JP2571403B2 - Manufacturing method of rare earth magnet material - Google Patents

Manufacturing method of rare earth magnet material

Info

Publication number
JP2571403B2
JP2571403B2 JP28367787A JP28367787A JP2571403B2 JP 2571403 B2 JP2571403 B2 JP 2571403B2 JP 28367787 A JP28367787 A JP 28367787A JP 28367787 A JP28367787 A JP 28367787A JP 2571403 B2 JP2571403 B2 JP 2571403B2
Authority
JP
Japan
Prior art keywords
powder
less
rare earth
magnet
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28367787A
Other languages
Japanese (ja)
Other versions
JPH01127643A (en
Inventor
克己 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP28367787A priority Critical patent/JP2571403B2/en
Publication of JPH01127643A publication Critical patent/JPH01127643A/en
Application granted granted Critical
Publication of JP2571403B2 publication Critical patent/JP2571403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、Fe−B−R系希土類磁石の製造方法の改
良に係り、Ca還元粉末と鋳塊粉砕粉末との所要量を混合
配合した原料粉末により、品質が均一で安定しかつすぐ
れた磁石特性を有するFe−B−R系希土類磁石を製造す
る方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing an Fe-BR based rare earth magnet, and relates to a raw material powder obtained by mixing and mixing a required amount of a Ca reduced powder and an ingot pulverized powder. Accordingly, the present invention relates to a method for producing an Fe-BR-based rare earth magnet having uniform, stable and excellent magnet properties.

背景技術 出願人は先に、高価なSmやCoを含有しない新しい高性
能永久磁石としてFe−B−R系(RはYを含む希土類元
素のうち少なくとも1種)永久磁石を提案した(特開昭
59-46008号、特開昭59-64733号、特開昭59-89401号、特
開昭59-132104号)。
BACKGROUND ART The applicant has previously proposed an Fe-BR-based (R is at least one of rare earth elements including Y) permanent magnet as a new high-performance permanent magnet that does not contain expensive Sm or Co (Japanese Patent Application Laid-Open (JP-A) No. 2002-110630). Akira
59-46008, JP-A-59-64733, JP-A-59-89401, JP-A-59-132104).

この永久磁石は、RとしてNdやPrを中心とする資源的
に豊富な軽希土類を用いかつFeを主成分として、20MGOe
以上の極めて高いエネルギー積を発揮するすぐれた永久
磁石である。
This permanent magnet uses a resource-rich light rare earth element, mainly Nd and Pr, as R and contains 20MGOe
It is an excellent permanent magnet that exhibits an extremely high energy product.

上記の新規なFe−B−R系、Fe-Co−B−R系永久磁
石材料は、通常、下記工程より製造される。
The above-mentioned novel Fe-BR-based and Fe-Co-BR-based permanent magnet materials are usually manufactured by the following steps.

出発原料として、希土類金属、電解鉄、フェロボロ
ン合金あるいはさらに電解Coを高周波溶解して鋳塊を製
造する。
As a starting material, a rare earth metal, electrolytic iron, ferroboron alloy or electrolytic Co is melted by high frequency to produce an ingot.

鋳塊をH2吸蔵粉砕法により粗粉砕後、ボールミル
により湿式粉砕して、1.4μm〜5μmの微細粉原料粉
末とする。
The ingot is roughly pulverized by the H 2 occlusion pulverization method, and then wet pulverized by a ball mill to obtain a fine powder raw material powder of 1.4 μm to 5 μm.

あるいは、 a 希土類酸化物のうち少なくとも1種、鉄粉及び純
ボロン粉、フェロボロン粉及び硼素酸化物のうち少なく
とも1種あるいは上記構成元素の合金粉または混合酸化
物を所要組成に配合した混合粉に、金属Ca及びCaCl2
混合して、不活性ガス雰囲気中にて、還元拡散を行なっ
て得られた反応生成物をスラリー化し、水処理する。
Or a mixed powder obtained by mixing at least one of rare earth oxides, at least one of iron powder and pure boron powder, ferroboron powder and boron oxide, or an alloy powder or mixed oxide of the above constituent elements in a required composition. , Metal Ca and CaCl 2 are mixed, and the reaction product obtained by performing reduction diffusion in an inert gas atmosphere is slurried and treated with water.

b 前記処理物をボールミルにより、 0.5μm〜5μmの微粉砕にし、原料粉末とする。b. The treated material is finely pulverized to 0.5 to 5 μm by a ball mill to obtain a raw material powder.

前記工程あるいはab工程により得られた鋳
塊粉砕粉末、あるいはCa還元粉末を 磁界中配向にて成形する。
The ingot pulverized powder or Ca reduced powder obtained in the above step or the ab step is molded in a magnetic field orientation.

真空中にて焼結後放冷する。 After sintering in vacuum, it is allowed to cool.

Ar雰囲気中にて時効処理する。 Aging treatment in Ar atmosphere.

しかしながら、前記工程により得られた鋳塊粉砕
粉末は、ab工程により得られたCa還元粉末に比
し、含有O2量は少ないが、焼結時に有効に作用するNd
リッチ層が前記Ca還元粉末より大きく分布するため、鋳
塊粉砕粉末により得られる焼結磁石の磁石特性は、Ca還
元粉末の場合に比べて減磁曲線の角型性が劣る問題があ
った。
However, the ingot pulverized powder obtained in the above step has a smaller O 2 content than the Ca reduced powder obtained in the ab step, but has an effective Nd during sintering.
Since the rich layer is distributed more than the Ca reduced powder, the magnet properties of the sintered magnet obtained from the ingot pulverized powder have a problem that the squareness of the demagnetization curve is inferior to that of the Ca reduced powder.

また、前記ab工程により得られるCa還元粉末
は、還元後、還元剤のCa(すなわち還元後はCaO)を除
去する工程にて水を使用するため、鋳塊粉砕粉末に比
し、含有O2量が多く、かつ含有O2量の変動が大きいこ
とから、得られる焼結磁石体の組成に変動を生じ易く、
磁石特性にばらきを生ずる問題があった。
Further, Ca reduction powder obtained by the ab step, after the reduction, since (after ie reduction CaO) Ca reducing agent water is used in step of removing, compared to ingot ground powder, containing O 2 Since the amount is large and the content of O 2 varies greatly, the composition of the obtained sintered magnet body tends to vary,
There is a problem that the magnet characteristics vary.

発明の目的 この発明は、上述した従来の原料粉末を使用した希土
類磁石の製造方法の問題を解消し、品質が均一で安定し
かつすぐれた磁石特性を有するFe−B−R系希土類磁石
を製造する方法を目的としている。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the conventional method for producing a rare earth magnet using raw material powders, and produces a Fe-BR based rare earth magnet having uniform, stable, and excellent magnet properties. How to aim.

発明の構成と効果 この発明は、従来の原料粉末を使用した希土類磁石の
製造法の問題点を解決するため、原料粉末の性質等につ
いて種々検討した結果、特定組成を有するFe−B−R系
磁石用鋳塊粉末とCa還元粉末の配合を特定量に制御し
て、得られる混合原料粉末中に含有するO2量を低減
し、その後、プレス、焼結することにより、磁石組成の
変動がなく、かつ磁石特性、特に減磁曲線の角型性のす
ぐれたFe−B−R系永久磁石が得られることを知見し、
この発明を完成したものである。
Structure and Effect of the Invention The present invention is based on the results of various studies on the properties and the like of the raw material powder in order to solve the problems of the conventional method of manufacturing a rare earth magnet using the raw material powder. the formulation of ingot powder and Ca reduction powder for a magnet is controlled to a specific amount, to reduce the amount of O 2 contained in the mixed raw material powder obtained, then press and sintered, variation of the magnet composition It was found that an Fe-BR-based permanent magnet having excellent magnet properties, especially excellent squareness of the demagnetization curve, was obtained.
The present invention has been completed.

すなわち、この発明は R(RはNd、Pr、Dy、Ho、Tbのうち少なくとも1種、あ
るいは更にLa、Ce、Sm、Gd、Er、Eu、Tm、Yb、Lu、Yの
うち少なくとも1種からなる)27wt%〜37wt%、B0.5wt
%〜5wt%、Fe58wt%〜72.5wt%、O2 2000ppm〜5000pp
mを主成分とするCa還元粉末40〜95%と、R(RはNd、P
r、Dy、Ho、Tbのうち少なくとも1種、あるいは更にL
a、Ce、Sm、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なく
とも1種からなる)27wt%〜37wt%、B0.5wt%〜5wt
%、 Fe58wt%〜72.5wt%、O2 500ppm〜2500ppmを主成分と
する鋳塊粉砕粉末5〜60%を配合混合して、R27〜37wt
%、B0.5〜5wt%、Fe58〜72.5wt%を有する混合原料粉
末中のO2含有量を3500ppm以下に調整後、 前記混合粉末を粒度5μm以下に微粉砕後プレス、焼
結、時効処理することを特徴とする希土類磁石材料の製
造方法である。
That is, the present invention relates to R (R is at least one of Nd, Pr, Dy, Ho, Tb, or at least one of La, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y) Consists of) 27wt% -37wt%, B0.5wt
% ~5wt%, Fe58wt% ~72.5wt% , O 2 2000ppm~5000pp
40 to 95% of Ca reduced powder containing m as a main component, and R (R is Nd, P
at least one of r, Dy, Ho, and Tb, or L
a, Ce, Sm, Gd, Er, Eu, Tm, Yb, Lu, Y) at least 27 wt% to 37 wt%, B0.5 wt% to 5 wt%
%, Fe58wt% ~72.5wt%, a 5% to 60% ingot ground powder mainly composed of O 2 500ppm~2500ppm mixed formulation, R27~37wt
%, B0.5~5wt%, after adjusting the O 2 content of the mixed raw material powder having a Fe58~72.5Wt% below 3500 ppm, after milling the mixed powder particle size of less than 5μm pressing, sintering, aging A method for producing a rare earth magnet material.

この発明の製造方法で得られた希土類永久磁石材料の
組成は、Ca還元粉末及び鋳塊粉砕粉末の各々が目的永久
磁石材料組成と同一である場合も、また、それぞれの粉
末が異なる組成、例えば、含有する希土類元素が異なっ
たり、各組成含有量が異なったしても、混合調整後に所
定の目的組成、特に、粉末中のO2含有量を3500ppm以下
に調整すれば、品質が安定しかつ磁石特性が向上する効
果が得られる。
The composition of the rare earth permanent magnet material obtained by the production method of the present invention is such that each of the Ca reduced powder and the ingot crushed powder is the same as the target permanent magnet material composition, and the respective powders have different compositions, for example. Even if the contained rare earth element is different or the content of each composition is different, the quality is stable and if the O 2 content in the powder is adjusted to 3500 ppm or less, particularly the predetermined target composition after the mixing adjustment, and The effect of improving the magnet characteristics can be obtained.

この発明の製造方法で得られる永久磁石材料は、平均
結晶粒径が1〜80μmの範囲にある正方晶系の結晶構造
を有する化合物を主相とし、体積比で1%〜50%の非磁
性相(酸化物相を除く)を含むことを特徴とし、Rとし
てNdあるいはさらにPrを中心とする資源的に豊富な軽希
土類を主に用い、Fe、B、Rを主成分とすることによ
り、20MGOe以上の極めて高いエネルギー積並びに、高残
留磁束密度、高保磁力を有し、安定した品質とすぐれた
減磁曲線の角型性を有するFe−B−R系永久磁石材料を
安価に得ることができる。
The permanent magnet material obtained by the production method of the present invention comprises a compound having a tetragonal crystal structure having an average crystal grain size in a range of 1 to 80 μm as a main phase, and a non-magnetic material having a volume ratio of 1% to 50%. Phase (excluding oxide phase), R is mainly composed of Nd or further rare earth, which is rich in resources centered on Pr, and is mainly composed of Fe, B, and R. It has an extremely high energy product of 20 MGOe or more, a high remanence flux density, a high coercive force, and it is possible to inexpensively obtain a Fe-BR-based permanent magnet material having stable quality and excellent squareness of a demagnetization curve. it can.

発明の好ましい実施態様 この発明による製造方法は、まず、出発原料として、
希土類金属、電解鉄、フェロボロン合金あるいはさらに
電解Coを高周波溶解して鋳塊を製造し、この鋳塊をH2
吸蔵による自然崩壊により粗粉砕して10μm〜40μm粒
度の鋳塊粉砕粗粉砕粉を得る。
Preferred Embodiment of the Invention The production method according to the present invention comprises:
A rare earth metal, electrolytic iron, ferroboron alloy or further electrolytic Co is melted by high frequency to produce an ingot, and this ingot is H 2
Coarsely pulverized by natural collapse by occlusion to obtain an ingot pulverized coarsely pulverized powder having a particle size of 10 to 40 μm.

あるいは、この発明におけるCa還元粉末は、希土類酸
化物のうち少なくとも1種、鉄粉、及び純ボロン粉、フ
ェロボロン粉及び硼素酸化物のうち少なくとも1種ある
いは上記構成元素の合金粉または混合酸化物を所要組成
に配合した混合粉に、金属Ca及びCaCl2を混合して、不
活性ガス雰囲気中にて、還元拡散を行なって得られた反
応生成物をスラリー化し、さらに水処理して、10〜30μ
mの粗粉砕粉を得る。
Alternatively, the Ca-reduced powder in the present invention comprises at least one of rare earth oxides, iron powder, at least one of pure boron powder, ferroboron powder and boron oxide, or an alloy powder or a mixed oxide of the above constituent elements. Metal Ca and CaCl 2 are mixed with the mixed powder blended in the required composition, and the reaction product obtained by performing reduction diffusion in an inert gas atmosphere is slurried, and further treated with water, 30μ
m is obtained.

この発明のCa還元粉末及び鋳塊粉砕粉末の組成は、 R(RはNd、Pr、Dy、Ho、Tbのうち少なくとも1種、あ
るいは更にLa、Ce、Sm、Gd、Er、Eu、Tm、Yb、Lu、Yの
うち少なくとも1種からなる)27wt%〜37wt%、 B0.5wt%〜5wt%、 Fe58wt%〜72.5wt%の外、 必要に応じて、Co、Al、Ti、V、Cr、Mu、Si、Nb、Ta、
Mo、W、Sb、Ge、Sn、Zr、Ni、Si、Zu、Hfの少なくとも
1種を、特定量含有することもできる。
The composition of the Ca reduced powder and the ingot pulverized powder of the present invention is as follows: R (R is at least one of Nd, Pr, Dy, Ho, and Tb, or further La, Ce, Sm, Gd, Er, Eu, Tm, Other than Yb, Lu, and Y) 27 wt% to 37 wt%, B0.5 wt% to 5 wt%, Fe58 wt% to 72.5 wt%, Co, Al, Ti, V, Cr , Mu, Si, Nb, Ta,
At least one of Mo, W, Sb, Ge, Sn, Zr, Ni, Si, Zu, and Hf may be contained in a specific amount.

Ca還元粉末、鋳塊粉砕粉末、並びに混合粉末中のO2
有量は以下のとおである。
The O 2 content in the Ca reduced powder, the ingot pulverized powder, and the mixed powder is as follows.

Ca還元粉末は、粉末中のO2含有量が2000ppm未満で
は、鋳塊粉砕粉末を配合して含有酸素量の調整をする必
要がないため、2000ppm以上とし、5000ppmを越えると、
原料粉末中の酸化物が多く磁石特性の不安定の要因とな
るため、鋳塊粉砕粉末の配合による含有酸素量の調整を
行っても効果が薄い。したがって、Ca還元粉末中のO2
含有量は、2000ppm〜5000ppmの範囲が好ましい。
Ca reduction powder is less than 2000ppm is O 2 content in the powder, it is not necessary to adjust the oxygen content blended ingots pulverized powder, and 2000ppm or higher, exceeds 5000 ppm,
Since a large amount of oxides in the raw material powder causes instability of the magnet properties, even if the oxygen content is adjusted by blending the ingot pulverized powder, the effect is small. Therefore, O 2 in Ca reduced powder
The content is preferably in the range of 2000 ppm to 5000 ppm.

また、鋳塊粉砕粉末中のO2含有量を500ppm未満とす
ることは、工業的に製造不可能であり、また、2500ppm
を越えると、Ca還元粉の含有酸素量の調整に寄与する効
果が少ないため、粉末中のO2含有量は、500ppm〜2500p
pmの範囲が好ましい。
Further, to reduce the O 2 content in the ingot pulverized powder to less than 500 ppm is industrially impossible to produce, and 2500 ppm
If it exceeds, the effect of contributing to the adjustment of the oxygen content of the Ca reduced powder is small, so the O 2 content in the powder is 500 ppm to 2500 p.
A range of pm is preferred.

前記の2種の原料粉末を配合調整した後の混合粉末中
のO2含有量は、3500ppmを超えると、焼結磁石体の含有
酸素量が多くなり、有効希土類量が減少し、磁石特性の
劣化が著しく、Ca還元粉末と鋳塊粉砕粉末を混合して両
者の特質を生かす利点がなくなるため、粉末中のO2
有量は、3500ppm以下とする。
O 2 content in the mixed powder after mixed adjusted two raw material powders above, exceeds 3500 ppm, the more the oxygen content of the sintered magnet body, the effective rare earth content is reduced, the magnet properties Since the deterioration is remarkable and there is no advantage of mixing the Ca reduced powder and the ingot pulverized powder to utilize the characteristics of both, the O 2 content in the powder is set to 3500 ppm or less.

前記Ca還元粉末及び鋳塊粗粉砕粉を混合して、混合粉
末中の酸素含有量を3500ppm以下に調整して、得られる
焼結磁石の磁石特性を向上させた後、微粉砕して粉末粒
度1.5μm〜5μmに粉砕する。
The Ca reduced powder and the ingot coarsely pulverized powder are mixed, and the oxygen content in the mixed powder is adjusted to 3500 ppm or less to improve the magnet properties of the obtained sintered magnet, and then finely pulverized. Pulverize to 1.5-5 μm.

混合粉末の粒度が1.5μm未満では、粉末の酸化度が
大きくなるため、磁石特性の劣化を生ずるので好ましく
なく、また5μmを超えると、焼結後、得られる永久磁
石の結晶粒径が大きくなり、容易に磁化反転がおきて保
磁力が小さくなるので好ましくない。
When the particle size of the mixed powder is less than 1.5 μm, the degree of oxidation of the powder becomes large, and the magnet characteristics are deteriorated, which is not preferable. When the particle size exceeds 5 μm, the crystal size of the permanent magnet obtained after sintering becomes large. This is not preferable because the magnetization reversal occurs easily and the coercive force decreases.

前記の如く、得られた微粉末を、粉末冶金的製造工
程、例えば、磁界中配向にて所要形状、寸法に成形した
後、真空中にて焼結後放令し、さらに、Ar雰囲気中にて
時効処理する工程を経て永久磁石材料を得る。
As described above, the obtained fine powder, powder metallurgical manufacturing process, for example, after shaping to the required shape and dimensions in a magnetic field orientation, after sintering in a vacuum, further release in an Ar atmosphere A permanent magnet material is obtained through a step of aging treatment.

また、この発明において、前記原料粉末を、所要形
状、寸法に磁場中成形する際の磁場条件は、7kOe〜13kO
eが好ましく、プレス条件は、0.5t/cm2〜8t/cm2が好ま
しい。
Further, in the present invention, the magnetic field conditions for molding the raw material powder into a required shape and dimensions in a magnetic field are 7 kOe to 13 kOe.
e is preferably, pressing conditions, 0.5t / cm 2 ~8t / cm 2 is preferred.

また、焼結における温度条件は900℃〜1200℃が好ま
しく、さらに好ましくは、1000℃〜1100℃で、時間は30
分から8時間が好ましい。
Further, the temperature condition in sintering is preferably 900 ° C to 1200 ° C, more preferably 1000 ° C to 1100 ° C, and the time is 30 ° C.
Minutes to 8 hours are preferred.

焼結温度が900℃未満では、焼結磁石体として充分な
強度が得られず、1200℃を超えると、焼結体が変形し、
配向が崩れ、磁束密度の低下、減磁曲線の角型性の低下
を将来し、また結晶粒の粗大化が進行して保磁力を低下
するため好ましくない。
If the sintering temperature is less than 900 ° C, sufficient strength as a sintered magnet body cannot be obtained, and if it exceeds 1200 ° C, the sintered body will be deformed,
It is not preferable because the orientation is lost, the magnetic flux density is reduced, the squareness of the demagnetization curve is reduced in the future, and the crystal grains become coarse and the coercive force is reduced.

また、この発明において、磁石材料の残留磁束密度、
保磁力、減磁曲線の角型性を改善向上させるため、350
℃〜焼結温度の時効処理することが好ましい。時効処理
温度が350℃未満では拡散速度低下のため効果がなく、
また、焼結温度を超えると再焼結が起り過焼結となる。
Further, in the present invention, the residual magnetic flux density of the magnet material,
350 to improve and improve the coercive force and squareness of the demagnetization curve
It is preferable to perform aging treatment at a temperature from ℃ to sintering temperature. If the aging temperature is lower than 350 ° C, there is no effect because the diffusion rate decreases.
If the temperature exceeds the sintering temperature, resintering occurs and oversintering occurs.

さらには、時効処理温度は450℃〜800℃の範囲が好ま
しく、また、時効処理時間は5分〜40時間が好ましい。
5分未満では時効処理効果が少なく、得られる磁石材料
の磁気特性のばらつきが大きくなり、40時間を超えると
工業的に長時間を要しすぎ実用的でない。
Further, the aging temperature is preferably in the range of 450 ° C. to 800 ° C., and the aging time is preferably 5 minutes to 40 hours.
If it is less than 5 minutes, the aging treatment effect is small, and the magnetic properties of the obtained magnetic material vary greatly. If it exceeds 40 hours, it takes an industrially long time and is not practical.

磁気特性の好ましい発現と実用的な面から時効処理時
間は30分から8時間が好ましい。また、時効処理は2段
以上の多段時効処理を用いることもできる。
The aging treatment time is preferably from 30 minutes to 8 hours from the viewpoint of the preferred manifestation of magnetic properties and the practicality. The aging process may be a multi-stage aging process of two or more stages.

また、多段時効処理に代えて、400℃〜1000℃の時効
処理温度から室温までを空冷あるいは水冷などの冷却方
法で、0.2℃/min〜20℃/minの冷却速度で冷却する方法
によっても、上記時効処理と同等の磁気特性を有する永
久磁石材料を得ることができる。
Also, instead of the multi-stage aging treatment, a method of cooling from an aging treatment temperature of 400 ° C. to 1000 ° C. to room temperature by a cooling method such as air cooling or water cooling at a cooling rate of 0.2 ° C./min to 20 ° C./min. A permanent magnet material having the same magnetic properties as the aging treatment can be obtained.

原料粉末の成分限定理由 この発明の永久磁石材料用原料粉末に用いる希土類元
素Rは、組成の27〜37wt%を占めるが、Nd、Pr、Dy、H
o、Tbのうち少なくとも1種、あるいはさらにLa、Ce、S
m、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種
を含むものが好ましい。
Reasons for Limiting Components of Raw Material Powder The rare earth element R used in the raw material powder for a permanent magnet material of the present invention accounts for 27 to 37 wt% of the composition, but Nd, Pr, Dy, H
o, at least one of Tb, or La, Ce, S
Those containing at least one of m, Gd, Er, Eu, Tm, Yb, Lu, and Y are preferable.

また、通常Rのうち1種(好ましくはNd、Rr、Dy,H
o、Tb等)をもって足りるが、実用上は2種以上の混合
物(ミッシュメタル、ジジム等)を入手上の便宜等の理
由により用いることができる。
Usually, one of R (preferably Nd, Rr, Dy, H
o, Tb, etc.), but in practice, a mixture of two or more (mish metal, dymium, etc.) can be used for reasons such as convenience in obtaining.

また、主相を構成するR中のSm、Laはできるだけ少な
いほうが好ましく、例えば、Smは、2wt%以下、さらに
好ましくは0.5wt%以下である。
Further, it is preferable that Sm and La in R constituting the main phase are as small as possible. For example, Sm is 2 wt% or less, more preferably 0.5 wt% or less.

また、温度特性の向上のためには、R混合系として、
Nd、Pr、または、これらに0.01wt%〜10wt%、好ましく
は0.3wt%〜7wt%のDy、Ho、Tb等の組み合せが好まし
い。
In order to improve the temperature characteristics, as an R mixed system,
Preference is given to Nd, Pr or a combination of 0.01 wt% to 10 wt%, preferably 0.3 wt% to 7 wt% of Dy, Ho, Tb or the like.

さらに、特性、コスト、資源的観点から、Rとして
は、Nd、Prが、全Rの50%以上、さらには80%以上を占
めることが好ましい。
Further, from the viewpoints of characteristics, cost and resources, it is preferable that Nd and Pr occupy 50% or more, more preferably 80% or more of the total R as R.

なお、このRは純希土類元素でなくてもよく、工業上
入手可能な範囲で製造上不可避な不純物を含有するもの
でも差支えない。
Note that R may not be a pure rare earth element, and may contain impurities which are unavoidable in production within the industrially available range.

Rは、新規な上記系永久磁石材料用原料粉末におけ
る、必須元素であって、27wt%未満では、結晶構造がα
−鉄と同一構造の立方晶組織が析出するため、高磁気特
性、特に高保磁力が得られず、37wt%を超えると、Rリ
ッチな非磁性相が多くなり、残留磁束密度(Br)が低下
して、すぐれた特性の永久磁石が得られない。よって、
希土類元素は、27wt%〜37wt%の範囲とする。
R is an essential element in the new raw material powder for a permanent magnet material, and if less than 27 wt%, the crystal structure is α
-A cubic structure with the same structure as iron precipitates, so high magnetic properties, especially high coercive force, cannot be obtained. If it exceeds 37 wt%, R-rich non-magnetic phase increases and residual magnetic flux density (Br) decreases. As a result, a permanent magnet having excellent characteristics cannot be obtained. Therefore,
The rare earth element is in the range of 27 wt% to 37 wt%.

Bは、この発明による永久磁石材料用原料粉末におけ
る、必須元素であって、0.5wt%未満では、菱面体構造
が主相となり、高い保磁力(iHc)は得られず、0.5wt%
を超えると、Bリッチな非磁性相が多くなり、残留磁束
密度(Br)が低下するため、すぐれた永久磁石が得られ
ない。よって、Bは、0.5wt%〜5wt%の範囲とする。
B is an essential element in the raw material powder for a permanent magnet material according to the present invention, and if it is less than 0.5 wt%, the rhombohedral structure becomes the main phase and a high coercive force (iHc) cannot be obtained, and 0.5 wt%
Exceeding the equation (1), the B-rich nonmagnetic phase increases and the residual magnetic flux density (Br) decreases, so that an excellent permanent magnet cannot be obtained. Therefore, B is in the range of 0.5 wt% to 5 wt%.

Feは、新規な上記系永久磁石材料用原料粉末におい
て、必須元素であり、58wt%未満では残留磁束密度(B
r)が低下し、72.5wt%を超えると、高い保磁力が得ら
れないので、Feは58wt%〜72.5wt%の含有とする。
Fe is an essential element in the new raw material powder for a permanent magnet material, and when the content is less than 58 wt%, the residual magnetic flux density (B
If r) decreases and exceeds 72.5 wt%, a high coercive force cannot be obtained, so Fe is contained in an amount of 58 wt% to 72.5 wt%.

また、この発明による永久磁石材料用原料粉末におい
て、Feの一部をCoで置換することは、得られる磁石の磁
気特性を損うことなく、温度特性を改善することができ
る。
Further, in the raw material powder for a permanent magnet material according to the present invention, substituting a part of Fe with Co can improve the temperature characteristics without impairing the magnetic characteristics of the obtained magnet.

しかし、前記Co置換量がFeの20%を超えると、逆に磁
気特性が劣化するため、好ましくない。また、Coの原子
比率がFeとCoの合計量で5%〜15%の場合は、(Br)は
置換しい場合に比較して増加するため、高磁束密度を得
るためには好ましい。
However, if the Co substitution amount exceeds 20% of Fe, the magnetic properties are adversely deteriorated, which is not preferable. In addition, when the atomic ratio of Co is 5% to 15% in the total amount of Fe and Co, (Br) increases as compared with the case of substitution, which is preferable for obtaining a high magnetic flux density.

また、この発明による永久磁石材料は、R、B、Feの
他、工業的生産上不可避的不純物の存在を許容できる。
The permanent magnet material according to the present invention can tolerate impurities unavoidable in industrial production in addition to R, B, and Fe.

例えば、Bの一部を0.5wt%以下のC、1wt%以下の
P、1wt%以下のS、2wt%以下のCuのうち少なくとも1
種、合計量で2wt%以下で置換することにより、永久磁
石の製造性改善、低価格化が可能である。
For example, part of B is at least one of C of 0.5 wt% or less, P of 1 wt% or less, S of 1 wt% or less, and Cu of 2 wt% or less.
By replacing the seeds with a total amount of 2 wt% or less, it is possible to improve the productivity of permanent magnets and reduce the cost.

また、下記添加元素のうち少なくとも1種は、Fe−B
−R系永久磁石材料に対してその保磁力、減磁曲線の角
型性を改善あるいは製造性の改善、低価格化に効果があ
るため添加することができる。
Further, at least one of the following additional elements is Fe-B
-It can be added to the R-based permanent magnet material because it has the effect of improving the coercive force and the squareness of the demagnetization curve or improving the productivity and reducing the price.

2wt%以下のAl、2wt%以下のTi、 4.5wt%以下のV、3.5wt%以下のCr、 4wt%以下のMn、15wt%以下のBi、 13wt%以下のNb、20wt%以下のTa、 8wt%以下のMo、14wt%以下のW、 2wt%以下のSb、4wt%以下のGe、 3wt%以下のSn、5wt%以下のZr、 5.5wt%以下のNi、2wt%以下のSi、 1wt%以下のZn、9wt%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するもののwt%以下の量を含有させることによ
り、永久磁石材料の高保磁力化が可能になる。なお、添
加量の上限は、磁石材料の(BH)maxを20MGOe以下とす
るには、(Br)が少なくとも9kG以上必要となるため、
該条件を満す範囲とした。
2 wt% or less Al, 2 wt% or less Ti, 4.5 wt% or less V, 3.5 wt% or less Cr, 4 wt% or less Mn, 15 wt% or less Bi, 13 wt% or less Nb, 20 wt% or less Ta, 8 wt% or less Mo, 14 wt% or less W, 2 wt% or less Sb, 4 wt% or less Ge, 3 wt% or less Sn, 5 wt% or less Zr, 5.5 wt% or less Ni, 2 wt% or less Si, 1 wt% % Or less of Zn and 9 wt% or less of Hf. However, when two or more are contained, the maximum content is the amount of wt% or less of the additive element having the maximum value. , It is possible to increase the coercive force of the permanent magnet material. Note that the upper limit of the addition amount is that (Br) must be at least 9 kG or more in order to make the (BH) max of the magnet material 20 MGOe or less,
The range was set so as to satisfy the conditions.

結晶相は主相が正方晶であることが、微細で均一な合
金粉末より、すぐれた磁気特性を有する焼結永久磁石を
作製するのに不可欠である。
It is indispensable that the main phase of the crystal phase be tetragonal in order to produce a sintered permanent magnet having better magnetic properties than a fine and uniform alloy powder.

以上には、Ca還元粉末及び鋳塊粉砕粉末の各々の組成
の限定理由を説明したが、各粉末組成が必ずしも、混合
配合して得る目的の永久磁石材料の組成と同一である必
要はなく、各粉末においてそれぞれ異なる組成、例え
ば、含有する希土類元素が異なったり、各組成含有量が
異なる場合であってもよい。
Above, the reasons for limiting the composition of each of the Ca reduced powder and the ingot pulverized powder have been described, but each powder composition is not necessarily the same as the composition of the intended permanent magnet material obtained by mixing and blending, Each powder may have a different composition, for example, a different rare earth element or a different composition content.

また、この発明の製造方法によって得られるFe−B−
R系永久磁石材料の組成範囲は、上述した粉末組成の範
囲と同一であり、限定理由も同様である。
Further, Fe-B- obtained by the production method of the present invention.
The composition range of the R-based permanent magnet material is the same as the range of the powder composition described above, and the reason for the limitation is also the same.

この発明による永久磁石材料は、保磁力iHc≧1kOe、
残留磁束密度Br>4kG、を示し、最大エネルギー積(B
H)maxは、20MGOe以上を示し、好ましい組成範囲では、
最大値は25MGOe以上に達する。
The permanent magnet material according to the present invention has a coercive force iHc ≧ 1 kOe,
Residual magnetic flux density Br> 4kG, the maximum energy product (B
H) max shows 20MGOe or more, and in a preferable composition range,
The maximum reaches more than 25MGOe.

また、この発明永久磁石材料用原料粉末のRの主成分
がその50%以上をNd及びPrを主とする軽希土類金属が占
める場合で、R27wt%〜34wt%、B0.8wt%〜1.6wt%、Fe
60wt%〜72wt%を主成分とする場合、(BH)max25MGOe
以上のすぐれた磁気特性を示し、特に軽希土類金属がNd
の場合には、その最大値は42MGOe以上に達する。
Further, in the case where the main component of R in the raw material powder for a permanent magnet material of the present invention is 50% or more of light rare earth metal mainly composed of Nd and Pr, R27wt% to 34wt%, B0.8wt% to 1.6wt% , Fe
When the main component is 60wt% ~ 72wt%, (BH) max25MGOe
It shows the above excellent magnetic properties, especially when the light rare earth metal is Nd
In the case of, the maximum value reaches 42MGOe or more.

実施例 実施例1 出発原料として、純度99.7%の電解鉄粉、フェロボロ
ン合金、純度99.7のNd、Dyメタルを使用し、これらを配
合後、高周波溶解して水冷鋳型に鋳造し、Nd27.4wt%、
Dy3.4wt%、B1.1wt%、Fe67.8wt%、残部不純物なる組
成の鋳塊を得た。
Examples Example 1 As starting materials, electrolytic iron powder having a purity of 99.7%, ferroboron alloy, Nd and Dy metal having a purity of 99.7 were used, and after blending, high frequency melting was performed and cast into a water-cooled mold, and Nd was 27.4 wt%. ,
An ingot having a composition of Dy 3.4 wt%, B 1.1 wt%, Fe 67.8 wt%, and the balance of impurities was obtained.

その後、前記鋳塊をH2吸蔵粉砕して、平均粒度30μ
mの粉末を得た。
Thereafter, the ingot was subjected to H 2 occlusion pulverization to obtain an average particle size of 30 μm.
m were obtained.

また、Ca還元方法にて、出発原料に純度99.0%のNd、
Dy酸化物、純度99.8%の電解鉄粉、フェロボロン合金粉
を使用し、金属Ca粒及びCaCl2を配合、混合した後、不
活性ガス雰囲気中で還元拡散反応を行って得られた反応
生成物をスラリー化し、さらに水洗により、Nd27.5wt
%、Dy3.5wt%、B1.2wt%、Fe67.5wt%、残部不可避的
不純物なる組成の平均粒度21μmの粉末を得た。
In addition, 99.0% pure Nd,
After mixing and mixing metal Ca particles and CaCl2 using Dy oxide, 99.8% electrolytic iron powder and ferroboron alloy powder, the reaction product obtained by performing the reduction diffusion reaction in an inert gas atmosphere is obtained. Slurry and further water washing, Nd27.5wt
%, Dy3.5 wt%, B1.2 wt%, Fe67.5 wt%, and powder having an average particle size of 21 μm having a balance of inevitable impurities.

これらの原料粉末の含有酸素量は、鋳塊粉砕粉の場合
が1100ppm、Ca還元粉の場合が4000ppmであった。
The oxygen content of these raw material powders was 1100 ppm for the ingot pulverized powder and 4000 ppm for the Ca reduced powder.

この2種の原料粉末を第1表に示した配合率で配合
し、有機溶媒を用いたアトライターによる微粉砕を行
い、平均粒度2.8μmの微粉末を得た。
These two raw material powders were blended at the blending ratios shown in Table 1 and finely pulverized by an attritor using an organic solvent to obtain fine powders having an average particle size of 2.8 μm.

得られた各種配合率の混合原料微粉末を、金型に挿入
して15kOeの磁界中で配向し、2t/cm2の圧力で成形し
た。
The obtained mixed raw material fine powder having various mixing ratios was inserted into a mold, oriented in a magnetic field of 15 kOe, and molded at a pressure of 2 t / cm 2 .

その後、成形体を1100℃で3時間、Arガス雰囲気中で
焼結し、さらに600℃で2時間の時効処理を行なった後
急冷し、この発明による永久磁石を作製した。
Thereafter, the compact was sintered at 1100 ° C. for 3 hours in an Ar gas atmosphere, further subjected to an aging treatment at 600 ° C. for 2 hours, and then rapidly cooled to produce a permanent magnet according to the present invention.

また、比較のため、上記Ca還元粉末と鋳塊粉砕粉末の
単独粉末を用い、上述の製造条件にて永久磁石を作製し
た。
Further, for comparison, a permanent magnet was produced under the above-mentioned production conditions using the single powder of the Ca reduced powder and the ingot pulverized powder.

得られた永久磁石の磁石特性(平均値)を第1表に示
す。また、磁石特性のばらつき範囲を第2表に示す。
Table 1 shows the magnet properties (average values) of the obtained permanent magnets. Table 2 shows the variation range of the magnet characteristics.

実施例2 出発原料として、純度99.7%の電解鉄粉、フェロボロ
ン合金、純度99.7のNd、Dyメタルを使用し、これらを配
合後、高周波溶解して水冷鋳型に鋳造し、Nd27.2wt%、
Dy2.3wt%、B1.1wt%、Fe68.8wt%、残部不純物なる組
成の鋳塊を得た。
Example 2 As starting materials, 99.7% pure electrolytic iron powder, a ferroboron alloy, 99.7% pure Nd and Dy metal were used. After blending these, they were melted by high frequency and cast into a water-cooled mold, and 27.2 wt% Nd,
An ingot having a composition of Dy 2.3 wt%, B 1.1 wt%, Fe 68.8 wt%, and the balance of impurities was obtained.

その後、前記鋳塊をH2吸蔵粉砕して平均粒度32μm
の粉末を得た。
Thereafter, the ingot was subjected to H 2 occlusion pulverization to obtain an average particle size of 32 μm.
Was obtained.

また、Ca還元方法にて出発原料に純度99.0%のNd、Dy
酸化物、純度99.8%の電解鉄粉、フェロボロン合金粉を
使用し、金属Ca粒及びCaCl2を配合、混合した後、不活
性ガス雰囲気中で還元拡散反応を行って得られた反応生
成物をスラリー化し、さらに水洗により、Nd27.0wt%、
Dy2.5wt%、B1.2wt%、Fe68.8wt%、残部不可避的不純
物なる組成の平均粒度17μmの粉末を得た。
Also, 99.0% pure Nd, Dy
After mixing and mixing metal Ca particles and CaCl2 using oxides, 99.8% pure electrolytic iron powder and ferroboron alloy powder, the reaction product obtained by performing the reduction diffusion reaction in an inert gas atmosphere is slurried. Nd27.0wt%
A powder having a composition of Dy 2.5 wt%, B 1.2 wt%, Fe 68.8 wt%, and the balance of inevitable impurities having an average particle size of 17 μm was obtained.

これらの原料粉末の含有酸素量は、鋳塊粉砕粉末は15
00ppm、Ca還元粉末は4300ppmであった。
The oxygen content of these raw material powders is 15
The amount of 00 ppm and Ca reduced powder was 4300 ppm.

得られた2種の原料粉末を第3表に示した配合率で配
合し、有機溶媒を用いたアトライターによる微粉砕を行
い、平均粒度2.6μmの微粉末を得た 混合配合微粉末を、金型に挿入して15kOeの磁界中で
配向し、2t/cm2の圧力で成形した。
The obtained two kinds of raw material powders were blended at the blending ratio shown in Table 3, and finely pulverized by an attritor using an organic solvent to obtain a fine powder having an average particle size of 2.6 μm. It was inserted into a mold, oriented in a magnetic field of 15 kOe, and molded at a pressure of 2 t / cm 2 .

この成形体を1100℃で3時間、Arガス雰囲気中で焼結
し、その後500℃〜600℃で2時間の時効処理を行い急冷
し、この発明による永久磁石を作製した。
The molded body was sintered at 1100 ° C. for 3 hours in an Ar gas atmosphere, and then subjected to an aging treatment at 500 ° C. to 600 ° C. for 2 hours and rapidly cooled to produce a permanent magnet according to the present invention.

また、比較のため、上記Ca還元粉末と鋳塊粉砕粉末の
単独粉末を用い、また、本発明限定外の範囲で混合した
粉末を用い、上述の製造条件にて永久磁石を作製した。
Further, for comparison, a permanent magnet was produced under the above-mentioned production conditions using a single powder of the Ca reduced powder and the ingot pulverized powder, and a powder mixed within a range outside the scope of the present invention.

得られた永久磁石の磁石特性(平均値)を第3表に示
す。また、磁石特性のばらつき範囲を第4表に示す。
Table 3 shows the magnet properties (average values) of the obtained permanent magnets. Table 4 shows the variation range of the magnet characteristics.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Fe−B−R系(RはNd、Pr、Dy、Ho、Tbの
うち少なくとも1種、あるいは更にLa、Ce、Sm、Gd、E
r、Eu、Tm、Yb、Lu、Yのうち少なくとも1種からな
る)磁石用のGa還元粉末40wt%〜95wt%と、 上記Fe−B−R系磁石用の鋳塊粉砕粉末 5wt%〜60wt%を配合混合して、 R27〜37wt%、B0.5〜5wt%、Fe58〜72.5wt%を有する混
合原料粉末中のO2含有量を3500ppm以下に調整後、 微粉砕、プレス成形、焼結をすることを特徴とする希土
類磁石材料の製造方法。
1. A Fe—BR system (R is at least one of Nd, Pr, Dy, Ho, and Tb, or La, Ce, Sm, Gd, E
r, Eu, Tm, Yb, Lu, Y) At least 40% by weight to 95% by weight of a Ga reduced powder for a magnet, and 5% by weight to 60% by weight of an ingot pulverized powder for the Fe-BR-based magnet % were mixed formulation, R27~37wt%, B0.5~5wt%, after adjusting the O 2 content of the mixed raw material powder having a Fe58~72.5Wt% below 3500 ppm, milling, pressing, sintering A method for producing a rare earth magnet material.
JP28367787A 1987-11-10 1987-11-10 Manufacturing method of rare earth magnet material Expired - Lifetime JP2571403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28367787A JP2571403B2 (en) 1987-11-10 1987-11-10 Manufacturing method of rare earth magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28367787A JP2571403B2 (en) 1987-11-10 1987-11-10 Manufacturing method of rare earth magnet material

Publications (2)

Publication Number Publication Date
JPH01127643A JPH01127643A (en) 1989-05-19
JP2571403B2 true JP2571403B2 (en) 1997-01-16

Family

ID=17668639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28367787A Expired - Lifetime JP2571403B2 (en) 1987-11-10 1987-11-10 Manufacturing method of rare earth magnet material

Country Status (1)

Country Link
JP (1) JP2571403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444996C (en) * 2004-08-31 2008-12-24 任忠平 Terbium-iron (Fe2Tb) alloy powder preparing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002349595A1 (en) 2001-11-28 2003-06-10 Neomax Co., Ltd. Method and apparatus for producing granulated powder of rare earth alloy and method for producing rare earth alloy sintered compact
KR20200085652A (en) * 2019-01-07 2020-07-15 신토고교 가부시키가이샤 Iron-based soft magnetic alloy powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444996C (en) * 2004-08-31 2008-12-24 任忠平 Terbium-iron (Fe2Tb) alloy powder preparing method

Also Published As

Publication number Publication date
JPH01127643A (en) 1989-05-19

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
EP0553527B1 (en) Powder material for rare earth-iron-boron based permanent magnets
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JPH066728B2 (en) Method for producing raw material powder for permanent magnet material
JP3222482B2 (en) Manufacturing method of permanent magnet
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JPH0461042B2 (en)
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3053187B2 (en) Manufacturing method of permanent magnet
JPH045739B2 (en)
JPH0524975B2 (en)
JP2789269B2 (en) Raw material powder for R-Fe-B permanent magnet
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2986598B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3020717B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2005286174A (en) R-t-b-based sintered magnet
JPH066727B2 (en) Method for producing raw material powder for permanent magnet material
JPH0526858B2 (en)
JP2886378B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0477066B2 (en)
JPH06922B2 (en) Method for producing alloy powder for rare earth magnet
JPH0633444B2 (en) Permanent magnet alloy

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12