のZrを含む
フエロジルコニウムを使用した。
(2) 磁石原料を高周波誘導を用いて溶解を行つ
た。その際ルツボとしてはアルミナルツボを用
い水冷銅鋳型中に鋳込みインゴツトを作つた。
(3) 溶解で得られたインゴツトを搗砕し−
35meshにしたのち、更にボールミルにより、
0.3〜80μmのものが得られるように粉砕を行つ
た。
(4) 粉末を7〜13kOeの磁界中で0.5〜8Ton/cm2
の圧力で成形した。(但し等方性磁石材料を製
造する場合は磁界をかけないで成形した。)
(5) 成形体は900℃〜1200℃の温度で焼結を行つ
た。その際の雰囲気は還元性のガス、不活性ガ
ス、又は真空中で行つた。焼結時間は15分〜8
時間の範囲で行つた。
実施例 1
原子百分率組成(以下同じ)で76Fe・8B・
15Nd・1Tiなる合金を粉砕して平均粒度3μmの
粉末とし、10kOeの磁界中で3Ton/cm2の圧力を
かけ成形体をつくりAr大気圧雰囲気中で各温度
2時間焼結を行つた時の焼結密度と特性は下表の
ようになつた。
The present invention relates to a method for manufacturing a permanent magnet material based on FeBR system. Conventionally, alnico, ferrite, etc. have been the main materials for permanent magnets, but with the development of electronics in recent years, the demand for smaller and lighter magnets has increased. As a permanent magnet material that satisfies such requirements, rare earth (R) cobalt magnet materials having high residual magnetic flux density and high coercive force have been developed and put into practical use. In the present invention, R represents a rare earth metal. However, the rare earth cobalt magnet material is Sm
The product price is very high because it contains large amounts of expensive rare earths such as heavy rare earths and expensive cobalt.
This is becoming a major obstacle to replacing alnico and ferrite. In order for rare earth magnet materials to be inexpensive and used in large quantities in a wide range of fields, Nd, which does not contain expensive cobalt and is quantitatively abundant among rare earth elements, is required.
It is necessary to have a light rare earth element such as Pr as a main component, and various attempts have been made to obtain such a permanent magnet material. For example, AEC Clark fabricated TbFe 2 amorphous by sputtering and obtained 4.2〓
has an energy product of 29.5MGOe at 300-500℃
It was found that when heat treated with A similar study was conducted on SmFe 2 , which was reported to exhibit 9.2 MGOe at 77〓. In addition, Kuhn (NCKoon) etc. is 0.9 (Fe, B)
It was discovered that when a -0.05Tb-0.05La ribbon was prepared by an ultra-quenching method and then annealed at around 875〓, the Hc exceeded 9kOe. However, in this case, the squareness of the magnetization curve and of course the orientation are poor,
(BH)max is low (NCKoon et al., App1.Phys.
Lett.39(10), 1981, pp. 840-842, IEEE
Transaction on Magnetics, vol.MAG−18, No.
6, 1982, pp. 1448-1450). In addition, JJCroat and L. Kabacoff et al. fabricated ribbons with PrFe and NdFe compositions using an ultra-quenching method and cooled them at room temperature.
reported a value close to 8 kOe (L. Kabacoff et al., J.
App1.Phys.53(3)1981, pp. 2255-2257, JJCroat
IEEE Vol.18No.6 1442-1447). Bulk permanent magnets with arbitrary shapes and dimensions cannot be obtained from these FeBR-based ultra-quenched ribbons or RFe-based sputtered thin films, and it is quite difficult to use them as practical permanent magnet materials. The magnetization curves of FeBR ribbons reported so far have poor squareness, and cannot be considered as practical permanent magnet materials that can compete with conventional magnet materials. Further, both the sputtered thin film and the ultra-quenched ribbon are essentially isotropic, and it is virtually impossible to obtain a practical permanent magnet material with magnetic anisotropy from them. As described above, all the methods conventionally attempted to obtain permanent magnet materials of rare earth iron alloys have been unsuitable for obtaining practical permanent magnet materials. The present invention aims to overcome the difficulties of such conventional methods, and as mentioned above, in a permanent magnet material using Fe and R, light rare earths can be mainly used as R, and it is different from conventional hard ferrite. The basic objective is to provide an optimal manufacturing method for obtaining a new permanent magnet material that has comparable or better magnetic properties and does not require the use of Co, which is a rare resource. Furthermore, in a preferred embodiment of the present invention, the present invention provides an optimum method for obtaining a practical permanent magnet material that imparts an even better coercive force to the FeBR ternary permanent magnet material previously developed and applied for by the present inventor. Another purpose is to provide a manufacturing method. That is, according to the production method of the present invention, 8 to 30% R (wherein R is at least one kind of rare earth element including Y), 2 to 28
% of B, one or more types of additive elements M of a predetermined percentage (herein, the additive elements M of a predetermined percentage are Ti 4.5% or less, Ni 8.0% or less, Bi 5.0% or less, V 9.5% or less, Nb 12.5% or less , Ta 10.5% or less, Cr 8.5% or less, Mo 9.5% or less, W 9.5% or less, Mn 8.0% or less, Al 9.5% or less, Sb 2.5% or less, Ge 7.0% or less, Sn 3.5% or less, Zr 5.5% or less , and Hf 5.5% or less; when there are two or more types of M, the total amount of M is less than the atomic percentage of the maximum value of each of the M elements contained), and the remainder is Fe and impurities unavoidable in manufacturing. It has a composition (hereinafter referred to as FeBRM composition) of 0.3~
Forming an alloy powder with an average particle size of 80μm,
A FeBRM permanent magnet material is produced by sintering at 900 to 1200°C. Regarding alloy compositions below, unless otherwise specified, % represents atomic percentage. The FeBRM permanent magnet material obtained by the production method of the present invention includes at least a magnetically anisotropic permanent magnet material. The present inventors previously invented an FeBR-based permanent magnet material that does not necessarily require the use of Sm and Co (Japanese Patent Application No. 145072/1982). This FeBR-based permanent magnet material is
It is based on a new compound different from the conventionally known RCo 5 and R 2 Co 17 compounds, and in particular boron (B) is used as an amorphous promoting element in the production of amorphous alloys or in powder metallurgy. It is not added as a sintering accelerating element, but is an essential constituent element of the R-Fe-B compound that is magnetically stable and has a high magnetic anisotropy constant, which constitutes the actual content of this FeBR-based permanent magnet material. It revealed that. In order to achieve the above object, the inventors of the present invention have conducted further intensive research into FeBR permanent magnet materials based on such FeBR ternary compounds, and have found that FeBR permanent magnet materials containing a predetermined element M and having a predetermined FeBRM composition. When an alloy powder composition with a certain particle size is used and processed powder metallurgically under certain conditions, it not only provides magnetic properties equivalent to or better than conventional alnico, ferrite, and rare earth magnet materials. As a result of detailed research, we discovered that it is possible to manufacture materials with high mass production efficiency, including materials that can be molded into bulk bodies of arbitrary shapes and practical dimensions, and that exhibit even higher coercive force than FeBR systems. It has been reached. The following explanation will be based on the case of producing a magnetically anisotropic permanent magnet material. That is, the permanent magnet material obtained by the production method of the present invention is an industrially useful permanent magnet material that has magnetic properties equivalent to or better than hard ferrite in the above FeBRM composition range according to the present invention. In order to satisfy the coercive force iHc1kOe or more, B should be 2% or more, and the residual magnetic flux density Br of hard ferrite should be
B should be 28% or less in order to achieve 4kG or more. R is required to be 8% or more in order to satisfy a coercive force of 1 kOe or more, and is set to 30% or less because it is easily flammable and difficult to handle and manufacture industrially (and is expensive). Light rare earths (particularly Nd, Pr) are the main components of R (i.e. 50 atomic % or more of the total R), and 12 to 24% R,
The composition of 3 to 27% B and the balance (Fe+M) is a preferable range in order to achieve a maximum energy product (BH) of max7MGOe or more. Most preferably, the main component of R is a light rare earth (particularly Nd, Pr), with 12 to 20% of R, 4 to 24% of B,
The composition of the remainder (Fe + M) enables the maximum energy product (BH) max10MGOe or more, (BH)
The max reaches a maximum of 33MGOe or more. Recently, permanent magnet materials have been exposed to increasingly harsh environments (for example, strong demagnetizing fields due to thinner magnets, strong reverse magnetic fields applied by coils and other magnets, and high temperatures due to higher speeds and higher loads of equipment). environment), and in many applications, even higher coercive force is required to stabilize properties. In the present invention, the FeBRM permanent magnet alloy powder composition contains one or more of the above specific additive elements M, thereby making it possible to provide an even higher iHc than the FeBR ternary permanent magnet material. (See Figure 4). However, it has also become clear that the addition of these additive elements M causes a gradual decrease in the residual magnetization Br in each embodiment. Therefore, the content of the additive element M is such that at least the residual magnetization Br is
The target is those that have a remanent magnetization Br that is equivalent to or higher than that of conventional hard ferrite, and that exhibit a high coercive force. Next, in order to clarify the effect of each addition of the additive element M, we conducted an experiment by changing the amount of addition of Br.
The results are shown in FIGS. 1 to 3. Other additive elements M (Ti, V,
Nb, Ta, Cr, Mo, W, Al, Sb, Ge, Sn, Zr,
As shown in FIGS. 1 to 3, the upper limit of the amount of Hf) added is determined to be equal to or higher than approximately 4 kG of Br of hard ferrite. Furthermore, preferred ranges can be clearly read from FIGS. 1 to 3 by dividing Br into steps of 6.5, 8, 10 kG, etc., respectively. When large amounts of Mn and Ni are added, iHc decreases, but since Ni is a ferromagnetic element, Br does not decrease much (see Figure 2). Therefore, the upper limit of Ni is iHc
From this point of view, it is set at 8%, and from the same point of view, it is preferably 4.5% or less. Mn addition has a greater effect on Br reduction than Ni, but not as sharply. Therefore, the upper limit of Mn is set at 8% from the viewpoint of iHc, and from the same viewpoint, 3.5% or less is preferable. Regarding Bi, its vapor pressure is extremely high and Bi5%
It is virtually impossible to manufacture alloys exceeding 5%. In the case of an alloy containing two or more types of additive elements, in order to satisfy the condition of Br4kG or more, the maximum value (%) of the upper limit of the amount of each element added above must be applied.
It is necessary that the following is true. In the present invention, R of the alloy powder composition for permanent magnets
Light rare earths, which are abundant in resources, can be used as materials, and Sm is not necessarily required, or Sm
The raw materials are cheap because there is no need to use
Extremely useful. The rare earth element R used in the permanent magnet of the present invention is a rare earth element that includes Y and includes light rare earths and heavy rare earths, and one or more of them is used. That is, this R is Nd, Pr,
La, Ce, Tb, Dy, Ho, Er, Eu, Sm, Gd,
Pm, Tm, Yb, Lu, and Y are included. As R, a light rare earth element is sufficient, and Nd and Pr are particularly desirable. Also, it is usually sufficient to have one type of R, but
In practice, a mixture of two or more types (Mitsushimetal, didymium, etc.) can be used for reasons such as convenience of availability. Note that R does not need to be a pure rare earth element; it may contain impurities that are unavoidable during manufacturing (other rare earth elements, Ca, Mg, Fe, Ti, C, O
etc.) may be used. La, Ce,
Pm, Sm, Eu, Gd, Er, Tm, Yb, Lu, Y can be used as a mixture with other rare earths (Nd, Pr, Tb, Dy, Ho). As B, pure boron or ferroboron can be used, and materials containing Al, Si, C, etc. as impurities can also be used. In the present invention, the presence of impurities that are unavoidable during manufacturing can be tolerated in the permanent magnet material. C, S, P, Cu,
It can also contain Ca, Mg, O, Si, etc. within a predetermined limit, contributing to manufacturing convenience and cost reduction. C may be contained as an organic binder, while S, P, Cu, Ca, Mg, O, Si, etc. may be contained from raw materials or manufacturing processes. C4.0
% or less, P3.5% or less, S2.5% or less, Cu3.5% or less,
It is practically preferable that each of Ca and Mg be 4% or less, and Si be 5% or less (however, the total of these is less than the maximum value of each component). Note that in the state of alloy powder, adsorbed components (moisture, oxygen, etc.) from the air during processing are likely to be included, but these can be removed during sintering. However, care should be taken in processing and storage as necessary. The manufacturing method of the present invention makes it possible to exhibit high characteristics of the FeBRM permanent magnet material, and the manufacturing method will be explained in more detail below. In general, rare earth metals are chemically very active and easily combine with oxygen in the air and easily react with oxygen to create rare earth oxides.
It is necessary to perform each process such as molding and sintering in a reducing atmosphere or a non-oxidizing atmosphere. First, an alloy powder having a predetermined alloy composition is prepared. As an example, after weighing and blending raw materials to a predetermined composition within the FeBRM composition range described above, melting is performed using a high frequency induction furnace or the like to form an ingot, which is then pulverized. The coercive force (iHc) is 1 KOe or more when the powder average particle size is in the range of 0.3 to 80 μm. If the average particle size is smaller than 0.3 μm, oxidation will proceed rapidly and it will be difficult to obtain the desired alloy, which is not preferable in the present invention for stable production of high-performance products of the specified permanent magnet material. Moreover, when the powder particle size exceeds 80 μm, the coercive force iHc becomes
It is less than 1kOe, which is not preferable in terms of maintaining the performance of the magnet material. Among the powders having a particle size within the above range, two or more powders having different compositions within the composition range of the present invention may be mixed and used in order to adjust the composition or promote densification during sintering. That is, R
FeBR (or
FeBRM) mixture of different composition ratios, or
A powder composition such as a mixture of FeBR (or FeBRM) alloy powder and FeBRM alloy component elements or an alloy consisting of two or more thereof is possible. Although the pulverization may be carried out in the usual way, it is preferable to perform it wetly, using alcoholic solvents such as hexane, trichloroethane, trichlorethylene,
Toluene, fluorine-based solvents, paraffin-based solvents, etc. can be used. Within the above FeBRM composition range, e.g.
After weighing to have a composition of 15 atomic % Nd, 8 atomic % B, and 1 atomic % M, balance Fe, melting was performed to obtain an ingot. When crushing this ingot, the powder particle size is
The grinding conditions were adjusted so that the particle diameter was in the range of 0.3 to 137 μm. Here, the powder particle size refers to the average particle size measured using a subsieve sizer manufactured by Fischer.
For powders with a particle size of 40 μm or more, a JIS standard sieve or microsieve was used. Here, the obtained powder was placed in a magnetic field of 10 kOe.
A molded body is made by applying a pressure of 2Ton/ cm2 ,
Figure 5 shows the influence of the powder particle size after pulverization on the coercive force (iHc) of the sintered body by performing sintering at temperatures of 1080°C and 1100°C for 1 hour in an Ar200Torr atmosphere. The obtained alloy powder having a predetermined particle size is then molded. The pressure during molding is preferably in the range of 0.5 to 8 Ton/cm 2 . If the pressure is less than 0.5Ton/cm 2 , the molded product will not have sufficient strength and will be extremely difficult to handle in practical use as a permanent magnet material. Moreover, if it exceeds 8Ton/cm 2 , the strength of the molded product will increase significantly, making it easier to handle it, but
This is not preferable since it poses a problem when performing continuous molding in terms of the strength of the press punch and die.
However, the molding pressure is not limited. Furthermore, when producing magnetically anisotropic magnet materials during pressure molding, it is carried out in a magnetic field, and the magnetic field at that time is approximately 7.
Preferably carried out in a magnetic field of ~13 kOe. In addition,
Use a molding binder (auxiliary agent) if necessary. The obtained compact is sintered at a temperature of 900-1200°C, preferably 1000-1180°C. If the sintering temperature is less than 900°C, sufficient density as a permanent magnet material cannot be obtained, and the required magnetic flux density cannot be obtained. Moreover, if the temperature exceeds 1200°C, the sintered body will be deformed, the orientation will be lost, and the magnetic flux density and squareness will decrease, which is not preferable. The sintering time may be 5 minutes or more, but if it is too long, there will be problems in mass productivity, so the preferred sintering time is 30 minutes to 8 hours. Sintering is performed in a reducing or non-oxidizing atmosphere. When an inert gas atmosphere is used as the sintering atmosphere, it may be a constant pressure or pressurized atmosphere, but it is also possible to perform the sintering in a reduced pressure atmosphere or a reduced pressure inert atmosphere as a method of densifying the sintered body. Another method for increasing the sintering density is to conduct the sintering in an atmosphere of H 2 gas, which is a reducing gas. Through each of the above steps, a magnetically anisotropic permanent magnet material with high magnetic flux density and excellent magnetic properties can be obtained. By the production method of the present invention, a permanent magnet material is obtained as a sintered body, and the density of the sintered body is approximately 80% of the theoretical density, preferably 95% or more in terms of magnetic properties, and more preferably 96% or more. and reaches a maximum of over 99%. Hereinafter, aspects and effects of the present invention will be explained according to Examples. However, the embodiments and descriptions are as follows:
The present invention is not limited to these. (1) The starting materials are electrolytic iron with a purity of 99.9% (weight%, the same applies to raw material purity below) as Fe, and feroboron alloy (19.38% B, 5.32% Al, 0.74% B) as B.
%Si, 0.03%C, balance Fe), purity 99% as R
The above (impurities are mainly other rare earth metals) are used. M includes Ti, Mo, Bi, Mn with a purity of 99%,
Sb, Ni, Ta, Ge, 98% W, 99.9% Al,
Sn, 95% Hf, also ferrovanadium containing 81.2% V as V, ferronniobium containing 67.6% Nb as Nb, ferrochrome containing 61.9% Cr as Cr, and ferrochromium containing 75.5% Zr as Zr. Zirconium was used. (2) Magnet raw materials were melted using high-frequency induction. At that time, an aluminum crucible was used as the crucible, and an ingot was made by casting into a water-cooled copper mold. (3) Crush the ingot obtained by melting.
After making it to 35mesh, it is further processed by ball mill.
Grinding was carried out to obtain particles of 0.3 to 80 μm. (4) Powder is heated in a magnetic field of 7 to 13 kOe at 0.5 to 8 Ton/cm 2
It was molded at a pressure of (However, when manufacturing an isotropic magnet material, it was molded without applying a magnetic field.) (5) The molded body was sintered at a temperature of 900°C to 1200°C. The atmosphere at that time was a reducing gas, an inert gas, or a vacuum. Sintering time is 15 minutes to 8
I went within the time limit. Example 1 Atomic percentage composition (same below) is 76Fe・8B・
An alloy of 15Nd and 1Ti was crushed into a powder with an average particle size of 3 μm, and a compact was made by applying a pressure of 3Ton/ cm2 in a magnetic field of 10kOe, and sintered at each temperature for 2 hours in an Ar atmospheric pressure atmosphere. The sintered density and properties are as shown in the table below.
【表】
実施例 2
組成73Fe・10B・15Nd・2Vなる合金を粉砕し
て平均粒度5μmの粉末とし、10kOeの磁界中で
1.5Ton/cm2の圧力をかけ成形体をつくり1×
10-4Torrの真空中で各温度1時間焼結を行つた
時の焼結密度と特性は下表のようになつた。[Table] Example 2 An alloy with the composition 73Fe, 10B, 15Nd, 2V was ground into powder with an average particle size of 5 μm, and was ground in a magnetic field of 10 kOe.
A molded body is made by applying a pressure of 1.5Ton/cm2 and 1×
The sintered density and properties when sintered for 1 hour at each temperature in a vacuum of 10 -4 Torr were as shown in the table below.
【表】
実施例 3
組成76Fe・8B・15Nd・1Nbなる合金を粉砕し
て平均粒度2μmの粉末とし、10kOeの磁界中で
2Ton/cm2の圧力をかけ成形体をつくり
Ar200Torr雰囲気中で各温度1時間焼結を行つ
た時の焼結密度と特性は下表のようになつた。[Table] Example 3 An alloy with the composition 76Fe, 8B, 15Nd, 1Nb was ground into powder with an average particle size of 2 μm, and was ground in a magnetic field of 10 kOe.
A molded body is made by applying a pressure of 2Ton/ cm2.
The sintered density and properties when sintered for 1 hour at each temperature in an Ar200 Torr atmosphere are as shown in the table below.
【表】
実施例 4
組成74Fe・8B・17Nd・1Taなる合金を粉砕し
て平均粒度3μmの粉末とし、10kOeの磁界中で
1.5Ton/cm2の圧力をかけ成形体をつくりAr大気
圧雰囲気中で各温度3時間焼結を行つた時の焼結
密度と特性は下表のようになつた。[Table] Example 4 An alloy with the composition 74Fe, 8B, 17Nd, 1Ta was ground into powder with an average particle size of 3 μm, and was ground in a magnetic field of 10 kOe.
A compact was made under a pressure of 1.5Ton/cm 2 and sintered at each temperature for 3 hours in an Ar atmospheric pressure atmosphere.The sintered density and properties were as shown in the table below.
【表】
実施例 5
組成75.5Fe・10B・14Nd・0.5Crなる合金を粉
砕して平均粒度2.8μmの粉末とし、10kOeの磁界
中で2Ton/cm2の圧力をかけ成形体をつくり、
1x10-4Torrの真空中で各温度4時間焼結を行つ
た時の焼結密度と特性は下表のようになつた。[Table] Example 5 An alloy with a composition of 75.5Fe, 10B, 14Nd, 0.5Cr was ground into powder with an average particle size of 2.8 μm, and a compact was made by applying a pressure of 2T/cm 2 in a magnetic field of 10kOe.
The sintered density and properties when sintered for 4 hours at each temperature in a vacuum of 1x10 -4 Torr were as shown in the table below.
【表】
実施例 6
組成76Fe・8B・15Nd・1Moなる合金を粉砕し
て3.5μmの平均粒度の粉末とし、10kOeの磁界中
で3Ton/cm2の圧力をかけ成形体をつくり60Torr
のAr中で各温度2時間焼結を行つた時の焼結密
度と特性は下表のようになつた。[Table] Example 6 An alloy with the composition 76Fe, 8B, 15Nd, 1Mo was ground into powder with an average particle size of 3.5 μm, and a compact was made by applying a pressure of 3Ton/cm 2 in a magnetic field of 10kOe to 60Torr.
The sintered density and properties when sintered in Ar for 2 hours at each temperature are as shown in the table below.
【表】
実施例 7
組成75.5Fe・7B・17Nd・0.5Wなる合金を粉砕
して平均粒度3.6μmの粉末とし、10kOeの磁界中
で3Ton/cm2の圧力をかけ成形体をつくりAr大気
圧雰囲気中で各温度1時間焼結を行つた時の焼結
密度と特性は下表のようになつた。[Table] Example 7 An alloy with a composition of 75.5Fe, 7B, 17Nd, 0.5W was ground into a powder with an average particle size of 3.6 μm, and a compact was made by applying a pressure of 3Ton/cm 2 in a magnetic field of 10kOe to Ar atmospheric pressure. The sintered density and properties when sintered in an atmosphere at each temperature for 1 hour were as shown in the table below.
【表】
実施例 8
組成76Fe・9B・14Nd・1Mnなる合金を粉砕し
て平均粒度4.0μmの粉末とし、10kOeの磁界中で
1.5Ton/cm2の圧力をかけ成形体をつくり
Ar200Torr雰囲気中で各温度2時間焼結を行つ
た時の焼結密度と特性は下表のようになつた。[Table] Example 8 An alloy with the composition 76Fe, 9B, 14Nd, 1Mn was ground into powder with an average particle size of 4.0 μm, and was ground in a magnetic field of 10 kOe.
A molded body is made by applying a pressure of 1.5Ton/ cm2 .
The sintered density and properties when sintered for 2 hours at each temperature in an Ar200 Torr atmosphere are shown in the table below.
【表】
実施例 9
組成76.5Fe・7B・16Nd・0.5Niなる合金を粉
砕して平均粒度4.0μmの粉末とし、10kOeの磁界
中で2Ton/cm2の圧力をかけ成形体をつくり、
1x10-4Torrの真空中で各温度1時間焼結を行つ
た時の焼結密度と特性は下表のようになつた。[Table] Example 9 An alloy with a composition of 76.5Fe, 7B, 16Nd, 0.5Ni was ground into powder with an average particle size of 4.0 μm, and a compact was made by applying a pressure of 2T/cm 2 in a magnetic field of 10kOe.
The sintered density and properties when sintered for 1 hour at each temperature in a vacuum of 1x10 -4 Torr are shown in the table below.
【表】
実施例 10
組成76Fe・8B・15Nd・1Alなる合金を粉砕し
て平均粒度2.5μmの粉末とし、10kOeの磁界中で
1.5Ton/cm2の圧力をかけ成形体をつくり、
Ar400Torr中で各温度2時間焼結を行つた時の
焼結密度と特性は下表のようになつた。[Table] Example 10 An alloy with the composition 76Fe, 8B, 15Nd, 1Al was ground into powder with an average particle size of 2.5 μm, and was ground in a magnetic field of 10 kOe.
A molded body is made by applying a pressure of 1.5Ton/ cm2 ,
The sintered density and properties when sintered for 2 hours at each temperature in Ar400 Torr were as shown in the table below.
【表】
実施例 11
組成74.5Fe・9B・16Nd・0.5Geなる合金を粉
砕して平均粒度3.5μmの粉末とし、10kOeの磁界
中で7.5Ton/cm2の圧力をかけ成形体をつくりAr
大気圧雰囲気中で各温度2時間焼結を行つた時の
焼結密度と特性は下表のようになつた。[Table] Example 11 An alloy with a composition of 74.5Fe, 9B, 16Nd, 0.5Ge was ground into powder with an average particle size of 3.5 μm, and a compact was made by applying a pressure of 7.5Ton/ cm2 in a magnetic field of 10kOe.
The sintered density and properties when sintered at each temperature for 2 hours in an atmospheric pressure atmosphere are as shown in the table below.
【表】
実施例 12
組成76Fe・9B・14Nd・1Snなる合金を粉砕し
て平均粒度4.0μmの粉末とし、10kOeの磁界中で
2.5Ton/cm2の圧力をかけ成形体をつくり
Ar400Torr中で各温度1時間焼結を行つた時の
焼結密度と特性は下表のようになつた。[Table] Example 12 An alloy with the composition 76Fe, 9B, 14Nd, 1Sn was ground into powder with an average particle size of 4.0 μm, and was ground in a magnetic field of 10 kOe.
A molded body is made by applying a pressure of 2.5Ton/ cm2 .
The sintered density and properties when sintered for 1 hour at each temperature in Ar400 Torr were as shown in the table below.
【表】
実施例 13
組成75Fe・9B・15Nd・1Sbなる合金を粉砕し
て平均粒度3.1μmの粉末とし、10kOeの磁界中で
1.5Ton/cm2の圧力をかけ成形体をつくり
1x10-4Torrの真空中で各温度1.5時間焼結を行つ
た時の焼結密度と特性は下表のようになつた。[Table] Example 13 An alloy with the composition 75Fe, 9B, 15Nd, 1Sb was ground into powder with an average particle size of 3.1 μm, and was ground in a magnetic field of 10 kOe.
A molded body is made by applying a pressure of 1.5Ton/ cm2 .
The sintered density and properties when sintered for 1.5 hours at each temperature in a vacuum of 1x10 -4 Torr are shown in the table below.
【表】
実施例 14
組成75Fe・7B・17Nd・1Biなる合金を粉砕し
て平均粒度2.1μmの粉末とし、10kOeの磁界中で
2.5Ton/cm2の圧力をかけ成形体をつくり
Ar1Torr中で各温度0.5時間焼結を行つた時の焼
結密度と特性は下表のようになつた。[Table] Example 14 An alloy with the composition 75Fe, 7B, 17Nd, 1Bi was ground into powder with an average particle size of 2.1 μm, and was ground in a magnetic field of 10 kOe.
A molded body is made by applying a pressure of 2.5Ton/ cm2 .
The sintered density and properties when sintered in Ar1Torr at each temperature for 0.5 hours were as shown in the table below.
【表】
実施例 15
組成76Fe・8B・15Pr・1Alなる合金を粉砕し
て平均粒度4.0μmの粉末とし、10kOeの磁界中で
1.5Ton/cm2の圧力をかけ成形体をつくり
Ar200Torr雰囲気中で各温度2時間焼結を行つ
た時の焼結密度と特性は下表のようになつた。[Table] Example 15 An alloy with the composition 76Fe, 8B, 15Pr, and 1Al was ground into powder with an average particle size of 4.0 μm, and was ground in a magnetic field of 10 kOe.
A molded body is made by applying a pressure of 1.5Ton/ cm2 .
The sintered density and properties when sintered for 2 hours at each temperature in an Ar200 Torr atmosphere are shown in the table below.
【表】
実施例 16
組成73Fe・9B・15Nd・2Dy・1Vなる合金を
粉砕して平均粒度3.1μmの粉末とし、10kOeの磁
界中で2.0Ton/cm2の圧力をかけ成形体をつくり
Ar100Torr雰囲気中で各温度1時間焼結を行つ
た時の焼結密度と特性は下表のようになつた。[Table] Example 16 An alloy with a composition of 73Fe, 9B, 15Nd, 2Dy, and 1V was ground into powder with an average particle size of 3.1 μm, and a compact was made by applying a pressure of 2.0Ton/cm 2 in a magnetic field of 10kOe.
The sintered density and properties when sintered for 1 hour at each temperature in an Ar100 Torr atmosphere are as shown in the table below.
【表】
実施例 17
組成76Fe・8B・15Nd・1Alなる合金を粉砕し
て平均粒度3.0μmの粉末とし、磁界をかけずに
3Ton/cm2の圧力をかけ成形体をつくりAr大気圧
中で各温度1時間焼結を行つた時の焼結密度と特
性は下表のようになつた。[Table] Example 17 An alloy with the composition 76Fe, 8B, 15Nd, 1Al was ground into powder with an average particle size of 3.0 μm, and was ground without applying a magnetic field.
A molded body was made under a pressure of 3Ton/cm 2 and sintered at each temperature for 1 hour under Ar atmospheric pressure.The sintered density and properties were as shown in the table below.
【表】
さらに、第6図に76.5Fe・8B・15Nd・0.5Al
(本発明、異方性実施例10と同様にして作製)の
減磁曲線を、公知のアモルフアスリボンのそれと
対比して示す。アモルフアスリボン70.5Fe・
15.5B・7Tb・7Laは、超急冷リボン化の後660℃
×15分熱処理されたものである(出典:J.J.
Becker、IEEE Transaction on Magnetics
Vol.MAG−18No.6 1982、p.1451−1453)。
以上の実施例にみられるごとく、FeBRM系永
久磁石材料は本発明の粉末冶金的焼結法によつて
高性能かつ任意の大きさのバルク状のものとして
作りだすことが出来、また安定・安価に量産可能
であり工業的に非常に有用である。
なお、従来のスパツタリングや超急冷法などの
製造方法によつてはこうした高特性および任意の
形状を有する実用永久磁石材料を製造することは
できない。[Table] Furthermore, Figure 6 shows 76.5Fe, 8B, 15Nd, 0.5Al
(Prepared in the same manner as Anisotropic Example 10 of the present invention) is shown in comparison with that of a known amorphous ribbon. Amorphous ribbon 70.5Fe・
15.5B/7Tb/7La is 660℃ after ultra-quenched ribbon formation.
×15 minutes of heat treatment (Source: JJ
Becker, IEEE Transaction on Magnetics.
Vol.MAG-18No.6 1982, p.1451-1453). As seen in the above examples, FeBRM permanent magnet materials can be produced in bulk form with high performance and any size using the powder metallurgy sintering method of the present invention, and can be produced stably and inexpensively. It can be mass-produced and is industrially very useful. Note that it is not possible to manufacture a practical permanent magnet material having such high properties and an arbitrary shape using conventional manufacturing methods such as sputtering and ultra-quenching.
第1〜3図は、本発明の実施例における残留磁
化Br(kG)と添加元素M(横軸、x原子%)との
関係を示すグラフ、第4図は、他の実施例につい
ての初磁化減磁特性曲線を比較例と共に示すグラ
フ、第5図は、さらに他の実施例において、合金
粉末の平均粒度(横軸logスケールμm)と保磁
力iHc(kOe)との関係を示すグラフ、第6図は、
本発明製法によつて得られるバルク状のFeBRM
系永久磁石材料の代表例と従来のFeBR系アモル
フアスリボンの減磁特性曲線の対比を示すグラ
フ、第7図は、焼結温度と磁気特性、密度との関
係を示すグラフ、を夫々示す。
1 to 3 are graphs showing the relationship between residual magnetization Br (kG) and additive element M (horizontal axis, x atomic %) in Examples of the present invention, and FIG. FIG. 5 is a graph showing the magnetization-demagnetization characteristic curve together with comparative examples, and FIG. 5 is a graph showing the relationship between the average particle size of the alloy powder (horizontal axis log scale μm) and coercive force iHc (kOe) in yet another example. Figure 6 shows
Bulk FeBRM obtained by the production method of the present invention
FIG. 7 is a graph showing a comparison of the demagnetization characteristic curves of a typical example of a FeBR-based permanent magnet material and a conventional FeBR-based amorphous ribbon, and FIG. 7 is a graph showing the relationship between sintering temperature, magnetic properties, and density.
Claims (1)
を包含する希土類元素の少なくとも一種)、2〜
28%のB、所定%の添加元素Mの一種又は二種以
上(ここに所定%の添加元素Mは Ti 4.5%以下、Ni 8.0%以下、 Bi 5.0%以下、V 9.5%以下、 Nb 12.5%以下、Ta 10.5%以下、 Cr 8.5%以下、Mo 9.5%以下、 W 9.5%以下、Mn 8.0%以下、 Al 9.5%以下、Sb 2.5%以下、 Ge 7.0%以下、Sn 3.5%以下、 Zr 5.5%以下、 及びHf5.5%以下をいい、Mが二種以上のとき
Mの合量は含有するMの当該各元素のうち最大値
を有するものの原子百分比以下)、 及び残部Fe及び製造上不可避の不純物からな
る組成を有し0.3〜80μmの平均粒度を有する合金
粉末を成形し、還元性または非酸化性雰囲気中に
おいて900〜1200℃で焼結することを特徴とする
FeBRM系永久磁石材料の製造方法。[Claims] 1 8 to 30% of R in atomic percentage (wherein R is Y
at least one rare earth element including), 2-
28% B, one or more types of additive elements M in a predetermined percentage (here, the additive elements M in a predetermined percentage are Ti 4.5% or less, Ni 8.0% or less, Bi 5.0% or less, V 9.5% or less, Nb 12.5% Below, Ta 10.5% or less, Cr 8.5% or less, Mo 9.5% or less, W 9.5% or less, Mn 8.0% or less, Al 9.5% or less, Sb 2.5% or less, Ge 7.0% or less, Sn 3.5% or less, Zr 5.5% (hereinafter referred to as Hf5.5% or less; when there are two or more types of M, the total amount of M is less than or equal to the atomic percentage of the one having the maximum value among the respective M elements contained), and the remainder is Fe and unavoidable in manufacturing. An alloy powder having a composition consisting of impurities and an average particle size of 0.3 to 80 μm is formed and sintered at 900 to 1200 °C in a reducing or non-oxidizing atmosphere.
Manufacturing method of FeBRM permanent magnet material.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58090038A JPS59219452A (en) | 1983-05-24 | 1983-05-24 | Permanent magnet material and its production |
US06/532,517 US4597938A (en) | 1983-05-21 | 1983-09-15 | Process for producing permanent magnet materials |
CA000436907A CA1287750C (en) | 1983-05-21 | 1983-09-16 | Process for producing permanent magnet materials |
DE8383109509T DE3378706D1 (en) | 1983-05-21 | 1983-09-23 | Process for producing permanent magnet materials |
EP83109509A EP0126179B2 (en) | 1983-05-21 | 1983-09-23 | Process for producing permanent magnet materials |
US06/880,018 US4684406A (en) | 1983-05-21 | 1986-06-30 | Permanent magnet materials |
US07/051,370 US4975130A (en) | 1983-05-21 | 1987-05-19 | Permanent magnet materials |
SG493/90A SG49390G (en) | 1983-05-21 | 1990-07-04 | Process for producing permanent magnet materials |
HK685/90A HK68590A (en) | 1983-05-21 | 1990-08-30 | Process for producing permanent magnet materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58090038A JPS59219452A (en) | 1983-05-24 | 1983-05-24 | Permanent magnet material and its production |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2132462A Division JPH0649884B2 (en) | 1990-05-24 | 1990-05-24 | Alloy powder composition for permanent magnets |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59219452A JPS59219452A (en) | 1984-12-10 |
JPH044385B2 true JPH044385B2 (en) | 1992-01-28 |
Family
ID=13987475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58090038A Granted JPS59219452A (en) | 1983-05-21 | 1983-05-24 | Permanent magnet material and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59219452A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0778269B2 (en) * | 1983-05-31 | 1995-08-23 | 住友特殊金属株式会社 | Rare earth / iron / boron tetragonal compound for permanent magnet |
JPS60224757A (en) * | 1984-04-23 | 1985-11-09 | Seiko Epson Corp | Permanent magnet alloy |
JPS61227150A (en) * | 1985-03-30 | 1986-10-09 | Toshiba Corp | Manufacture of permanent magnet alloy and permanent magnet |
JP2655835B2 (en) * | 1985-04-16 | 1997-09-24 | 日立金属株式会社 | Permanent magnet alloy and manufacturing method thereof |
-
1983
- 1983-05-24 JP JP58090038A patent/JPS59219452A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59219452A (en) | 1984-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4975130A (en) | Permanent magnet materials | |
US4684406A (en) | Permanent magnet materials | |
US4601875A (en) | Process for producing magnetic materials | |
US5110377A (en) | Process for producing permanent magnets and products thereof | |
JPS6134242B2 (en) | ||
JPH0510807B2 (en) | ||
JP2596835B2 (en) | Rare earth anisotropic powder and rare earth anisotropic magnet | |
WO1988006797A1 (en) | Rare earth element-iron base permanent magnet and process for its production | |
JPH0320046B2 (en) | ||
JPH045740B2 (en) | ||
JPH044385B2 (en) | ||
JPH044386B2 (en) | ||
JPH061726B2 (en) | Method of manufacturing permanent magnet material | |
JPH045739B2 (en) | ||
JPH044383B2 (en) | ||
JPH0535210B2 (en) | ||
JPH03170643A (en) | Alloy for permanent magnet | |
WO2017191790A1 (en) | Rare-earth permanent magnet, and method for manufacturing same | |
JPH0320048B2 (en) | ||
JPH044384B2 (en) | ||
JPH0535211B2 (en) | ||
JPS6365742B2 (en) | ||
JPH045737B2 (en) | ||
JPH0474425B2 (en) | ||
JPH0527241B2 (en) |