JPH0232761B2 - - Google Patents

Info

Publication number
JPH0232761B2
JPH0232761B2 JP57200204A JP20020482A JPH0232761B2 JP H0232761 B2 JPH0232761 B2 JP H0232761B2 JP 57200204 A JP57200204 A JP 57200204A JP 20020482 A JP20020482 A JP 20020482A JP H0232761 B2 JPH0232761 B2 JP H0232761B2
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
elements
additive
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57200204A
Other languages
Japanese (ja)
Other versions
JPS5989401A (en
Inventor
Masato Sagawa
Setsuo Fujimura
Yutaka Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP57200204A priority Critical patent/JPS5989401A/en
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to CA000431730A priority patent/CA1316375C/en
Priority to DE198383106573T priority patent/DE101552T1/en
Priority to EP83106573A priority patent/EP0101552B2/en
Priority to DE8383106573T priority patent/DE3380376D1/en
Publication of JPS5989401A publication Critical patent/JPS5989401A/en
Priority to US07/013,165 priority patent/US4770723A/en
Priority to US07/224,411 priority patent/US5096512A/en
Priority to SG48490A priority patent/SG48490G/en
Publication of JPH0232761B2 publication Critical patent/JPH0232761B2/ja
Priority to HK682/90A priority patent/HK68290A/en
Priority to US07/877,400 priority patent/US5183516A/en
Priority to US07/876,902 priority patent/US5194098A/en
Priority to US08/194,647 priority patent/US5466308A/en
Priority to US08/485,183 priority patent/US5645651A/en
Priority to US08/848,283 priority patent/US5766372A/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、一般家庭の各種電気製品から、大型
コンピユータの周辺端末機まで、幅広い分野で使
われるきわめて重要な電気・電子材料の一つであ
る永久磁石の改良に係り、特に新規なFe−B−
R系永久磁石に関する。 近年の電気、電子機器の小型化、高効率化の要
求にともない、永久磁石はますます高性能化が求
められるようになつた。 現在の代表的な永久磁石はアルニコ、ハードフ
エライト及び希土類コバルト磁石である。最近の
コバルトの原料事情の不安定化にともない、コバ
ルトを20〜30重量%含むアルニコ磁石の需要は減
り、鉄の酸化物を主成分とする安価なハードフエ
ライトが磁石材料の主流を占めるようになつた。
一方、希土類コバルト磁石はコバルトを50〜65重
量%も含むうえ、希土類鉱石中にあまり含まれて
いないSmを使用するため大変高価であるが、他
の磁石に比べて、磁気特性が格段に高いため、主
として小型で、付加価値の高い磁気回路に多く使
われるようになつた。 希土類コバルト磁石はRCo5、R2Co17(Rは
Sm、Ceを中心とする希土類元素)にて示される
2元系化合物をベースとする永久磁石であり、
Coの一部を少量のCu、Feの他Zr、Ti、V、Hf
等の遷移金属元素にて置換することによつて磁気
特性の向上が図られてきたものである。 他方近時、コバルトを含まない磁性材料として
FeとR(以下本発明においてRは希土類元素を示
す記号として用いる)を主成分とするスパツタ薄
膜又は超急冷リボンの磁性材料が提案されてい
る。例えば、クラークによるスパツタした薄膜ア
モルフアスTbFe2、DyFe2、SmFe2合金の磁気特
性が報告されている(A.E.Clark:Appl.Phys.
Lett.vol.23No.11 1 Decembr 1973 642〜644
頁)。また超急冷リボンの磁性材料としてクロー
トによるPrFe系合金(J.J.Croat:Appl.Phys.
Lett.37(12)、15 December 1980 1096〜1098頁)
があり、さらにクーン等による(Fe0.82B0.180.9
Tb0.05La0.05合金(N.C.Koon他:Appl.Phys.
Lett.39(10)、15 Novembr 1981、840〜842頁)、
カバコフ等による(Fe0.8B0.21-xPrx(x=0〜0.3
原子比)合金(L.Kabakoff他:J.Appl.Phy.53
(3)、March 1982、2255〜2257頁)等が報告され
ている。さらに前記クロートは軽希土類鉄合金は
低コスト永久磁石の魅力的な候補として長い間考
えられてきたが、これら合金を粉末冶金法によつ
て磁気的に硬化する試みは成功しなかつたことを
報告するとともに、Pr−Fe及びNd−Fe合金が溶
融紡糸(超急冷)によつて磁気的に硬化され得る
ことを見い出したと報告している(J.J.Croat:J.
Appl.Phys.53(4)、April 1982、3161頁)。 希土類を用いた磁石がもつと広い分野で安価
に、かつ多量に使われるようになるためには、高
価なコバルトを含まず、かつ希土類金属として、
鉱石中に多量に含まれている軽希土類を主成分と
することが必要とされよう。 一方既述のようにR−FeないしR−Fe−B合
金を磁性材料として有用化するためには、スパツ
タ薄膜化又は超急冷ないしアモルフアス化が不可
欠であるとされている。 しかし、これらのスパツタ薄膜又は超急冷リボ
ンからは任意の形状・寸法を有するバルク状の実
用永久磁石を得ることができなかつた。これまで
に報告されたFe−B−R系リボンの磁化曲線は
角形性が悪く、従来慣用の磁石に対抗できる実用
永久磁石とはみなされえない。また、上記スパツ
タ薄膜及び超急冷リボンは、いずれも本質上等方
性であり、これらから磁気異方性の実用永久磁石
を得ることは、事実上不可能であつた。 本発明は、このような要請に応えるべき新規な
実用永久磁石を提供することを基本目的とし、特
に、Rとして希少なSm等を必ずしも必要とせず、
Coを必須とせず、従来のフエライト磁石と同等
以上の磁気特性を有する永久磁石を提供すること
を目的とする。 このような永久磁石として、本発明者は、先
に、Nd、Prを中心とする特定の希土類元素とFe
とBとを特定比をもつて必須とし、かつ磁気異方
性焼結体である、全く新しい種類の実用高性能永
久磁石を開発し、本願と同一出願人により出願し
た(特願昭57−145072)。このFe−B−R三元系
永久磁石は、従来知られているRCo5やR2Co17
合物とは異なる新しい化合物を基礎とし、粉末冶
金法にて適当なミクロ組織を形成することによつ
て得られる焼結永久磁石であり、特にボロン(B)
は、従来の、例えば非晶質合金作成時の非晶質促
進元素又は粉末冶金法における焼結促進元素とし
て添加されるものではなく、このFe−B−R系
永久磁石の実体的内容を構成する室温以上で磁気
的に安定で高い磁気異方性定数を有するR−Fe
−B化合物の必須構成元素である。この化合物は
実用上十分高いキユリー点(約300℃以上)を有
する。 このFe−B−R三元系永久磁石はFeを主成分
として30MGOe以上にも亘る極めて高いエネル
ギ積を示し、従来のアルコニ磁石や希土類コバル
ト磁石に比して、より低いコストで高い特性を有
する。即ち、より高いコストパフオーマンスを与
え、その任意成形性、資源的に豊富な材料を用い
ることができることと相俟つて工業上大きな有用
性を有する。保持力iHcは1kOeから最高約13kOe
にも達し、現在最も特性が高い磁石として知られ
ている希土類コバルト磁石のiHcにも匹敵するほ
ど大きい。 本発明は、かかるFe−B−R三元系永久磁石
において、Ti、Ni、Bi、V、Nb、Ta、Cr、
Mo、W、Mn、Al、Sb、Ge、Sn、Zr、Hfより
なる群から選択された特定の添加元素M一種又は
二種以上を所定%をもつて加えることにより、先
願(特願昭57−145072)に係るFe−B−R三元
系永久磁石と同様に、前述した目的を達成するも
のである。即ち、本発明の永久磁石は次の通りで
ある。 本願の第1発明:原子百分比で、希土類元素
(R)としてNd、Pr、Dy、Ho、Tbのうち少な
くとも一種8〜30%、B2〜28%、下記所定%以
下(0%を除く)の添加元素Mの一種又は二種以
上(但し添加元素Mが二種以上のときは、M合量
は当該添加元素のうち最大所定%を有するものの
当該所定%以下)、及び残部実質的にFeから成る
磁気異方性焼結体であることを特徴とする永久磁
石; Ti4.5%、Ni8%、 Bi5%、V9.5%、 Nb12.5%、Ta10.5%、 Cr8.5%、Mo9.5%、 W9.5%、Mn8%、 Al9.5%、Sb2.5%、 Ge7%、Sn3.5%、 Zr5.5%、及びHf5.5%。 本願の第2発明:原子百分比で、希土類元素
(R)としてNd、Pr、Dy、Ho、Tbのうち少な
くとも一種とLa、Ce、Pm、Sm、Eu、Gd、Er、
Tm、Yb、Lu、Yのうち少なくとも一種の合計
8〜30%、B2〜28%、所定%以下(0%を除く)
の添加元素Mの一種又は二種以上(但し添加元素
Mが二種以上のときは、M合量は当該添加元素の
うち最大所定%を有するものの当該所定%以下)、
及び残部実質的にFeから成る磁気異方性焼結体
であることを特徴とする永久磁石(添加元素Mの
所定%は第1発明におけるものと同じ)。 本発明者は、Fe−B−R系三元合金、特に8
〜30%のR、2〜28%のB、残部Feから成るFe
−B−R三元合金をベースとして、前述の目的達
成を目的として、放射性元素等を除くほとんどの
元素についてその微量域(0.005原子%、以下%
は別段の記載のない限り原子%を示す)から10数
%に亘る範囲において、その添加による保磁力そ
の他の磁気特性の変化を詳細に調べた。その結果
前記添加元素Mの添加によつてもFe−B−R三
元系永久磁石と同様にハードフエライト磁石と同
等以上の優れた磁気特性を有する高性能永久磁石
をSm、Co等を必要とせずに提供し得ることを見
出した。しかも、好ましい態様においてはFe−
B−R三元系永久磁石に比してもより高保磁力を
付与する効果を有することを見出した。但し、こ
れらの添加元素Mの添加は、夫々の態様におい
て、Fe−B−R三元系永久磁石に比して残留磁
化Brの漸次の低下を招くことも明らかとなつた。
従つて、添加元素Mの含有量は、少くとも残留磁
化Brが、従来のハードフエライトの残留磁化Br
と同等以上の範囲で、かつ高保磁力を示すものが
本発明の対象として把握される。かくて本発明は
Fe−B−R三元系永久磁石において更に特定の
添加元素Mを含有することにより、Fe−B−R
化合物をベースとした新規なFe−B−R−M系
永久磁石を提供するものである。 本発明によれば、従来ハードフエライト磁石と
同等以上の磁気特性を有し、Sm−Co磁石に代替
可能な高性能磁石を包含する工業上極めて有用な
新規な実用永久磁石を提供可能とする。 本発明の永久磁石はFe−B−R−M系であり、
必ずしもCoを含む必要がなく、またRとしては
好適な実施態様として資源的に豊富なNd、Prを
主体とする軽希土類を用いることができ、必ずし
もSmを必要とせず或いはSmを主体とする必要も
ないので原料が安価であり、きわめて有用であ
る。 最近、永久磁石はますます荷酷な環境、例えば
磁石の薄型化にともなう強い反磁界、コイルや他
の磁石によつて加えられる強い逆磁界、これらに
加えて機器の高速化、高負荷化による高温度の環
境にさらされることが多くなり、多くの用途にお
ける特性安定化のためには、一層の高保磁力化が
必要とされる(一般に永久磁石のiHcは温度上昇
にとみない低下する。そのため室温におけるiHc
が小さければ、永久磁石が高温度に晒されると減
磁が起こる。しかし、室温におけるiHcが十分高
ければ実質的ににこのような減磁は起こらない)。
従つて、Fe−B−R三元系永久磁石よりもさら
に高いiHcを有するものを包含する本発明磁石は
こうした荷酷な環境下で使用される永久磁石とし
ても好適である。 本発明の永久磁石に用いる希土類元素RはYを
包含し、軽希土類及び重希土類を包含する希土類
元素であり、そのうち所定の一種以上を用いる。
即ちこのRとしては、Nd、Pr、La、Ce、Tb、
Dy、Ho、Er、Eu、Sm、Gd、Pm、Tm、Yb、
Lu及びYが包含される。Rとしては、Nd、Prを
主体とする軽希土類が好ましい。また通例Rのう
ち特定の一種をもつて足りる(Nd、Pr、Dy、
Ho、Tb)が、La、Ce、Pm、Sm、Eu、Gd、
Er、Tm、Yb、Lu、Y等は他のR、特にNd、
Pr、Dy、Ho、Tb(一種以上)との混合物として
用いることができる。実用上は二種以上の混合物
(ミツシユメタル、ジシム等)を入手上の便宜等
の理由により用いることができる。Sm、La、
Er、Tm、Ce、Gd、Yは単独ではiHcが低いた
め好ましくなく、Eu、Pm、Yb、Luは微量にし
か存在せず高価である。従つてこれらの希土類元
素は、前述の通り、Nd、Pr等の他のRとの混合
物として用いることができる。なお、このRは純
希土類元素でなくともよく、工業上入手可能な範
囲で製造上不可避な不純物(他の希土類元素、
Ca、Mg、Fe、Ti、C、O等)を含有するもの
で差支えない。 B(ホウ素)としては、純ボロン又はフエロボ
ロンを用いることができ、不純物としてAl、Si、
C等を含むものも用いることができる。 本発明のFe−B−R−M系永久磁石において、
R、Bの組成範囲は、基本的にFe−B−R三元
系永久磁石と同様(8〜30%R、2〜28%B)で
ある。即ち、保磁力iHc≧1kOeを満たすためB
は2%以上とし、ハードフエライトの残留磁束密
度Br約4kG以上とするためにBは28%以下とす
る。Rは保磁力を1kOe以上とするため8%以上
必要であり、また燃え易く工業的取扱、製造上の
困難のため(かつまた高価であるため)、30%以
下とする。このB、R範囲において最大エネルギ
積(BH)maxはハードフエライト(〜4MGOe
程度)を同等以上となる。 Nd、PrをRの主成分(即ち全R中Nd、Prの
1種以上が50%以上)とし、11〜24%R、3〜27
%B、残部(Fe+M)の組成は、最大エネルギ
積(BH)max≧7MGOeとするために好ましい
範囲である。 さらに好ましくは、Nd、PrをRの主成分(同
上)とし、12〜20%R、4〜24%B、残部(Fe
+M)の組成であり、最大エネルギ積(BH)
max≧10MGOeを可能ととし、(BH)maxは最
高35MGOe以上に達する。なお所定の最大エネ
ルギ積を得るために所望されるBrに対するMの
範囲は、ハードフエライトと同等以上の残留磁束
密度とするためBr約4kG以上を示す範囲として
基本的に第1図〜第3図を参照して求められる。 さらに、Feの一部をCoを置換することにより
キユリー温度Tcを上昇できる。また、Bの一部
をC、P、Si等により置換することも可能であ
り、製造性改善、低価格化が可能となる。なお、
本発明永久磁石は前記Fe、B、R、Mのほか、
C、S、P、Ca、Mg、O、Si等工業的に製造上
不可避な不純物の存在を許容できる。これらの不
純物は、原料或いは製造工程から混入することが
多く、合計5%以下とすることが好ましい。 本発明のFe−B−R−M系永久磁石は、Fe−
B−R系永久磁石と同様に磁気異方性焼結体とし
て得られる。例えば、合金を溶成、冷却、例えば
鋳造し、生成合金を粉末化した後、磁界中にて成
形し焼結することにより永久磁石を得ることがで
きる。 実施例 以下本発明について、実験例及び実施例を引照
しつつ詳述する。 種々の添加元素Mをその微量域から10数%に亘
り含むFe−B−R−M合金の永久磁石試料を次
の方法で作製した。 (1) 合金を高周波溶解し、水冷銅鋳型に鋳造 出発原料はFeとして純度99.9%の電解鉄、B
としてフエロボロン合金及び99%の純度のボロ
ンを用い、Rとして純度99.7%以上のもの(不
純物は主として他の希土類元素)を使用、添加
元素Mとして、純度99%のTi、Mo、Bi、Mn、
Sb、Ni、Ta、98%のW、99.9%のAl、95%の
Hf、99.9%のGe、Sn、またVとして81.2%の
Vを含むフエロバナジウム、Nbとして67.6%
のNbを含むフエロニオブ、Crとして61.9%の
Crを含むフエロクロム、及びZrとして75.5%の
Zrを含むフエロジルコニウムを使用した(な
お純度は重量%で示す); (2) 粉砕 スタンプミルにより35メツシスルーま
で粗粉砕し、次いでボールミルにより3時間磁
界中配向可能な結晶粒子に微粉砕(3〜10μ
m); (3) 磁界(10kOe)中配向・成形(1.5ton/cm2
て加圧); (4) 焼結 1000〜1200℃1時間Ar中、焼結後放
冷。 上記試料について、iHc、Br、(BH)maxを
夫々測定し、そのうちの代表的な試料についての
結果を第1表((1)〜(4))に示す。又上記と同様な
方法にて作成した本発明試料との比較例を第2表
に示す。なお、第2表の符号Cは比較例であるこ
とを示す。また第1、2表中Feは数値を挙げて
いないが、残部を示す。 上記の結果から、次のことが明らかとなつた。
第1表試料1〜36及び試料48〜50は、希土類元素
として軽希土類の代表的なものであるNdを中心
として、Fe−8B−15Nd系(試料1〜26)、Fe−
17B−15Nd系(試料27〜36)及びFe−12B−
20Nd系(試料48〜50)における添加元素Mの効
果を調べたものである。その結果、第2表の試料
C1のiHc7.3kOeに比べて、上記全ての試料(No.
1〜36及びNo.48〜50)についてより高い保磁力を
示し、最大15kOe以上に達している(No.31、36)。
一方、残留磁化BrはC1の12.1kGに比べて同等程
度(No.1、4等)から添加元素Mの増大に従い一
般に徐々に低下を示している。しかし上記いずれ
の本発明試料も従来のハードフエライトのレベル
の残留磁化約4kGよりも十分に高い。 第1表試料37〜39、41、51、52は希土類元素と
して軽希土類であるPrを用いたFe−B−Pr系に
おける添加元素Mの効果を調べたものである。第
1表試料43、44、53〜58、63、64は希土類元素と
してNdを用いるとともに添加元素Mとして2種
以上のものを用いた場合、同じく第1表試料40、
42、65は希土類元素としてPrを用いるとともに
添加元素Mとして2種以上のものを用いた場合を
示し、いずれも良好な結果が得られることを示し
ている。さらに第1表試料45〜47、59〜62は希土
類元素として2種以上のものを用いた場合の添加
元素Mの効果を調べたものである。これら第1表
試料37〜47及び試料51〜65も前記第1表試料1〜
36及び試料48〜50と同様、添加元素Mによる良好
な結果を得ることが可能である。 なお、比較例C5、C6のiHcの値が12.4、
13.9kOeと高いのは、Ndの高含有量によるもの
であり、これらに対しては、試料48〜50、53〜55
及び試料63、64により夫々M添加の効果が明らか
である。 試料No.56はiHc4.3kOeであるが、比較例C16
(iHc2.8kOe)と、また試料No.59のiHc7.30kOeは
C7(iHc5.1kOe)と比較すると、M添加の効果が
認められる。 また試料1、4、20の如く、高(BH)maxを
保持しつつ高保磁力化を実現することも可能であ
る。
The present invention relates to the improvement of permanent magnets, which are one of the extremely important electrical and electronic materials used in a wide range of fields, from various household electrical products to peripheral terminals of large computers, and in particular, the present invention relates to the improvement of permanent magnets, which are one of the extremely important electrical and electronic materials used in a wide range of fields, from various household electrical appliances to peripheral terminals of large computers. −
Regarding R-based permanent magnets. In recent years, with the demand for smaller size and higher efficiency of electrical and electronic equipment, permanent magnets are required to have even higher performance. Current typical permanent magnets are alnico, hard ferrite, and rare earth cobalt magnets. With the recent instability in the raw material situation for cobalt, the demand for alnico magnets containing 20 to 30% cobalt by weight has decreased, and cheap hard ferrite, whose main component is iron oxide, has become the mainstream magnet material. Summer.
On the other hand, rare earth cobalt magnets contain 50 to 65% cobalt by weight and are very expensive because they use Sm, which is not often found in rare earth ores, but they have much higher magnetic properties than other magnets. Therefore, it has come to be used mainly in small, high value-added magnetic circuits. Rare earth cobalt magnets are RCo 5 , R 2 Co 17 (R is
It is a permanent magnet based on a binary compound represented by rare earth elements (mainly Sm and Ce).
A small amount of Cu, Fe, Zr, Ti, V, Hf
It has been attempted to improve the magnetic properties by substituting transition metal elements such as. On the other hand, recently, as a magnetic material that does not contain cobalt,
A magnetic material for a sputtered thin film or an ultra-quenched ribbon has been proposed which contains Fe and R (hereinafter in the present invention, R is used as a symbol indicating a rare earth element) as main components. For example, the magnetic properties of sputtered thin film amorphous TbFe 2 , DyFe 2 , and SmFe 2 alloys have been reported by Clark (AEClark: Appl. Phys.
Lett.vol.23No.11 1 Decembr 1973 642〜644
page). In addition, as a magnetic material for ultra-quenched ribbons, PrFe-based alloys (JJCroat: Appl.Phys.
Lett.37(12), 15 December 1980 pp. 1096-1098)
Furthermore, according to Kuhn et al. (Fe 0.82 B 0.18 ) 0.9
Tb 0.05 La 0.05 alloy (NCKoon et al.: Appl.Phys.
Lett.39(10), 15 November 1981, pp. 840-842),
According to Kabakov et al. (Fe 0.8 B 0.2 ) 1-x Pr x (x=0~0.3
Atomic ratio) alloy (L.Kabakoff et al.: J.Appl.Phy.53
(3), March 1982, pp. 2255-2257). Furthermore, Kloth reported that although light rare earth iron alloys have long been considered attractive candidates for low-cost permanent magnets, attempts to magnetically harden these alloys by powder metallurgy were unsuccessful. They also reported that they found that Pr-Fe and Nd-Fe alloys can be magnetically hardened by melt spinning (ultra-quenching) (JJCroat: J.
Appl.Phys.53(4), April 1982, p. 3161). In order for magnets using rare earth metals to be used inexpensively and in large quantities in a wide range of fields, it is necessary to use magnets that do not contain expensive cobalt and are rare earth metals.
It would be necessary to have light rare earth elements, which are contained in large amounts in ores, as the main component. On the other hand, as mentioned above, in order to make R-Fe or R-Fe-B alloy useful as a magnetic material, it is said that sputter thinning, ultra-quenching, or amorphous formation is essential. However, it has not been possible to obtain bulk practical permanent magnets having arbitrary shapes and dimensions from these sputtered thin films or ultra-quenched ribbons. The magnetization curves of the Fe-B-R ribbons reported so far have poor squareness and cannot be considered as practical permanent magnets that can compete with conventional magnets. Furthermore, both the sputtered thin film and the ultra-quenched ribbon are essentially isotropic, and it has been virtually impossible to obtain a practical permanent magnet with magnetic anisotropy from them. The basic purpose of the present invention is to provide a new practical permanent magnet that should meet such demands, and in particular does not necessarily require rare Sm etc. as R.
The purpose of the present invention is to provide a permanent magnet that does not require Co and has magnetic properties equivalent to or better than conventional ferrite magnets. In order to create such a permanent magnet, the present inventor first developed a method using specific rare earth elements, mainly Nd and Pr, and Fe.
We have developed a completely new type of practical, high-performance permanent magnet that is a magnetically anisotropic sintered body, in which B and B are essential in a specific ratio, and have been filed by the same applicant as the present application (Japanese Patent Application No. 57- 145072). This Fe-B-R ternary permanent magnet is based on a new compound different from the conventionally known RCo 5 and R 2 Co 17 compounds, and is made by forming an appropriate microstructure using powder metallurgy. It is a sintered permanent magnet obtained by
is not added as a conventional amorphous promoting element when creating an amorphous alloy or a sintering promoting element in powder metallurgy, but constitutes the substantial content of this Fe-B-R permanent magnet. R-Fe, which is magnetically stable above room temperature and has a high magnetic anisotropy constant.
-B is an essential constituent element of the compound. This compound has a sufficiently high Curie point (approximately 300°C or higher) for practical use. This Fe-B-R ternary permanent magnet has Fe as its main component and exhibits an extremely high energy product of more than 30 MGOe, and has high characteristics at a lower cost than conventional alconi magnets and rare earth cobalt magnets. . That is, it provides higher cost performance, has arbitrary moldability, and can use resource-rich materials, and has great industrial utility. Holding force iHc ranges from 1kOe to a maximum of approximately 13kOe
It is so large that it rivals the iHc of rare earth cobalt magnets, which are currently known as the magnets with the highest characteristics. The present invention provides such Fe-B-R ternary permanent magnets including Ti, Ni, Bi, V, Nb, Ta, Cr,
By adding a predetermined percentage of one or more specific additive elements M selected from the group consisting of Mo, W, Mn, Al, Sb, Ge, Sn, Zr, and Hf, Similar to the Fe-B-R ternary permanent magnet according to No. 57-145072), the above object is achieved. That is, the permanent magnet of the present invention is as follows. First invention of the present application: In terms of atomic percentage, at least one of Nd, Pr, Dy, Ho, and Tb as a rare earth element (R) is 8 to 30%, B2 to 28%, and not more than the following specified % (excluding 0%). One or more types of additive elements M (however, when there are two or more types of additive elements M, the total amount of M is not more than the specified percentage of the maximum specified percentage of the added elements), and the remainder is substantially made of Fe. A permanent magnet characterized by being a magnetically anisotropic sintered body consisting of Ti4.5%, Ni8%, Bi5%, V9.5%, Nb12.5%, Ta10.5%, Cr8.5%, Mo9 .5%, W9.5%, Mn8%, Al9.5%, Sb2.5%, Ge7%, Sn3.5%, Zr5.5%, and Hf5.5%. Second invention of the present application: At least one of Nd, Pr, Dy, Ho, and Tb as a rare earth element (R) and La, Ce, Pm, Sm, Eu, Gd, Er,
A total of 8-30% of at least one of Tm, Yb, Lu, and Y, B2-28%, and a specified percentage or less (excluding 0%)
One or more types of additive elements M (however, when there are two or more types of additive elements M, the total amount of M is not more than the predetermined percentage of the maximum predetermined percentage of the additive elements),
and the remainder being a magnetically anisotropic sintered body consisting essentially of Fe (the predetermined percentage of the additive element M is the same as that in the first invention). The present inventor has developed an Fe-B-R ternary alloy, especially 8
Fe consisting of ~30% R, 2-28% B, balance Fe
-Based on the B-R ternary alloy, in order to achieve the above-mentioned purpose, most elements except radioactive elements are contained in trace amounts (0.005 atomic%, below %).
Changes in coercive force and other magnetic properties due to the addition of the additives were investigated in detail in the range from 10% to 10% (unless otherwise specified, atomic % is indicated). As a result, even with the addition of the additive element M, a high-performance permanent magnet that has excellent magnetic properties equivalent to or better than a hard ferrite magnet, similar to a Fe-B-R ternary permanent magnet, can be produced without the need for Sm, Co, etc. We have discovered that it is possible to provide this without Moreover, in a preferred embodiment, Fe-
It has been found that it has the effect of imparting a higher coercive force than a BR ternary permanent magnet. However, it has also become clear that the addition of these additive elements M causes a gradual decrease in the residual magnetization Br in each aspect compared to the Fe-BR ternary permanent magnet.
Therefore, the content of the additive element M is such that at least the residual magnetization Br is higher than the residual magnetization Br of conventional hard ferrite.
The objects of the present invention are those exhibiting a high coercive force in a range equal to or higher than that of . Thus, the present invention
By further containing a specific additive element M in the Fe-B-R ternary permanent magnet, Fe-B-R
The present invention provides a novel Fe-BRM permanent magnet based on a compound. According to the present invention, it is possible to provide a new practical permanent magnet that is extremely useful industrially and includes a high-performance magnet that has magnetic properties equivalent to or better than conventional hard ferrite magnets and can be substituted for Sm-Co magnets. The permanent magnet of the present invention is Fe-BRM-based,
It does not necessarily need to contain Co, and as a preferred embodiment, light rare earths mainly composed of Nd and Pr, which are abundant in resources, can be used as R, and Sm is not necessarily required or it is not necessary to mainly contain Sm. Since there are no carbonaceous substances, the raw materials are cheap and extremely useful. In recent years, permanent magnets have been exposed to increasingly harsh environments, such as strong demagnetizing fields due to thinner magnets, strong reverse magnetic fields applied by coils and other magnets, and increased speeds and higher loads of equipment. They are often exposed to high temperature environments, and in order to stabilize their characteristics in many applications, even higher coercive force is required (in general, the iHc of permanent magnets decreases as the temperature increases. iHc at room temperature
If is small, demagnetization will occur when the permanent magnet is exposed to high temperatures. However, if iHc at room temperature is high enough, such demagnetization will not occur substantially).
Therefore, the magnets of the present invention, including those having higher iHc than Fe-B-R ternary permanent magnets, are also suitable as permanent magnets used under such harsh environments. The rare earth element R used in the permanent magnet of the present invention includes Y, and is a rare earth element including light rare earths and heavy rare earths, among which one or more predetermined types are used.
That is, this R includes Nd, Pr, La, Ce, Tb,
Dy, Ho, Er, Eu, Sm, Gd, Pm, Tm, Yb,
Lu and Y are included. As R, light rare earths mainly composed of Nd and Pr are preferable. Also, it is usually sufficient to have a specific type of R (Nd, Pr, Dy,
Ho, Tb), La, Ce, Pm, Sm, Eu, Gd,
Er, Tm, Yb, Lu, Y etc. are other R, especially Nd,
It can be used as a mixture with Pr, Dy, Ho, and Tb (one or more types). In practice, a mixture of two or more types (mitsumetal, dishim, etc.) can be used for reasons such as availability. Sm, La,
Er, Tm, Ce, Gd, and Y alone are not preferable because they have low iHc, and Eu, Pm, Yb, and Lu exist only in trace amounts and are expensive. Therefore, as described above, these rare earth elements can be used as a mixture with other R such as Nd and Pr. Note that this R does not have to be a pure rare earth element, and may contain impurities (other rare earth elements, other rare earth elements,
Any material containing Ca, Mg, Fe, Ti, C, O, etc.) may be used. As B (boron), pure boron or ferroboron can be used, and as impurities Al, Si,
Those containing C or the like can also be used. In the Fe-BRM permanent magnet of the present invention,
The composition range of R and B is basically the same as that of the Fe--B--R ternary permanent magnet (8 to 30% R, 2 to 28% B). That is, in order to satisfy the coercive force iHc≧1kOe, B
is 2% or more, and B is 28% or less in order to maintain the residual magnetic flux density Br of the hard ferrite to be approximately 4 kG or more. R is required to be 8% or more in order to have a coercive force of 1 kOe or more, and is set to 30% or less because it is easily flammable and difficult to handle and manufacture industrially (and is expensive). In this B and R range, the maximum energy product (BH) max is hard ferrite (~4MGOe
degree) will be the same or higher. Nd and Pr are the main components of R (i.e. at least 50% of Nd and Pr in all R), 11 to 24% R, 3 to 27
The composition of %B and the balance (Fe+M) is in a preferable range in order to make the maximum energy product (BH) max≧7MGOe. More preferably, Nd and Pr are the main components of R (same as above), 12 to 20% R, 4 to 24% B, and the balance (Fe
+M), and the maximum energy product (BH)
max≧10MGOe is possible, and (BH)max reaches a maximum of 35MGOe or more. The desired range of M for Br in order to obtain a predetermined maximum energy product is basically the range shown in Figures 1 to 3, where Br is approximately 4 kG or more in order to have a residual magnetic flux density equal to or higher than that of hard ferrite. It can be found by referring to Furthermore, by replacing a portion of Fe with Co, the Curie temperature Tc can be increased. Further, it is also possible to replace a part of B with C, P, Si, etc., and it is possible to improve manufacturability and reduce costs. In addition,
In addition to the above-mentioned Fe, B, R, and M, the permanent magnet of the present invention includes
The presence of industrially unavoidable impurities such as C, S, P, Ca, Mg, O, and Si can be tolerated. These impurities are often mixed in from raw materials or manufacturing processes, and the total amount is preferably 5% or less. The Fe-BRM permanent magnet of the present invention is Fe-
Like the BR permanent magnet, it is obtained as a magnetically anisotropic sintered body. For example, a permanent magnet can be obtained by melting an alloy, cooling it, for example casting it, pulverizing the resulting alloy, and then shaping and sintering it in a magnetic field. EXAMPLES The present invention will be described in detail below with reference to experimental examples and examples. Permanent magnet samples of Fe-BRM alloys containing various additive elements M ranging from trace amounts to over 10% were prepared by the following method. (1) The alloy is high-frequency melted and cast in a water-cooled copper mold The starting materials are electrolytic iron with a purity of 99.9% as Fe, B
Ferroboron alloy and boron with a purity of 99% are used as R, with a purity of 99.7% or more (impurities are mainly other rare earth elements), and as additive elements M, Ti, Mo, Bi, Mn with a purity of 99%,
Sb, Ni, Ta, 98% W, 99.9% Al, 95%
Hf, 99.9% Ge, Sn and also ferrovanadium with 81.2% V as V, 67.6% as Nb
Ferronniobium containing Nb, 61.9% as Cr
Ferrochrome containing Cr, and 75.5% as Zr
Ferrozirconium containing Zr was used (purity is shown in weight%); (2) Grinding Coarsely ground to 35 mesh through using a stamp mill, then finely ground to crystal particles that can be oriented in a magnetic field for 3 hours using a ball mill (3 ~10μ
m); (3) Orientation and forming in a magnetic field (10 kOe) (pressurized at 1.5 ton/cm 2 ); (4) Sintering 1000-1200°C in Ar for 1 hour, then allowed to cool. The iHc, Br, and (BH)max of the above samples were measured, and the results for representative samples are shown in Table 1 ((1) to (4)). Comparative examples with samples of the present invention prepared in the same manner as above are shown in Table 2. Note that the code C in Table 2 indicates a comparative example. Further, although Fe in Tables 1 and 2 does not have a numerical value, it shows the remainder. From the above results, the following became clear.
Samples 1 to 36 and samples 48 to 50 in Table 1 mainly contain Nd, which is a typical light rare earth, as a rare earth element, Fe-8B-15Nd system (samples 1 to 26), Fe-
17B−15Nd system (samples 27 to 36) and Fe−12B−
The effect of the additive element M in the 20Nd system (samples 48 to 50) was investigated. As a result, the samples in Table 2
Compared to iHc7.3kOe of C1, all the above samples (No.
Nos. 1 to 36 and Nos. 48 to 50) showed higher coercive force, reaching a maximum of 15 kOe or more (Nos. 31 and 36).
On the other hand, the residual magnetization Br generally shows a gradual decrease as the additive element M increases from the same level (No. 1, 4, etc.) as compared to 12.1 kG of C1. However, the residual magnetization of any of the above-mentioned samples of the present invention is sufficiently higher than the level of conventional hard ferrite, which is about 4 kG. Samples 37 to 39, 41, 51, and 52 in Table 1 were used to investigate the effect of the additive element M in the Fe-B-Pr system using Pr, which is a light rare earth element, as the rare earth element. Samples 43, 44, 53 to 58, 63, and 64 in Table 1 use Nd as the rare earth element and two or more types of additive elements M.
Nos. 42 and 65 show cases in which Pr was used as the rare earth element and two or more types were used as the additive element M, and good results were obtained in both cases. Furthermore, samples 45 to 47 and 59 to 62 in Table 1 were used to investigate the effect of the additive element M when two or more rare earth elements were used. These Table 1 Samples 37 to 47 and Samples 51 to 65 are also Samples 1 to 1 in Table 1.
Similar to Sample No. 36 and Samples 48 to 50, it is possible to obtain good results using the additive element M. In addition, the iHc value of Comparative Examples C5 and C6 is 12.4,
The high 13.9kOe is due to the high content of Nd, and for these samples 48-50, 53-55
The effect of M addition is clear in Samples 63 and 64, respectively. Sample No. 56 has iHc4.3kOe, but comparative example C16
(iHc2.8kOe) and iHc7.30kOe of sample No. 59
When compared with C7 (iHc5.1kOe), the effect of M addition is recognized. Furthermore, as in Samples 1, 4, and 20, it is also possible to achieve a high coercive force while maintaining a high (BH) max.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 本発明の永久磁石は、そのベースとなるFe−
B−R三元系において、既述の8〜30%R、2〜
28%B、残部Fe(原子百分率)の全範囲におい
て、添加元素Mの有効性が認められており、この
Fe−B−Rの各組成範囲外では、有効ではない
(比較例C12、C13、C17はR過少;C14はB過
多;C15はR過多;C8〜C11はB不含有等参照)。 次に添加元素Mの夫々の添加の効果を明らかに
するためその添加量を変化させて実験によりBr
の変化を測定し、その結果を第1図〜第3図に示
す(第1表のBrのデータに対応する)。Bi、Mn、
Niを除く添加元素M(Ti、V、Nb、Ta、Cr、
Mo、W、Al、Sb、Ge、Sn、Zr、Hf)の添加量
の上限は、第1図〜第3図に示す通り、ハードフ
エライトのBr約4kGと同等以上の範囲として定
まられる。 即ち、これらの添加元素の上限は下記の通りで
ある。 Ti4.5%、V9.5%、Nb12.5%、 Ta10.5%、Cr8.5%、Mo9.5%、 W9.5、Al9.5%、Sb2.5%、 Ge7%、Sn3.5%、Zr5.5%、 及びHf5.5%。 このMの範囲において最大エネルギ積(BH)
maxはハードフエライト(〜4MGOe)と同等以
上となる。さらに、好ましい範囲は、Brを6、
8、10kG等の段階をもつて区画することにより
夫々第1図〜第3図から明からに読むことができ
る。 Mn、Niは10%以上までBrを大きく減少させる
ことはない(第2図参照)が、多量に添加すると
iHcが減少するので、ハードフエライトと同等以
上の磁石特性を得るためBrをできるだけ高く保
持することも考慮して、Mn、Niの上限は夫々8
%とする。また、Mn、Niの少量の添加は、他の
Mと同様に保磁力を増加させる効果がある(第1
表No.16〜19及び比較例第2表No.C1参照)が、
Mn3.5%、Ni4.5%を夫々越えると、iHcが無添加
の場合よりも低くなつてしまうため、好ましい範
囲としてはこれ以下とする。 Biについては、その蒸気圧が極めて高くBi5%
を超える合金の製造が、事実上不可能であり5%
以下とする。2種以上の添加元素Mを含む合金の
場合、ハードフエライトと同等以上の条件を満た
すためには、その合量が上述の各元素の添加量の
上限のうち最大の所定値(%)以下であることが
必要である。 第1図〜第3図から明らかな通り、添加元素M
の添加はその添加量の増大と共に、ほとんどの場
合Brが減少しており、また(BH)maxも第1表
に示す通り一部の範囲を除き基本的に減少する傾
向を示す。しかし、保磁力iHcの増大は、極めて
強い逆磁場や、高温の苛酷な環境にさらされる場
合、永久磁石にとつて重要な特性であり、高
(BH)max型の永久磁石と同様工業的に有用性
が大である。Mとして2種以上含む場合には、
夫々の添加元素の特性曲線を合成したものとほぼ
同様なBr曲線を示す。なおMの添加量はiHcの増
大効果、Br減少傾向、(BH)maxへの影響を考
慮すると0.1〜3%が最も望ましい。又Mとして
は第1図〜第3図から明らかな様にV、Ta、
Nb、Cr、W、Mo、Mn、Ni、Alは比較的多量
に添加してもBrを著しく低下させることなく
(例えば8%添加してもBrは4kG以上)、特に
Mn、Niを除くV、Ta、Nb、Cr、W、Mo、Al
は広い範囲において、iHc向上に寄与する。 第4図に代表例として(1)77Fe−8B−15Nd、(2)
76Fe−8B−15Nd−1Nb、(3)75Fe−8B−15Nd−
2Alの3種の初磁化曲線及び減磁曲線1〜3を示
す。 試料(1)(曲線1)は比較例C1(第2表)と同じ
もの、試料(2)(曲線2)は実施例試料No.5と同じ
もの、試料(3)(曲線3)は実施例試料No.21と同じ
ものについて測定したものである。曲線2,3と
も永久磁石として有用な高い角形性を示してい
る。 以上詳述の通り、本発明は、新規なFe−B−
R−M系磁気異方性焼結体から成る実用永久磁石
を提供し、従来レベル以上の磁気特性をRとして
必ずしもSmを用いることなくまたCoを必須とせ
ずに実現したものである。本発明は、その実施の
態様においてさらに従来磁石よりも優れた高保磁
力、高エネルギ積を備える実用高性能永久磁石を
提供し、好適な態様として従来にない最高のエネ
ルギ積をも実現したものである。加えて、Rとし
てNd、Pr等の軽希土類を希土類の中心として用
いることができることにより、資源、価格、磁気
特性いずれの点においても優れた永久磁石であ
り、工業利用性の極めて高いものである。また
Fe−B−R系磁石と対比してみると、添加元素
Mの含有により保磁力の増大も可能ならしめ、応
用範囲を拡げ実用的価値を高めている。
[Table] The permanent magnet of the present invention is based on Fe-
In the B-R ternary system, the already mentioned 8 to 30% R, 2 to
The effectiveness of the additive element M has been recognized over the entire range of 28% B and the balance Fe (atomic percentage).
It is not effective outside each composition range of Fe-BR (see Comparative Examples C12, C13, and C17 have too little R; C14 has too much B; C15 has too much R; C8 to C11 do not contain B, etc.). Next, in order to clarify the effect of each addition of the additive element M, we conducted an experiment by changing the amount of addition of Br.
The results are shown in Figures 1 to 3 (corresponding to the Br data in Table 1). Bi, Mn,
Additive elements M excluding Ni (Ti, V, Nb, Ta, Cr,
As shown in FIGS. 1 to 3, the upper limit of the amount of Mo, W, Al, Sb, Ge, Sn, Zr, Hf) is determined to be equal to or higher than approximately 4 kG of Br of hard ferrite. That is, the upper limits of these additive elements are as follows. Ti4.5%, V9.5%, Nb12.5%, Ta10.5%, Cr8.5%, Mo9.5%, W9.5, Al9.5%, Sb2.5%, Ge7%, Sn3.5 %, Zr5.5%, and Hf5.5%. Maximum energy product (BH) in this range of M
The max is equal to or higher than that of hard ferrite (~4MGOe). Furthermore, the preferable range is 6 for Br,
It can be clearly read from FIGS. 1 to 3 by dividing it into stages such as 8 and 10 kG. Mn and Ni do not significantly reduce Br up to 10% or more (see Figure 2), but when added in large amounts,
Since iHc decreases, the upper limits of Mn and Ni are set at 8.8% each, taking into consideration the need to maintain Br as high as possible in order to obtain magnetic properties equivalent to or better than hard ferrite.
%. Also, the addition of small amounts of Mn and Ni has the effect of increasing coercive force like other M (first
(See Tables No. 16 to 19 and Comparative Example Table 2 No. C1),
If Mn exceeds 3.5% and Ni exceeds 4.5%, iHc becomes lower than that without additives, so the preferred range is below these. Regarding Bi, its vapor pressure is extremely high and Bi5%
It is virtually impossible to manufacture alloys exceeding 5%.
The following shall apply. In the case of an alloy containing two or more types of additive elements M, in order to satisfy the same or higher conditions as hard ferrite, the total amount must be below the maximum predetermined value (%) of the upper limits of the amounts of each element added above. It is necessary that there be. As is clear from Figures 1 to 3, the additive element M
As the amount of addition increases, Br decreases in most cases, and as shown in Table 1, (BH)max basically shows a tendency to decrease except in a certain range. However, an increase in coercive force iHc is an important characteristic for permanent magnets when exposed to extremely strong reverse magnetic fields or harsh high-temperature environments, and as with high (BH) max type permanent magnets, it is an important characteristic for permanent magnets. It is very useful. If two or more types of M are included,
It shows a Br curve that is almost the same as the one obtained by synthesizing the characteristic curves of each additive element. Note that the amount of M added is most preferably 0.1 to 3%, considering the effect of increasing iHc, the tendency to decrease Br, and the influence on (BH)max. Also, as for M, as is clear from Figures 1 to 3, V, Ta,
Nb, Cr, W, Mo, Mn, Ni, and Al do not significantly reduce Br even when added in relatively large amounts (for example, Br is 4kG or more even when added at 8%), and especially
V, Ta, Nb, Cr, W, Mo, Al except Mn and Ni
contributes to iHc improvement in a wide range of areas. Figure 4 shows typical examples (1) 77Fe−8B−15Nd, (2)
76Fe−8B−15Nd−1Nb, (3)75Fe−8B−15Nd−
Three types of initial magnetization curves and demagnetization curves 1 to 3 of 2Al are shown. Sample (1) (curve 1) is the same as Comparative Example C1 (Table 2), Sample (2) (curve 2) is the same as Example Sample No. 5, and Sample (3) (curve 3) is the same as Comparative Example C1 (Table 2). This was measured on the same sample as Example Sample No. 21. Both curves 2 and 3 show high squareness useful as a permanent magnet. As detailed above, the present invention provides novel Fe-B-
The present invention provides a practical permanent magnet made of an RM-based magnetic anisotropic sintered body, and achieves magnetic properties higher than conventional levels without necessarily using Sm as R or without necessarily requiring Co. In its embodiment, the present invention further provides a practical high-performance permanent magnet that has a high coercive force and a high energy product superior to conventional magnets, and as a preferred embodiment, it also realizes the highest energy product ever seen. be. In addition, since light rare earth elements such as Nd and Pr can be used as the core of R, it is a permanent magnet that is excellent in terms of resources, price, and magnetic properties, and has extremely high industrial applicability. . Also
When compared with Fe-BR-based magnets, the inclusion of the additive element M makes it possible to increase the coercive force, expanding the range of applications and increasing practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は、(77−x)Fe−8B−15Nd
−xMにおいて添加金属Mの量(x%)と残留磁
化Br(kG)との関係を示すグラフ、第4図は代
表的な実施例試料No.5(76Fe−8B−15Nd−
1Nb)、No.21(75Fe−8B−15Nd−2Al)について
の初磁化曲線及び減磁曲線を、試料No.C1(77Fe−
8B−15Nd)と共に示すグラフ(縦軸は磁化4πI
(kG)、横軸は磁界H(kOe))、を夫々示す。
Figures 1 to 3 are (77-x)Fe-8B-15Nd
Figure 4 is a graph showing the relationship between the amount of added metal M (x%) and residual magnetization Br (kG) at −xM.
1Nb), No. 21 (75Fe-8B-15Nd-2Al), and sample No. C1 (77Fe-
8B−15Nd) (vertical axis is magnetization 4πI
(kG), and the horizontal axis represents the magnetic field H (kOe).

Claims (1)

【特許請求の範囲】 1 原子百分比で、希土類元素(R)としてNd、
Pr、Dy、Ho、Tbのうち少なくとも一種8〜30
%、B2〜28%、下記所定%以下(0%を除く)
の添加元素Mの一種又は二種以上(但し添加元素
Mが二種以上のときは、M合量は当該添加元素の
うち最大所定%を有するものの当該所定%以下)、
及び残部実質的にFeから成る磁気異方性焼結体
であることを特徴とする永久磁石; Ti4.5%、Ni8%、 Bi5%、V9.5%、 Nb12.5%、Ta10.5%、 Cr8.5%、Mo9.5%、 W9.5%、Mn8%、 Al9.5%、Sb2.5%、 Ge7%、Sn3.5%、 Zr5.5%、及びHf5.5%。 2 原子百分比で、前記希土類元素(R)12〜20
%(但し前記希土類元素(R)の50%以上はNd
とPrの一種又は二種)、B4〜24%、前記所定%以
下の添加元素M、及び残部実質的にFeから成る
ことを特徴とする特許請求の範囲第1項記載の永
久磁石。 3 原子百分比で、希土類元素(R)としてNd、
Pr、Dy、Ho、Tbのうち少なくとも一種とLa、
Ce、Pm、Sm、Eu、Gd、Er、Tm、Yb、Lu、
Yのうち少なくとも一種の合計8〜30%、B2〜
28%、下記所定%以下(0%を除く)の添加元素
Mの一種又は二種以上(但し添加元素Mが二種以
上のときは、M合量は当該添加元素のうち最大所
定%を有するものの当該所定%以下)、及び残部
実質的にFeから成る磁気異方性焼結体であるこ
とを特徴とする永久磁石; Ti4.5%、Ni8%、 Bi5%、V9.5%、 Nb12.5%、Ta10.5%、 Cr8.5%、Mo9.5%、 W9.5%、Mn8%、 Al9.5%、Sb2.5%、 Ge7%、Sn3.5%、 Zr5.5%、及びHf5.5%。 4 原子百分比で、前記希土類元素(R)12〜20
%(但し前記希土類元素(R)の50%以上はNd
とPrの一種又は二種)、B4〜24%、前記所定%以
下の添加元素M、及び残部実質的にFeから成る
ことを特徴とする特許請求の範囲第3項記載の永
久磁石。
[Claims] 1 Nd as a rare earth element (R) in atomic percentage;
At least one of Pr, Dy, Ho, Tb 8-30
%, B2~28%, below specified % (excluding 0%)
One or more types of additive elements M (however, when there are two or more types of additive elements M, the total amount of M is not more than the predetermined percentage of the maximum predetermined percentage of the additive elements),
A permanent magnet characterized by being a magnetically anisotropic sintered body consisting essentially of Fe and the remainder; Ti4.5%, Ni8%, Bi5%, V9.5%, Nb12.5%, Ta10.5% , Cr8.5%, Mo9.5%, W9.5%, Mn8%, Al9.5%, Sb2.5%, Ge7%, Sn3.5%, Zr5.5%, and Hf5.5%. 2 The rare earth element (R) 12 to 20 in atomic percentage
% (However, more than 50% of the rare earth elements (R) are Nd
2. The permanent magnet according to claim 1, wherein the permanent magnet comprises B4 to 24%, the additive element M at the predetermined percentage or less, and the remainder substantially Fe. 3 Nd as a rare earth element (R) in atomic percentage,
At least one of Pr, Dy, Ho, Tb and La,
Ce, Pm, Sm, Eu, Gd, Er, Tm, Yb, Lu,
A total of 8-30% of at least one type of Y, B2-
28%, below the specified percentage below (excluding 0%) of one or more types of additive elements M (however, when there are two or more types of additive elements M, the total amount of M is the maximum specified percentage of the added elements) A permanent magnet characterized by being a magnetically anisotropic sintered body consisting essentially of 4.5% Ti, 8% Ni, 5% Bi, 9.5% V, and 12% Nb. 5%, Ta10.5%, Cr8.5%, Mo9.5%, W9.5%, Mn8%, Al9.5%, Sb2.5%, Ge7%, Sn3.5%, Zr5.5%, and Hf5.5%. 4 The rare earth element (R) 12 to 20 in atomic percentage
% (However, more than 50% of the rare earth elements (R) are Nd
and Pr), 4 to 24% of B, the predetermined percentage or less of the additive element M, and the remainder substantially of Fe.
JP57200204A 1982-08-21 1982-11-15 Permanent magnet Granted JPS5989401A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP57200204A JPS5989401A (en) 1982-11-15 1982-11-15 Permanent magnet
CA000431730A CA1316375C (en) 1982-08-21 1983-07-04 Magnetic materials and permanent magnets
DE198383106573T DE101552T1 (en) 1982-08-21 1983-07-05 MAGNETIC MATERIALS AND PERMANENT MAGNETS.
EP83106573A EP0101552B2 (en) 1982-08-21 1983-07-05 Magnetic materials, permanent magnets and methods of making those
DE8383106573T DE3380376D1 (en) 1982-08-21 1983-07-05 Magnetic materials, permanent magnets and methods of making those
US07/013,165 US4770723A (en) 1982-08-21 1987-02-10 Magnetic materials and permanent magnets
US07/224,411 US5096512A (en) 1982-08-21 1988-07-26 Magnetic materials and permanent magnets
SG48490A SG48490G (en) 1982-08-21 1990-07-02 Magnetic materials,permanent magnets and methods of making those
HK682/90A HK68290A (en) 1982-08-21 1990-08-30 Magnetic materials,permanent magnets and methods of making those
US07/877,400 US5183516A (en) 1982-08-21 1992-04-30 Magnetic materials and permanent magnets
US07/876,902 US5194098A (en) 1982-08-21 1992-04-30 Magnetic materials
US08/194,647 US5466308A (en) 1982-08-21 1994-02-10 Magnetic precursor materials for making permanent magnets
US08/485,183 US5645651A (en) 1982-08-21 1995-06-07 Magnetic materials and permanent magnets
US08/848,283 US5766372A (en) 1982-08-21 1997-04-29 Method of making magnetic precursor for permanent magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200204A JPS5989401A (en) 1982-11-15 1982-11-15 Permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62329640A Division JPS63241141A (en) 1987-12-28 1987-12-28 Ferromagnetic alloy

Publications (2)

Publication Number Publication Date
JPS5989401A JPS5989401A (en) 1984-05-23
JPH0232761B2 true JPH0232761B2 (en) 1990-07-23

Family

ID=16420528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200204A Granted JPS5989401A (en) 1982-08-21 1982-11-15 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS5989401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597660A2 (en) 2004-07-01 2013-05-29 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204862A (en) * 1984-03-28 1985-10-16 Toshiba Corp Rare earth element-iron type permanent magnet alloy
JPS6181604A (en) * 1984-09-04 1986-04-25 Tohoku Metal Ind Ltd Preparation of rare earth magnet
JPS61227150A (en) * 1985-03-30 1986-10-09 Toshiba Corp Manufacture of permanent magnet alloy and permanent magnet
JPS6187825A (en) * 1984-10-05 1986-05-06 Hitachi Metals Ltd Manufacture of permanent magnet material
JPS61147504A (en) * 1984-11-30 1986-07-05 Tohoku Metal Ind Ltd Rare earth magnet
JPS61147503A (en) * 1984-11-30 1986-07-05 Tohoku Metal Ind Ltd Rare earth magnet
JPS62165305A (en) * 1986-01-16 1987-07-21 Hitachi Metals Ltd Permanent magnet of good thermal stability and manufacture thereof
JPH0621324B2 (en) * 1986-10-04 1994-03-23 信越化学工業株式会社 Rare earth permanent magnet alloy composition
JPH01103805A (en) * 1987-07-30 1989-04-20 Tdk Corp Permanent magnet
JPH0283905A (en) * 1988-09-20 1990-03-26 Sumitomo Special Metals Co Ltd Corrosion-resistant permanent magnet and manufacture thereof
JPH05226131A (en) * 1992-10-15 1993-09-03 Daido Steel Co Ltd Powder for permanent magnet and permanent magnet
US6319336B1 (en) 1998-07-29 2001-11-20 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof
US6833036B2 (en) 2001-06-29 2004-12-21 Tdk Corporation Rare earth permanent magnet
DE112006000070T5 (en) 2005-07-15 2008-08-14 Hitachi Metals, Ltd. Rare earth sintered magnet and process for its production
EP2034493B1 (en) 2007-05-02 2012-12-05 Hitachi Metals, Ltd. R-t-b sintered magnet
WO2008139556A1 (en) 2007-05-02 2008-11-20 Hitachi Metals, Ltd. R-t-b sintered magnet
US8092619B2 (en) 2008-06-13 2012-01-10 Hitachi Metals, Ltd. R-T-Cu-Mn-B type sintered magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597660A2 (en) 2004-07-01 2013-05-29 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy
EP2597659A2 (en) 2004-07-01 2013-05-29 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy

Also Published As

Publication number Publication date
JPS5989401A (en) 1984-05-23

Similar Documents

Publication Publication Date Title
EP0126179A1 (en) Process for producing permanent magnet materials
JPS6134242B2 (en)
JPH0510807B2 (en)
JPH0510806B2 (en)
JPH0319296B2 (en)
JPH0232761B2 (en)
JPH0316761B2 (en)
JPH0518242B2 (en)
JPH0316762B2 (en)
US5230749A (en) Permanent magnets
JPH0474426B2 (en)
JPH0535210B2 (en)
JPH0536495B2 (en)
JPS6365742B2 (en)
JPH0535211B2 (en)
JPS6077959A (en) Permanent magnet material and its manufacture
JPH0316763B2 (en)
JPH052735B2 (en)
JPH0467324B2 (en)
JPH0474425B2 (en)
JPH044725B2 (en)
JPH0316764B2 (en)
JPH0536494B2 (en)
JPH044384B2 (en)
JPH0633444B2 (en) Permanent magnet alloy