JPH0633444B2 - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPH0633444B2
JPH0633444B2 JP61012668A JP1266886A JPH0633444B2 JP H0633444 B2 JPH0633444 B2 JP H0633444B2 JP 61012668 A JP61012668 A JP 61012668A JP 1266886 A JP1266886 A JP 1266886A JP H0633444 B2 JPH0633444 B2 JP H0633444B2
Authority
JP
Japan
Prior art keywords
permanent magnet
atomic
atom
less
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61012668A
Other languages
Japanese (ja)
Other versions
JPS62170455A (en
Inventor
宏樹 徳原
哲 広沢
裕 松浦
日登夫 山本
節夫 藤村
真人 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP61012668A priority Critical patent/JPH0633444B2/en
Publication of JPS62170455A publication Critical patent/JPS62170455A/en
Publication of JPH0633444B2 publication Critical patent/JPH0633444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、Fe−B−R系永久磁石の磁石特性、特に、
温度特性を改善し、残留磁束密度のすぐれたFe−B−R
系永久磁石合金に関する。
TECHNICAL FIELD The present invention relates to the magnetic characteristics of Fe—B—R permanent magnets, in particular,
Fe-BR with improved temperature characteristics and excellent residual magnetic flux density
System permanent magnet alloy.

背景技術 現在、高磁気特性でかつ安価な永久磁石材料が求めら
れ、さらに資源的に豊富で、今後の安定供給が可能な組
成元素からなる永久磁石材料が切望されており、本出願
人は先に、高価なSmやCoを含有しない新しい高性能永久
磁石としてFe−B−R系(RはYを含む希土類元素のう
ち少なくとも 1種)永久磁石を提案した(特開昭59-460
08号、特開昭59-64733号、特開昭59-89401号、特開昭 5
9-132104号)。この永久磁石は、RとしてNdやPrを中心
とする資源的に豊富な軽希土類を用い、Feを主成分とし
て20MGOe以上の極めて高いエネルギー積を示す、すぐ
れた永久磁石である。
BACKGROUND ART At present, there is a demand for a permanent magnet material that has high magnetic properties and is inexpensive, and there is a strong demand for a permanent magnet material that is rich in resources and that can be stably supplied in the future with a composition element. As a new high-performance permanent magnet containing no expensive Sm or Co, an Fe-BR type permanent magnet (R is at least one of rare earth elements including Y) is proposed (Japanese Patent Laid-Open No. 59-460).
08, JP 59-64733, JP 59-89401, JP 5
9-132104). This permanent magnet is an excellent permanent magnet that uses a resource-rich light rare earth such as Nd or Pr as R and has an extremely high energy product of 20 MGOe or more with Fe as a main component.

最近、磁気回路の高性能化,小形化に伴ない、Fe−B−
R系永久磁石材料が益々注目され、その用途の多様化に
伴なって、永久磁石の磁石特性の改善、特に、温度特性
の改善が要望されてきた。
Recently, as the performance and size of magnetic circuits have increased, Fe-B-
R-based permanent magnet materials have been attracting more and more attention, and with the diversification of their applications, improvement of the magnetic properties of the permanent magnets, especially improvement of the temperature properties, has been demanded.

前記Fe−B−R三元系永久磁石は、そのキューリー点
が、 140℃〜 400℃で、特にRがNdの場合は 312℃であ
るため、そのBrの温度係数は、-0.15〜-0.1%/℃で
あり、使用条件によって、磁石特性の低下が甚だしくな
り、使用範囲を制限される問題があった。
The Fe-BR ternary permanent magnet has a Curie point of 140 ° C to 400 ° C, particularly 312 ° C when R is Nd, and therefore the temperature coefficient of Br thereof is -0.15 to -0.1. % / ° C., and there was a problem that the use characteristics were severely deteriorated depending on the use conditions and the use range was limited.

このFe−B−R系永久磁石において、Feの一部をCoで置
換し、キューリー点を上昇させて該温度特性を改善(特
開昭59−64733 号)することができるが、多量の添加は
コスト高を招来する問題がある。
In this Fe-BR permanent magnet, part of Fe may be replaced with Co to raise the Curie point to improve the temperature characteristics (Japanese Patent Laid-Open No. 59-64733), but a large amount of addition is required. Has the problem of high costs.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする本出願
人提案の永久磁石材料において、使用用途拡大,使用温
度条件の改善のため、磁石特性、特に、温度特性を改善
したFe−B−R系永久磁石を目的としている。
OBJECT OF THE INVENTION The present invention is a permanent magnet material mainly composed of rare earth, boron, and iron proposed by the present applicant. -The purpose is a BR permanent magnet.

発明の構成と効果 発明者らは、Fe−B−R系永久磁石の磁石特性、特に温
度特性の改善を計ることができる微量元素の効果につい
て種々検討した結果、Fe−B−R系永久磁石内に、微量
のH2を含有させることにより、該磁石のキューリー点を
上昇させ、温度特性を改善し、かつBrを向上させるこ
とができることを知見した。
Structure and Effect of the Invention The inventors have conducted various studies on the effect of trace elements that can improve the magnetic characteristics of the Fe-BR permanent magnet, particularly the temperature characteristics, and as a result, the Fe-BR permanent magnet. It was found that the inclusion of a small amount of H 2 in the alloy can raise the Curie point of the magnet, improve the temperature characteristics, and improve Br.

すなわち、この発明は、 R(RはNd,Pr,Dy,Ho、Tbのうち少なくとも1種ある
いはさらに、La,Ce,Sm,Gd,Er,Eu,Tm,Yb,Lu,Y
のうち少なくとも1種からなる)10原子%〜24原子%、 B 4原子%〜24原子%、 Fe65原子%〜81原子%、 H2 0.05原子%〜0.3原子%を主成分とし、主相が正方
晶相からなることを特徴とする永久磁石合金である。
That is, the present invention provides R (R is at least one of Nd, Pr, Dy, Ho and Tb, or further La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y.
10 atomic% to 24 atomic%, B 4 atomic% to 24 atomic%, Fe 65 atomic% to 81 atomic%, H 2 0.05 atomic% to 0.3 atomic% as the main component, and the main phase is A permanent magnet alloy characterized by comprising a tetragonal phase.

また、この発明の永久磁石合金は、平均結晶粒径が 1〜
80μmの範囲にある正方晶系の結晶構造を有する化合物
を主相とし、体積比で 1〜50%の非磁性相(酸化物相を
除く)を含むことを特徴とする。
Further, the permanent magnet alloy of the present invention has an average crystal grain size of 1 to
A compound having a tetragonal crystal structure in the range of 80 μm as a main phase and a nonmagnetic phase (excluding an oxide phase) of 1 to 50% by volume is included.

したがって、この発明は、RとしてNdあるいはさらにPr
を中心とする資源的に豊富な軽希土類を主に用い、Fe,
B,R,H2を主成分とすることにより、20MGOe以上の
極めて高いエネルギー積並びに、高残留磁束密度、高保
磁力を有し、かつ温度による磁気特性の劣化を防止した
Fe−B−R系永久磁石合金を安価に得ることができる。
Therefore, the present invention uses Nd as R or further Pr.
Fe is mainly used as a resource-rich light rare earth, and Fe,
By using B, R, and H 2 as main components, it has an extremely high energy product of 20 MGOe or more, high residual magnetic flux density, high coercive force, and prevents deterioration of magnetic characteristics due to temperature.
An Fe-BR permanent magnet alloy can be obtained at low cost.

永久磁石の成分限定理由 この発明の永久磁石に用いる希土類元素Rは、組成の10
原子%〜24原子%を占めるが、Nd,Pr,Dy,Ho、Tbのう
ち少なくとも1種、あるいはさらに、La,Ce,Sm,Gd,
Er,Eu,Tm,Yb,Lu,Yのうち少なくとも1種を含むも
のが好ましい。
Reasons for Limiting Components of Permanent Magnet The rare earth element R used in the permanent magnet of the present invention has a composition of 10
It occupies at least 24 atomic%, but at least one of Nd, Pr, Dy, Ho, and Tb, or further La, Ce, Sm, Gd,
Those containing at least one of Er, Eu, Tm, Yb, Lu and Y are preferable.

また、通常Rのうち1種(好ましくはNd,Pr,Dy,Ho、
Tb等)をもって足りるが、実用上は2種以上の混合物
(ミッシュメタル,ジジム等)を入手上の便宜等の理由
により用いることができる。
In addition, usually one of R (preferably Nd, Pr, Dy, Ho,
Tb, etc.) is sufficient, but in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons such as convenience of availability.

また、主相を構成するR中のSm,Laはできるだけ少ない
ほうが好ましく、例えば、Smは、 1原子%以下、さらに
好ましくは 0.5原子%以下である。
Further, it is preferable that the Sm and La in R constituting the main phase are as small as possible, for example, Sm is 1 atom% or less, more preferably 0.5 atom% or less.

また、温度特性の向上のためには、R混合系として、N
d,Pr、または、これらに 0.005原子%〜5 原子%,好
ましくは 0.2原子%〜 3原子%のDy,Ho、Tb等の組み合
せが望ましい。
In addition, in order to improve the temperature characteristics, as an R mixed system, N
Desirably, d, Pr, or a combination of 0.005 atomic% to 5 atomic%, preferably 0.2 atomic% to 3 atomic% of Dy, Ho, Tb, etc., is added.

さらに、特性,コスト,資源的観点から、Rとしては、
Nd,Prが、全Rの50%以上、さらに80%以上であること
が好ましい。
Furthermore, from the viewpoint of characteristics, cost and resources, R is as follows:
Nd and Pr are preferably 50% or more, and more preferably 80% or more of the total R.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

Rは、新規な上記系永久磁石材料における、必須元素で
あって、10原子%未満では、結晶構造がα−鉄と同一構
造の立方晶組織が析出するため、高磁気特性、特に高保
磁力が得られず、24原子%を越えると、Rリッチな非磁
性相が多くなり、残留磁束密度(Br)が低下して、すぐ
れた特性の永久磁石が得られない。よって、希土類元素
は、10原子%〜24原子%の範囲とする。
R is an essential element in the novel permanent magnet material described above, and if it is less than 10 atomic%, a cubic crystal structure having the same crystal structure as α-iron precipitates, so that high magnetic properties, particularly high coercive force, are obtained. If it exceeds 24 atom%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and a permanent magnet having excellent characteristics cannot be obtained. Therefore, the rare earth element content is in the range of 10 atom% to 24 atom%.

Bは、この発明による永久磁石材料における、必須元素
であって、 4原子%未満では、菱面体構造が主相とな
り、高い保磁力(iHc)は得られず、24原子%を越える
と、Bリッチな非磁性相が多くなり、残留磁束密度(B
r)が低下するため、すぐれた永久磁石が得られない。
よって、Bは、 4原子%〜24原子%の範囲とする。
B is an essential element in the permanent magnet material according to the present invention. If it is less than 4 atomic%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained. The rich non-magnetic phase increases and the residual magnetic flux density (B
Since r) decreases, an excellent permanent magnet cannot be obtained.
Therefore, B is in the range of 4 atom% to 24 atom%.

Feは、新規な上記永久磁石において、必須元素であ
り、65原子%未満では残留磁束密度(Br)が低下し、81
原子%を越えると、高い保磁力が得られないので、Fe
は65原子%〜81原子%を含有とする。
Fe is an essential element in the novel permanent magnet, and if less than 65 atomic%, the residual magnetic flux density (Br) decreases, and
If the atomic percentage is exceeded, high coercive force cannot be obtained, so Fe
Is contained at 65 atom% to 81 atom%.

H2は、この発明において、Fe−B−R系永久磁石合金の
キューリー点を上昇させて温度特性を改善し、残留磁束
密度Brを増加させるため含有させるが、 0.05 原子%
未満ではキューリー点上昇効果が少なく、 0.3原子%を
越えると、保磁力 iHc が 5kOe以下に低下するほか、
磁石合金が非常に酸化しやすくなり、実用性がなくなり
好ましくないため、 0.05 原子%〜 0.3原子%に限定す
る。
In the present invention, H 2 is contained in order to raise the Curie point of the Fe-BR permanent magnet alloy to improve the temperature characteristics and increase the residual magnetic flux density Br.
If it is less than 0.3%, the effect of raising the Curie point is small, and if it exceeds 0.3 atomic%, the coercive force iHc decreases to 5 kOe or less.
The magnet alloy is very likely to oxidize and becomes unpractical, which is not preferable. Therefore, it is limited to 0.05 atom% to 0.3 atom%.

また、この発明による永久磁石合金において、Feの一部
をCoで置換することは、得られる磁石の磁気特性を損う
ことなく、温度特性を改善することができるが、Co置換
量がFeの20%を越えると、逆に磁気特性が劣化するた
め、好ましくない。Coの原子比率がFeとCoの合計量で 5
%〜15%の場合は、(Br)は置換しない場合に比較して
増加するため、高磁束密度を得るためには好ましい。
Further, in the permanent magnet alloy according to the present invention, substituting a part of Fe with Co can improve the temperature characteristics without deteriorating the magnetic characteristics of the obtained magnet. If it exceeds 20%, on the contrary, the magnetic properties deteriorate, which is not preferable. The atomic ratio of Co is 5 in the total amount of Fe and Co.
% To 15%, the amount of (Br) increases as compared with the case where no substitution is made, which is preferable for obtaining a high magnetic flux density.

また、この発明による永久磁石は、R,B,Fe,H2
他、工業的生産上不可避的不純物の存在を許容できる
が、Bの一部を 4.0原子%以下のC、 2.0原子%以下の
P、 2.0原子%以下のS、 2.0原子%以下のCuのうち少
なくとも1種、合計量で 2.0原子%以下で置換すること
により、永久磁石の製造性改善、低価格化が可能であ
る。
Further, the permanent magnet according to the present invention can tolerate the presence of impurities that are unavoidable in industrial production in addition to R, B, Fe, H 2 , but a part of B is 4.0 atomic% or less C, 2.0 atomic% or less. By substituting at least one of P, 2.0 atomic% or less S, and 2.0 atomic% or less Cu with a total amount of 2.0 atomic% or less, it is possible to improve the productivity of the permanent magnet and reduce the cost.

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石に対してその保磁力、減磁曲線の角型性を
改善あるいは製造性の改善、低価格化に効果があるため
添加することができる。
Further, at least one of the following additional elements is RB-
It can be added to the Fe-based permanent magnet because it is effective in improving the coercive force and squareness of the demagnetization curve, improving the manufacturability, and lowering the cost.

5.0原子%以下のAl、 3.0原子%以下のTi、 5.5原子%以下のV、 4.5原子%以下のCr、 5.0原子%以下のMn、 5.0原子%以下のBi、 9.0原子%以下のNn、 7.0原子%以下のTa、 5.2原子%以下のMo、 5.0原子%以下のW、 1.0原子%以下のSb、 3.5原子%以下のGe、 1.5原子%以下のSn、 3.3原子%以下のZr、 6.0原子%以下のNi、 5.0原子%以下のSi、 1.1原子%以下のZn、 3.3原子%以下のHf、 のうち少なくとも 1種を添加含有し、但し、 2種以上含
有する場合は、その最大含有量は当該添加元素のうち最
大値を有するものの原子%以下の含有させることによ
り、永久磁石の高保磁力化が可能になる。なお、添加量
の上限は、磁石の(BH)max を20MGOe以上とするには、
(Br)が少なくとも 9kG以上必要となるため、該条件を
満す範囲とした。
5.0 atomic% or less Al, 3.0 atomic% or less Ti, 5.5 atomic% or less V, 4.5 atomic% or less Cr, 5.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.0 atomic% or less Nn, 7.0 Atom% or less Ta, 5.2 atom% or less Mo, 5.0 atom% or less W, 1.0 atom% or less Sb, 3.5 atom% or less Ge, 1.5 atom% or less Sn, 3.3 atom% or less Zr, 6.0 atom % Or less Ni, 5.0 atomic% or less Si, 1.1 atomic% or less Zn, 3.3 atomic% or less Hf, at least one type is added, provided that the maximum content, if two or more types are included. By adding at most atomic% of the additive element having the maximum value, the coercive force of the permanent magnet can be increased. In addition, the upper limit of the addition amount is to set the (BH) max of the magnet to 20 MGOe or more,
Since (Br) is required to be at least 9 kG or more, the range is set to satisfy the condition.

結晶相は主相が正方晶であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有する焼結永久磁石を作
製するのに不可欠である。
The fact that the main phase of the crystal phase is a tetragonal crystal is indispensable for producing a sintered permanent magnet having excellent magnetic properties from a fine and uniform alloy powder.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気的等方性磁石が得るこ
とがでいる。
Further, the permanent magnet of the present invention can be magnetically anisotropic magnet obtained by press molding in a magnetic field, and can be magnetically isotropic magnet by press molding in a non-magnetic field. .

この発明による永久磁石は、保磁力iHc ≧1kOe、残留磁
束密度Br> 4 kGを示し、最大エネルギー積(BH)max
は、20MGOe以上を示し、好ましい組成範囲では、最大値
は25MGOe以上に達する。
The permanent magnet according to the present invention exhibits a coercive force iHc ≧ 1 kOe, a residual magnetic flux density Br> 4 kG, and a maximum energy product (BH) max.
Indicates 20 MGOe or more, and in the preferable composition range, the maximum value reaches 25 MGOe or more.

また、この発明永久磁石用合金粉末のRの主成分がその
50%以上をNd及びPrを主とする軽希土類金属が占める場
合で、R12原子%〜15原子%、B 6原子%〜 9原子%、
Fe 78原子%〜80原子%、の組成範囲のとき、(BH)max
35MGOe以上のすぐれた磁気特性を示し、特に軽希土類金
属がNdの場合には、その最大値が42MGOe以上に達する。
Further, the main component of R of the alloy powder for permanent magnets of the present invention is
When the light rare earth metal mainly composed of Nd and Pr occupies 50% or more, R12 atom% to 15 atom%, B6 atom% to 9 atom%,
(BH) max in the composition range of 78 at% to 80 at% Fe
It exhibits excellent magnetic properties of 35 MGOe or more, and reaches its maximum value of 42 MGOe or more, especially when the light rare earth metal is Nd.

実施例 実施例1 出発原料として、純度99.9%の電解鉄、フェロボロン合
金、純度99.7%以上のNdを使用し、これらを配合後高周
波溶解し、その後水冷銅鋳型に鋳造し、14Nd 8B78Feな
る組成の鋳塊を得た。
Example 1 As a starting material, electrolytic iron having a purity of 99.9%, ferroboron alloy, and Nd having a purity of 99.7% or more were used, and these were blended and then high-frequency melted, then cast in a water-cooled copper mold to obtain a composition of 14Nd 8B78Fe. An ingot was obtained.

その後このインゴットを、スタンプミルにより粗粉砕
し、次にボールミルにより微粉砕し、平均粒度 3.0μm
の微粉末を得た。
After that, this ingot was roughly crushed with a stamp mill and then finely crushed with a ball mill to obtain an average particle size of 3.0 μm.
Of fine powder was obtained.

この微粉末を金型に挿入し、10 kOeの磁界中で配向し、
磁界に直交方向に、 2t/cm2の圧力で成形した。
Insert this fine powder into a mold, orient in a magnetic field of 10 kOe,
It was molded in a direction perpendicular to the magnetic field at a pressure of 2 t / cm 2 .

得られた成形体を、1100℃, 1時間,Ar雰囲気中、の条
件で焼結し、さらに、Ar雰囲気中、で 800℃, 1時間と
630℃, 1時間の2段時効処理し、その後、処理合金
を、 0.1TorrのH2雰囲気中に、保持時間を種々変えて保
持しするH2含有処理を施した。
The obtained compact is sintered under the conditions of 1100 ° C for 1 hour in Ar atmosphere, and further, 800 ° C for 1 hour in Ar atmosphere.
630 ° C., 1 hour and 2-step aging treatment, then the treatment alloy, in an H 2 atmosphere of 0.1 Torr, was subjected to containing H 2 treatment for holding the retention time various varied.

得られた永久磁石のH2含有量,キューリー温度及び磁石
特性を測定し、その結果を第1表に示す。
The H 2 content, Curie temperature and magnet characteristics of the obtained permanent magnet were measured, and the results are shown in Table 1.

第1表より明らかな如く、Fe−B−R系永久磁石内に、
微量のH2を含有させることにより、該磁石のキューリー
点が上昇し、温度特性が改善され、かつBrが向上する
ことが分る。
As is clear from Table 1, in the Fe-BR permanent magnet,
It can be seen that the inclusion of a slight amount of H 2 raises the Curie point of the magnet, improves the temperature characteristics, and improves Br.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 日登夫 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 (72)発明者 藤村 節夫 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 (72)発明者 佐川 真人 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoo Yamamoto 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Setsuo Fujimura Shimamoto-cho, Mishima-gun, Osaka Prefecture 2-15-17 Egawa Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Masato Sagawa 2-15-17 Egawa Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Yamazaki Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(RはNd,Pr,Dy,Ho、Tbのうち少なく
とも1種あるいはさらに、La,Ce,Sm,Gd,Er,Eu,T
m,Yb,Lu,Yのうち少なくとも1種からなる) 10原子%〜24原子%、 B 4原子%〜24原子%、 Fe65原子%〜81原子%、 H2 0.05原子%〜0.3原子%を主成分とし、主相が正方
晶相からなることを特徴とする永久磁石合金。
1. R (R is at least one of Nd, Pr, Dy, Ho and Tb, or further La, Ce, Sm, Gd, Er, Eu, T
m, Yb, Lu, and Y) 10 atom% to 24 atom%, B 4 atom% to 24 atom%, Fe 65 atom% to 81 atom%, H 2 0.05 atom% to 0.3 atom% A permanent magnet alloy characterized by having a tetragonal phase as a main component and a main phase.
JP61012668A 1986-01-23 1986-01-23 Permanent magnet alloy Expired - Lifetime JPH0633444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012668A JPH0633444B2 (en) 1986-01-23 1986-01-23 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012668A JPH0633444B2 (en) 1986-01-23 1986-01-23 Permanent magnet alloy

Publications (2)

Publication Number Publication Date
JPS62170455A JPS62170455A (en) 1987-07-27
JPH0633444B2 true JPH0633444B2 (en) 1994-05-02

Family

ID=11811748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012668A Expired - Lifetime JPH0633444B2 (en) 1986-01-23 1986-01-23 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPH0633444B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454998A (en) * 1994-02-04 1995-10-03 Ybm Technologies, Inc. Method for producing permanent magnet
JP3294841B2 (en) 2000-09-19 2002-06-24 住友特殊金属株式会社 Rare earth magnet and manufacturing method thereof
WO2019111328A1 (en) * 2017-12-05 2019-06-13 三菱電機株式会社 Permanent magnet, permanent magnet production method, and, rotary machine

Also Published As

Publication number Publication date
JPS62170455A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
EP0134304B1 (en) Permanent magnets
EP0197712A1 (en) Rare earth-iron-boron-based permanent magnet
JPH0510806B2 (en)
JPS6134242B2 (en)
JPH0319296B2 (en)
JPH0232761B2 (en)
JPH0316761B2 (en)
JP2513994B2 (en) permanent magnet
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JP2948223B2 (en) High performance permanent magnet with excellent corrosion resistance and method of manufacturing the same
US5230749A (en) Permanent magnets
JPH0561345B2 (en)
JP2610798B2 (en) Permanent magnet material
JPH0461042B2 (en)
JPH0633444B2 (en) Permanent magnet alloy
JPH068488B2 (en) Permanent magnet alloy
JPH0536495B2 (en)
JPH0535210B2 (en)
JPH045739B2 (en)
JPH066777B2 (en) High-performance permanent magnet material
JPH0549737B2 (en)
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP2983902B2 (en) Ultra low temperature permanent magnet material
JPH0536494B2 (en)
JP2571403B2 (en) Manufacturing method of rare earth magnet material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term