JP3020717B2 - Method for producing raw material powder for R-Fe-B-based permanent magnet - Google Patents

Method for producing raw material powder for R-Fe-B-based permanent magnet

Info

Publication number
JP3020717B2
JP3020717B2 JP4056314A JP5631492A JP3020717B2 JP 3020717 B2 JP3020717 B2 JP 3020717B2 JP 4056314 A JP4056314 A JP 4056314A JP 5631492 A JP5631492 A JP 5631492A JP 3020717 B2 JP3020717 B2 JP 3020717B2
Authority
JP
Japan
Prior art keywords
phase
atomic
powder
rare earth
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4056314A
Other languages
Japanese (ja)
Other versions
JPH05214495A (en
Inventor
裕治 金子
泰英 笹川
尚幸 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4056314A priority Critical patent/JP3020717B2/en
Publication of JPH05214495A publication Critical patent/JPH05214495A/en
Application granted granted Critical
Publication of JP3020717B2 publication Critical patent/JP3020717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、R(RはYを含む希土類
元素のうち少なくとも1種)、Fe、Bを主成分とするR-Fe-
B系永久磁石の製造に用いる原料粉末の製造方法に係
り、溶解・粉化法によるほとんどがR2Fe14B相を主相と
する主相系合金粉末と、直接還元拡散法によるR3Co相を
含むCo又はFeとRとの金属間化合物相(但しCoの1部ある
いは大部分をFeにて置換できる)に一部R2(FeCo)14B相等
を含み、主相系合金粉末より希土類金属含有が多い金属
間化合物粉末とを、所要の割合で配合することにより、
要求される種々特性の磁石特性に応じたR-Fe-B系永久磁
石用原料粉末を得る製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an R-Fe-based alloy containing R (R is at least one of rare earth elements including Y), Fe and B as main components.
It relates to a method for producing a raw material powder used in the production of B permanent magnet, almost by dissolution and powdering method according to the main phase alloy powder to main phase R 2 Fe 14 B phase, a direct reduction diffusion process R 3 Co phase containing Co or Fe and intermetallic compound phase of R (however, part or most of Co can be replaced by Fe), partially containing R 2 (FeCo) 14 B phase, etc., and the main phase alloy powder By blending the rare earth metal-containing intermetallic compound powder in a required ratio,
The present invention relates to a method for producing a raw material powder for an R-Fe-B-based permanent magnet according to various required magnet properties.

【0002】[0002]

【従来の技術】今日、高性能永久磁石として代表的なR-
Fe-B系永久磁石(特開昭59-46008号)は、三元系正方晶化
合物の主相とRリッチ相を有する組織にて高磁石特性を
発現し、iHcが25kOe以上、(BH)maxが45MGOe以上と、従
来の高性能希土類コバルト磁石と比較しても格段の高性
能を発揮する。また、用途に応じて選定された種々の磁
石特性を発揮するよう、種々組成のR-Fe-B系永久磁石が
提案されている。
2. Description of the Related Art Today, a typical R-type high performance permanent magnet
Fe-B-based permanent magnet (JP-A-59-46008) exhibits high magnet properties in a structure having a main phase and an R-rich phase of a ternary tetragonal compound, iHc is 25 kOe or more, (BH) With a max of 45MGOe or more, it exhibits remarkably high performance even when compared with conventional high performance rare earth cobalt magnets. Also, R-Fe-B permanent magnets of various compositions have been proposed so as to exhibit various magnet properties selected according to the application.

【0003】上記種々の組成のR-Fe-B系焼結永久磁石を
製造するには、所要組成の磁石用の合金粉末を製造する
必要があり、電解により還元された希土類原料を用い
て、溶解して鋳型に鋳造し所要磁石組成の合金塊を作成
し、これを粉砕して所要粒度の合金粉末としたり、合金
塊を水素吸蔵させて崩壊させたり、前記溶解金属を噴霧
して粉末化する溶解・粉化法(特開昭60-63304号、特開
60-190701号、特開昭60-189901号)と、希土類酸化
物、Fe粉等を用い直接磁石組成合金粉を作成する直接還
元拡散法(特開昭59-219404号、特開昭60-77943号)があ
る。
[0003] In order to produce R-Fe-B sintered permanent magnets having the above-mentioned various compositions, it is necessary to produce alloy powders for magnets having a required composition, using a rare earth material reduced by electrolysis. It is melted and cast into a mold to create an alloy lump of the required magnet composition, which is pulverized to obtain an alloy powder of a required particle size, or the alloy lump is disintegrated by absorbing hydrogen, or powdered by spraying the molten metal. Dissolving and pulverizing method (JP-A-60-63304, JP-A-60-190701 , JP-A-60-189901), and directly produce a magnet composition alloy powder using a rare earth oxide, Fe powder, etc. There is a direct reduction diffusion method (JP-A-59-219404, JP-A-60-77943).

【0004】溶解・粉化法は、鋳塊の粗粉砕工程で容易
に酸化防止が可能な工程で粉砕ができるため、比較的低
含有酸素量の合金粉末が得られる。
In the melting and pulverizing method, since the ingot can be easily crushed in the rough crushing step for preventing oxidization, an alloy powder having a relatively low oxygen content can be obtained.

【0005】直接還元拡散法は、上記の溶解・粉化法と
比較して磁石用原料粉末を作成する時に溶解・粗粉砕等
の工程を省略することができることが利点であるが、R2
Fe14B主相の周囲にRリッチ相がとり囲んだ状態で作成さ
れ、また、Rリッチ相の大きさは前者と比較して小さく
良く分散されるため、製造時に酸化され易く含有酸素量
が多く、磁石組成によっては希土類元素が消耗されて磁
石特性のバラツキ等の発生原因となる問題がある。
[0005] direct reduction diffusion method, an advantage that it is possible to omit the step of melting and coarse grinding, etc. when creating the raw material powder for a magnet as compared with the dissolution and powdering methods described above, R 2
The R-rich phase is created around the Fe 14 B main phase, and the size of the R-rich phase is small and well dispersed compared to the former, so it is easily oxidized during production and the oxygen content is low. In many cases, depending on the magnet composition, there is a problem that the rare earth element is consumed and causes a variation in magnet characteristics.

【0006】[0006]

【発明が解決しようとする課題】上述の如く、直接還元
拡散法によるR-Fe-B系永久磁石用原料粉末を使用した永
久磁石の製造において、溶解・粗粉砕等の工程を省略で
き、生産性が向上するが、原料粉末の特徴としてRリッ
チ相が小さく良く分散されるので酸化され易く、溶解・
粉化法原料と比較して含有酸素量が多く磁石製造工程中
によるわずな酸化で磁石特性のバラツキを発生する。
As described above, in the production of permanent magnets using raw material powders for R-Fe-B permanent magnets by the direct reduction diffusion method, steps such as melting and coarse grinding can be omitted, and Although the R-rich phase is small and well dispersed as a characteristic of the raw material powder, it is easily oxidized,
Compared to powdered raw materials, the oxygen content is large and slight oxidation during the magnet manufacturing process causes variations in magnet properties.

【0007】そこで、CoやNi等の元素を添加すること
で、Rリッチ相を酸化に対して比較的安定な金属間化合
物にすることで酸素量を低減できるが、これらの添加元
素を最も有効に所定の組成にするため最適量に添加し制
御することは不可能である。
Therefore, by adding elements such as Co and Ni to make the R-rich phase an intermetallic compound that is relatively stable against oxidation, the amount of oxygen can be reduced, but these added elements are most effective. It is impossible to add and control an optimum amount to obtain a predetermined composition.

【0008】すなわち、所定の磁石特性を得るためには
添加する1種又は複数の希土類元素量をそれぞれ所要値
に変化させる必要性があり、例えば、Co元素を添加し
て、酸素量の低減を図る際、Rリッチ相にのみCo元素を
拡散させ所要相とすることは不可能で、添加したCo元素
は主相中のFeとも置換されてしまう。また、CoやNi等の
元素は、添加量によっては当該磁石の保磁力を低下させ
る問題もあり、容易に酸素量の低減を図ることができな
い。
That is, in order to obtain predetermined magnet characteristics, it is necessary to change the amount of one or more rare earth elements to be added to respective required values. For example, by adding Co element, the amount of oxygen can be reduced. At this time, it is impossible to diffuse the Co element only into the R-rich phase to obtain the required phase, and the added Co element is also replaced with Fe in the main phase. In addition, elements such as Co and Ni have a problem that the coercive force of the magnet is reduced depending on the added amount, and thus the amount of oxygen cannot be easily reduced.

【0009】従来、溶解・粉化法あるいは直接還元拡散
法によるR-Fe-B系永久磁石磁石用原料粉末の製造に関し
ては、溶解時あるいは還元拡散時に要求される磁石特性
に応じた目的組成となるよう、予め組成を調整する。
Conventionally, the production of raw material powders for R-Fe-B permanent magnet magnets by a dissolution / pulverization method or a direct reduction diffusion method has been carried out with a target composition corresponding to the magnet properties required at the time of melting or reduction diffusion. The composition is adjusted in advance so that

【0010】しかしながら、溶解・粉化法あるいは直接
還元拡散法によるR-Fe-B系永久磁石磁石用原料粉末の金
属組織は、R2Fe14B相の主相の周囲にRリッチ相が存在し
かつ一部Bリッチ相(R1+εFe14B相)が存在する組織から
なるため、各相の存在比率を所要値に調整することは極
めて困難である。しかも磁石特性に応じた特定の組成に
調整するためには、特定の元素が主相に入り易いか、R
リッチ相に入り易いかなど合金組成と各相の構成元素を
常に考慮する必要があり、特定の極狭い範囲の組成を狙
って合金粉末を製造しなければならない。
[0010] However, the metal structure of the raw material powder for the R-Fe-B permanent magnet magnet obtained by the melting / pulverization method or the direct reduction diffusion method has an R-rich phase around the main phase of the R 2 Fe 14 B phase. In addition, it is extremely difficult to adjust the proportion of each phase to a required value because it is composed of a structure in which a B-rich phase (R 1 + ε Fe 14 B phase) exists partially. Moreover, in order to adjust to a specific composition according to the magnet properties, it is necessary to determine whether a specific element easily enters the main phase or R
It is necessary to always consider the alloy composition and the constituent elements of each phase, such as whether it is easy to enter a rich phase, and it is necessary to manufacture alloy powders aiming at a composition in a specific extremely narrow range.

【0011】この発明は、R-Fe-B系永久磁石の製造に使
用する原料粉末のかかる現状に鑑み、溶解・粉化法及び
直接還元拡散法における原料粉末製造時の問題解消並び
に該製法による原料粉末を使用した本系永久磁石の品質
の向上を目的とし、また、要求される種々の磁石特性に
応じた合金粉末の製造に際し、各原料の配合比で対応で
きるR-Fe-B系永久磁石用原料粉末の提供を目的としてい
る。
The present invention has been made in view of the above situation of raw material powders used for manufacturing R-Fe-B permanent magnets, and has solved the problems in manufacturing raw material powders in the melting / pulverization method and the direct reduction diffusion method, and has been developed by the method. R-Fe-B permanent magnets, which aim to improve the quality of this permanent magnet using raw material powders and can respond to the compounding ratio of each raw material in the production of alloy powders according to various required magnet properties It aims to provide raw material powder for magnets.

【0012】[0012]

【課題を解決するための手段】この発明は、要求される
種々の磁石特性に応じた組成からなるR-Fe-B系永久磁石
用合金粉末の製造を容易にする工程を目的に種々検討し
た結果、溶解・粉化法にてRリッチ相の少ないR2Fe14B相
に近い組成で合金粉末を作製し、直接還元拡散法にてR
リッチな合金粉末を、Co元素及びB元素の添加によってR
3Co相(但しCoの1部あるいは大部分をFeにて置換できる)
を含むR2(Fe,Co)17相等からなる金属間化合物粉末を作
製し、これらの製法による合金粉末を混合することによ
り、含有酸素量の少ない所定の磁石組成の合金粉末を得
ることができる。さらにこの発明において、特定の元素
を添加する際にR2Fe14B相の主相系合金粉末かあるいはR
リッチな合金粉末のいずれかを選択することができるた
め、この特定添加元素の添加効果をより有効に発揮させ
ることができ、(BH)maxが20〜45MGOeの種々磁石特性に
応じた組成の合金粉末を容易に提供できることを知見
し、この発明を完成した。
DISCLOSURE OF THE INVENTION The present invention has been studied variously for the purpose of facilitating the production of an R-Fe-B-based permanent magnet alloy powder having a composition corresponding to various required magnet properties. result, to produce alloy powders with composition close to a small R 2 Fe 14 B phase of the R-rich phase at melting and powdering method, R Te direct reduction diffusion process
Rich alloy powder can be converted to R by adding Co element and B element.
3 Co phase (However, part or most of Co can be replaced by Fe)
By producing an intermetallic compound powder comprising R 2 (Fe, Co) 17 phase or the like containing, and mixing alloy powders by these production methods, it is possible to obtain an alloy powder having a predetermined magnet composition with a low oxygen content. . Further, in the present invention, when adding a specific element, the main phase-based alloy powder of R 2 Fe 14 B phase or R
Since any of the rich alloy powders can be selected, the effect of addition of this specific additive element can be more effectively exerted, and (BH) max is an alloy having a composition according to various magnetic properties of 20 to 45 MGOe. The inventors have found that powder can be easily provided, and have completed the present invention.

【0013】すなわち、この発明は、R(但しRはYを含む
希土類元素のうち少なくとも1種)11原子%〜13原子%、B4
原子%〜12原子%、残部Fe及び不可避的不純物からなり、
あるいはさらにFeの一部をCo10原子%以下、Ni3原子%以
下の1種または2種で置換し、溶解・粉化法によるR2Fe14
B相、あるいはR2(FeCo)14B相を主相とする合金粉末60wt
%〜97wt%と、R(但しRはYを含む希土類元素のうち少なく
とも1種)13原子%〜45原子%、B12原子%以下、残部Co(但
しCoの1部あるいは大部分をFeにて置換することができ
る)及び不可避的不純物からなり、直接還元拡散法に
り、R3Co相を含むCo又はFeとRとの金属間化合物相(但し
Coの1部あるいは大部分をFeにて置換できる)及びR2(FeC
o)14B相等からなる金属間化合物粉末40wt%〜3wt%とを、
R-Fe-B系永久磁石の所要組成に配合したことを特徴とす
るR-Fe-B系永久磁石用原料粉末の製造方法である。
That is, the present invention relates to a method for producing R (where R is at least one of rare earth elements including Y) of 11 at% to 13 at%,
Atomic% to 12 atomic%, with the balance being Fe and unavoidable impurities,
Alternatively, a part of Fe is replaced with one or two of Co 10 atomic% or less and Ni 3 atomic% or less, and R 2 Fe 14
Alloy powder with B phase or R 2 (FeCo) 14 B phase as main phase 60wt
% To 97 wt% and R (where R is at least one of the rare earth elements including Y) 13 atomic% to 45 atomic%, B 12 atomic% or less, the balance Co (however, part or most of Co is Fe And an inevitable impurity, and an intermetallic compound phase of R or Co or Fe and R including a R 3 Co phase by direct reduction diffusion method .
Part or most of Co can be replaced by Fe) and R 2 (FeC
o) 40 wt% to 3 wt% of an intermetallic compound powder composed of 14B phase and the like,
A method for producing a raw material powder for an R-Fe-B-based permanent magnet, wherein the raw material powder is blended in a required composition of the R-Fe-B-based permanent magnet.

【0014】[0014]

【作用】この発明は、R-Fe-B系永久磁石の製造に際し、
溶解・粉化法にてRリッチ相の少ないR2Fe14B相に近い組
成で合金粉末を作成することにより、含有酸素量を低減
でき、また直接還元拡散法にて作成したRリッチな金属
間化合物粉末を混合することにより、必要とする磁石特
性に応じた組成の合金粉末を容易にかつ著しく含有酸素
量を低減して製造することができる。
The present invention relates to the production of R-Fe-B permanent magnets,
By creating an alloy powder with composition close to a small R 2 Fe 14 B phase of the R-rich phase at melting and powdering method, it is possible to reduce the oxygen content, also R-rich metal hand created direct reduction diffusion process By mixing the inter-compound powder, an alloy powder having a composition according to the required magnet properties can be easily and remarkably reduced in oxygen content.

【0015】従って、この発明によるR-Fe-B系永久磁石
用原料粉末は、要求される種々の磁石特性に応じた合金
粉末の製造に際し、ある程度の汎用が可能で、配合比で
対応できる。すなわち、要求される種々の磁石特性に応
じて希土類元素の種類とその量を変化させ、複数種の組
成からなるR-Fe-B系永久磁石用原料合金粉末を製造する
に際し、 (1)溶解・粉化法により、R(但しRはYを含む希土類元素
のうち少なくとも1種)11原子%〜13原子%、B4原子%〜12
原子%、残部Fe及び不可避的不純物からなり、あるいは
さらにFeの一部を10原子%以下のCoと置換し、Rリッチ相
が4%以下のR2Fe14B相、あるいはR2(FeCo)14B相を主相と
する一種類の合金粉末を作製し、 (2)直接還元拡散法によりR(但しRはYを含む希土類元素
のうち少なくとも1種)13原子%〜45原子%、B12原子%以
下、残部Co(但しCoの1部あるいは大部分をFeにて置換す
ることができる)及び不可避的不純物からなり、R3Co相
を含むCo又はFeとRとの金属間化合物相(但しCoの1部あ
るいは大部分をFeにて置換できる)及びR2(FeCo)14B相等
からなる金属間化合物粉末を作製する際に、目的組成の
希土類元素の種類とその量に応じて、金属間化合物の含
有希土類元素比率を変化させた複数の金属間化合物粉末
を作製し、 (3)前記所要主相からなる合金粉末と金属間化合物粉末
を、60〜97:40〜3の比率で配合し、磁石特性に応じた複
数種組成の合金粉末を製造することができる。
Therefore, the raw material powder for an R-Fe-B permanent magnet according to the present invention can be used to a certain extent in the production of alloy powders corresponding to various required magnet properties, and can be used in a mixing ratio. In other words, by changing the type and amount of the rare earth element in accordance with various required magnet properties, when producing a raw material alloy powder for R-Fe-B-based permanent magnet having a plurality of types of compositions, (1) melting・ R (where R is at least one of rare earth elements including Y) 11 at% to 13 at%, B 4 at% to 12 by powdering method
Atomic%, balance Fe and unavoidable impurities, or furthermore, a part of Fe is replaced with 10 atomic% or less of Co, and the R-rich phase is 4% or less of R 2 Fe 14 B phase or R 2 (FeCo). the 14 B phase to produce a single type of alloy powders as a main phase, (2) more R to direct reduction diffusion process (wherein R is at least one kind of rare earth elements including Y) 13 atomic% to 45 atomic%, B12 at% or less, the balance being Co (however, part or most of Co can be replaced by Fe) and unavoidable impurities, including R 3 Co phase or Co or Fe and R intermetallic compound phase (However, part or most of Co can be replaced with Fe) and R 2 (FeCo) When preparing an intermetallic compound powder composed of 14 B phase, etc., depending on the type and amount of the rare earth element of the target composition Producing a plurality of intermetallic compound powders in which the content ratio of the rare earth elements contained in the intermetallic compound was changed, (3) alloy powder and intermetallic compound powder comprising the required main phase 60 to 97: blended at a ratio of 40 to 3, it is possible to produce the alloy powder more compositions in accordance with the magnetic properties.

【0016】好ましい実施態様 この発明において、溶解・粉化法による所要の主相から
なる合金粉末と直接還元拡散法による金属間化合物粉末
との配合比を、60〜97:40〜3とするのは、所要の主相か
らなる合金粉末が60%以下、金属間化合物粉末が40%以上
では磁石を製造する際に各元素の均一拡散に時間を要
し、金属間化合物粉末量が3%以下、所要の主相からなる
合金粉末が97%以上では焼結時の液相の発現が充分でな
いためである。
Preferred embodiments in the present invention, the mixing ratio of the intermetallic compound powder by direct reduction diffusion process and an alloy powder consisting of the required main phase by dissolution and powdering method, 60 to 97: and 40-3 When the alloy powder consisting of the required main phase is 60% or less and the intermetallic compound powder is 40% or more, it takes time to uniformly diffuse each element when manufacturing a magnet, and the amount of the intermetallic compound powder is 3% This is because the liquid phase during sintering is not sufficiently developed when the alloy powder comprising the required main phase is 97% or more.

【0017】希土類元素R この発明に用いる希土類元素Rは、Yを包含し軽希土類及
び重希土類を包含する希土類元素であり、これらのうち
少なくとも1種、好ましくはNd、Pr等の軽希土類を主体
として、あるいはNd、Pr等との混合物を用いる。すなわ
ち、Rとしては、Nd,Pr,La,Ce,Tb,Dy,Ho,Er,Eu,Sm,Gd,P
m,Tm,Yb,Lu,Yを用いることができる。このRは純希土類
元素でなくてもよく、工業上入手可能な範囲で製造上不
可避な不純物を含有するものでも差支えない。
Rare earth element R The rare earth element R used in the present invention is a rare earth element including Y and including light rare earths and heavy rare earths, and at least one of them, preferably a light rare earth such as Nd or Pr. Or a mixture with Nd, Pr, or the like. That is, as R, Nd, Pr, La, Ce, Tb, Dy, Ho, Er, Eu, Sm, Gd, P
m, Tm, Yb, Lu, Y can be used. This R may not be a pure rare earth element, and may contain impurities that are unavoidable in production as far as it is industrially available.

【0018】限定理由 このR2Fe14B主相からなる合金粉末を得るには、Rが11原
子%未満では合金溶製時に晶出するα-Fe相が増加し、13
原子%を超えると、Rリッチ相が増加し、主相とRリッチ
相を均一に分散させることが困難なため、Rは11原子%〜
13原子%とする。また、Bは、4原子%未満では、高い保磁
力(iHc)が得られず、12原子%を超えると、残留磁束密度
(Br)が低下するため、すぐれた永久磁石が得られないた
め、Bは4原子%〜12原子%とする。さらに、残部はFe及び
不可避的不純物からなり、Feは75原子%〜85原子%の範囲
が好ましい、Feは75原子%未満では相対的に希土類元素
がリッチとなり、Rリッチ相が増加し、85原子%を超える
と相対的に希土類元素が少なくなり、残留Fe部が増加し
不均一な合金粉末となる。主相系合金粉末中のCoは、R2
Fe14B主相中のFeと置換されて保磁力を低下させるた
め、Coは10原子%以下とする。ただし、上述のCoでFeの
一部を置換した場合、Feは62原子%〜85原子%の範囲であ
る。溶解・粉化法にて作成するRリッチ相の少ないR2Fe
14B主相からなる合金粉末は、含有酸素量の低減および
組織の均一性からも、Rリッチ相が全くないことが望ま
しいが、全体の4wt%以下であれば、含有酸素量の低減を
大きく損なうことがない。
Reason for limitation In order to obtain an alloy powder composed of the main phase of R 2 Fe 14 B, if R is less than 11 atomic%, the α-Fe phase crystallized during melting of the alloy increases, and
If the content exceeds atomic%, the R-rich phase increases, and it is difficult to uniformly disperse the main phase and the R-rich phase.
13 atomic%. When B is less than 4 atomic%, a high coercive force (iHc) cannot be obtained.
(Br) is reduced, so that an excellent permanent magnet cannot be obtained. Therefore, B is set to 4 atomic% to 12 atomic%. Further, the balance is composed of Fe and unavoidable impurities, Fe is preferably in the range of 75 atomic% to 85 atomic% .If Fe is less than 75 atomic%, the rare earth element becomes relatively rich, the R-rich phase increases, and 85 If it exceeds atomic%, the rare earth element becomes relatively small, the residual Fe portion increases, and a non-uniform alloy powder is obtained. Co in the main phase alloy powder is R 2
Substituted with Fe in the Fe 14 B main phase to lower the coercive force, Co is 10 atomic% or less. However, when a part of Fe is substituted by Co as described above, Fe is in the range of 62 atomic% to 85 atomic%. R 2 Fe with less R-rich phase created by dissolution / pulverization method
It is desirable that the alloy powder composed of the 14B main phase has no R-rich phase at all from the viewpoint of the reduction of the oxygen content and the uniformity of the structure.However, if the content is 4 wt% or less, the reduction of the oxygen content is greatly increased. There is no loss.

【0019】直接還元拡散法によりR3Co相を含むCo又は
FeとRとの金属間化合物相(但しCoの1部あるいは大部分
をFeにて置換できる)からなる金属間化合物粉末、すな
わちRリッチな合金粉末は、R3Co相あるいはR3Co相のCo
の一部Feで置換された相とからなり、コア部が、RCo5
R2Co7、RCo3、RCo2、R2Co3、R2Fe17、RFe2、Nd2Co17、N
d5Co19、Dy6Fe2、DyFe等、及び前記金属間化合物相とR2
(FeCo)14B、R1.11(FeCo)4B4等のいずれかからなる合金
粉末である。Rリッチな合金粉末の組成は、前述の如
く、目的組成の希土類元素の種類とその量に応じて、金
属間化合物の含有希土類元素比率を変化させる。しか
し、Rが13原子未満では、主相系原料と配合して磁石を
製造する際に、焼結時の液相の発現が十分でなく、また
45原子%を超えると含有酸素量の増加を招き好ましくな
い。また、Coは、Rリッチな金属間化合物粉末におい
て、1原子%以上必要で好ましくは3〜20原子%であり、残
部はFeで置換できる。さらに、Bは12原子%を超えるとR2
(FeCo)14B相以外にB-rich相やFe-B化合物等が余剰に存
在することとなるので好ましくない。
[0019] Co or a more R 3 Co phase in direct reduction diffusion process
An intermetallic compound powder consisting of an intermetallic compound phase of Fe and R (however, a part or most of Co can be replaced by Fe), that is, an R-rich alloy powder is an R 3 Co phase or an R 3 Co phase. Co
And the core part is RCo 5 ,
R 2 Co 7, RCo 3, RCo 2, R 2 Co 3, R 2 Fe 17, RFe 2, Nd 2 Co 17, N
d 5 Co 19 , Dy 6 Fe 2 , DyFe, etc., and the intermetallic compound phase and R 2
It is an alloy powder composed of any one of (FeCo) 14 B, R 1.11 (FeCo) 4 B 4 and the like. As described above, the composition of the R-rich alloy powder changes the ratio of the rare earth element contained in the intermetallic compound according to the type and amount of the rare earth element of the target composition. However, if R is less than 13 atoms, the liquid phase during sintering is not sufficiently developed during the production of a magnet by mixing with the main phase raw material, and
If it exceeds 45 atomic%, the content of oxygen is increased, which is not preferable. Further, Co is necessary in an R-rich intermetallic compound powder in an amount of 1 atomic% or more, preferably 3 to 20 atomic%, and the remainder can be replaced by Fe. Further, when B exceeds 12 atomic%, R 2
(FeCo) It is not preferable because a B-rich phase, a Fe-B compound, and the like are present in excess in addition to the 14 B phase.

【0020】合金粉末の製造方法 殆どがR2Fe14B相からなる合金粉末を溶解・粉化法にて
得るには、アーク溶解、高周波溶解等によりCo、Fe、B
並びにRなどの金属またはそれらの合金を、目的組成と
なるように溶解製造したのち、粉砕することにより2〜2
00μmの平均粒度の粉末にする。なお、粉砕方法には水
素含有崩壊方法を用いることもでき、また直接粉末を得
るためにアトマイズ法を用いることができる。さらに溶
解製造した合金塊を溶体化処理することもできる。
Manufacturing method of alloy powder In order to obtain an alloy powder consisting mostly of the R 2 Fe 14 B phase by melting and pulverizing, Co, Fe , B
R and other metals or their alloys are melt-produced to achieve the desired composition, and then pulverized for 2 to 2
Make a powder with an average particle size of 00 μm. In addition, a hydrogen-containing disintegration method can be used as a pulverizing method, and an atomizing method can be used to directly obtain a powder. Further, a solution treatment can be performed on the alloy mass produced by melting.

【0021】Rリッチな合金粉末を直接還元拡散法にて
得るには、鉄粉、コバルト粉、フェロボロン粉、希土類
酸化物粉等からなる少なくとも1種の金属粉及び/または
酸化物粉からなる原料粉を目的組成の希土類元素種類と
その量に応じた含有希土類元素比率となるように選定す
る。さらに、上記原料粉に、金属CaあるいはCaH2を上記
希土類酸化物粉の還元に要する化学量論的必要量の1.1
〜4.0倍(重量比)混合し、不活性ガス雰囲気中で900℃〜
1200℃に加熱し、得られた反応生成物を水中に投入して
反応副生成物を除去することにより、粗粉砕が不要な10
〜200μmの平均粒度を有する粉末が得られる。
In order to obtain an R-rich alloy powder by the direct reduction diffusion method, at least one kind of metal powder and / or oxide powder composed of iron powder, cobalt powder, ferroboron powder, rare earth oxide powder and the like is used. The powder is selected so as to have a rare earth element content ratio corresponding to the rare earth element type and the amount of the target composition. Further, metal Ca or CaH 2 is added to the raw material powder at a stoichiometric requirement of 1.1 to 1.1 for the reduction of the rare earth oxide powder.
~ 4.0 times (weight ratio) mixed, 900 ° C in an inert gas atmosphere
By heating to 1200 ° C and throwing the obtained reaction product into water to remove reaction by-products, coarse pulverization is unnecessary.
A powder having an average particle size of 200200 μm is obtained.

【0022】合金粉末の配合 溶解・粉化法による所要主相からなる合金粉末と直接還
元拡散法による金属間化合物粉末を、60〜97:40〜3の比
率で配合し、磁石特性に応じた複数種組成の合金粉末を
得ることができる。この発明によるR-Fe-B系永久磁石用
原料粉末は、含有酸素量が2000ppm以下と極めて良好な
特性が得られる。得られる粉末をそのまま用いる際に、
合金粉末の粒度が大きすぎると永久磁石の磁気特性、と
りわけ高い保磁力が得られず、また、平均粒度が1μm未
満では、永久磁石の作製工程、すなわち、プレス成形、
焼結、時効処理工程における酸化が著しく、すぐれた磁
気特性が得られないため、1〜80μmの平均粒度が好まし
く、さらに、すぐれた磁気特性を得るには、平均粒度2
〜10μmの合金粉末が望ましい。
[0022] The intermetallic compound powder by alloy powder and a direct reduction diffusion process consisting of the required main phase by blending dissolution and powdering method of the alloy powder, 60 to 97: blended at a ratio of 40 to 3, depending on the magnet properties Alloy powders having a plurality of different compositions can be obtained. The R-Fe-B raw material powder for R-Fe-B permanent magnet according to the present invention has an excellent oxygen-containing content of 2000 ppm or less, exhibiting excellent properties. When using the obtained powder as it is,
If the particle size of the alloy powder is too large, the magnetic properties of the permanent magnet, especially high coercive force, cannot be obtained, and if the average particle size is less than 1 μm, the process of producing the permanent magnet, namely, press molding,
The average particle size of 1 to 80 μm is preferable because oxidization in the sintering and aging processes is remarkable and excellent magnetic characteristics cannot be obtained.In order to obtain excellent magnetic characteristics, the average particle size is 2 μm.
An alloy powder of 1010 μm is desirable.

【0023】また、得られる合金粉末を用いて、高い残
留磁束密度と高い保磁力を共に有するすぐれたR-Fe-B系
永久磁石を得るためには、配合した原料粉末は、R12原
子%〜25原子%、B4原子%〜10原子%、Co0.1原子%〜10原子
%、Fe68原子%〜80原子%の組成が好ましい。さらに、配
合したR2Fe14B相を主相とする合金粉末および/またはR3
Co相を含むCo又はFeとRとの金属間化合物相及びR2(FeC
o)14B相等からなる金属間化合物粉末に、 Cu3.5原子%以下、S2.5原子%以下、 Ti4.5原子%以下、Si15原子%以下、 V9.5原子%以下、Nb12.5原子%以下、 Ta10.5原子%以下、Cr8.5原子%以下、 Mo9.5原子%以下、W9.5原子%以下、 Mn3.5原子%以下、Al9.5原子%以下、 Sb2.5原子%以下、Ge7原子%以下、 Sn3.5原子%以下、Zr5.5原子%以下、 Hf5.5原子%以下、Ca8.5原子%以下、 Mg8.5原子%以下、Sr7.0原子%以下、 Ba7.0原子%以下、Be7.0原子%以下、 のうち少なくとも1種を添加含有させることにより、得
られる永久磁石の高保磁力化、高耐食性化、温度特性の
改善が可能になる。
Further, in order to obtain an excellent R-Fe-B permanent magnet having both a high residual magnetic flux density and a high coercive force by using the obtained alloy powder, the compounded raw material powder is required to have R12 atomic% or less. 25 atom%, B4 atom% ~ 10 atom%, Co0.1 atom% ~ 10 atom
%, A composition of 68 atomic% to 80 atomic% of Fe is preferable. Further, an alloy powder having a blended R 2 Fe 14 B phase as a main phase and / or R 3
An intermetallic compound phase of Co or Fe and R including a Co phase and R 2 (FeC
o) In an intermetallic compound powder composed of 14 B phase etc., Cu 3.5 atomic% or less, S2.5 atomic% or less, Ti 4.5 atomic% or less, Si 15 atomic% or less, V9.5 atomic% or less, Nb 12.5 atomic % At most, Ta10.5 at% or less, Cr8.5 at% or less, Mo9.5 at% or less, W9.5 at% or less, Mn3.5 at% or less, Al9.5 at% or less, Sb2.5 at% Below, Ge7 atomic% or less, Sn3.5 atomic% or less, Zr5.5 atomic% or less, Hf5.5 atomic% or less, Ca8.5 atomic% or less, Mg8.5 atomic% or less, Sr7.0 atomic% or less, Ba7 By adding and containing at least one of 0.0 atomic% or less and Be 7.0 atomic% or less, it becomes possible to increase the coercive force, increase the corrosion resistance, and improve the temperature characteristics of the obtained permanent magnet.

【0024】この発明による合金粉末を用いて製造した
永久磁石の組成が、R11原子%〜25原子%、B4原子%〜10原
子%、Co30原子%以下、Fe66原子%〜82原子%の場合、得ら
れる磁気異方性永久磁石は、保磁力iHC≧5kOe、(BH)max
≧20MGOeの磁気特性を示し、さらに、残留磁束密度の温
度係数が0.1%/℃以下となり、すぐれた特性が得られ
る。また、永久磁石組成のRの主成分がその50%以上を軽
希土類金属が占める場合で、R12原子%〜20原子%、B4原
子%〜10原子%、Fe66原子%〜82原子%、Co20原子%以下を
含有するとき最もすぐれた磁気特性を示し、特に軽希土
類金属がNd、Pr、Dyの場合には、(BH)maxはその最大値
が40MGOe以上に達する。
When the composition of the permanent magnet produced by using the alloy powder according to the present invention is R11 atomic% to 25 atomic%, B4 atomic% to 10 atomic%, Co 30 atomic% or less, Fe 66 atomic% to 82 atomic%, The obtained magnetic anisotropic permanent magnet has a coercive force i H C ≧ 5 kOe, (BH) max
It shows magnetic characteristics of ≧ 20 MGOe, and the temperature coefficient of residual magnetic flux density is 0.1% / ° C. or less, and excellent characteristics are obtained. In the case where the main component of R in the permanent magnet composition occupies 50% or more of the light rare earth metal, R12 atom% to 20 atom%, B4 atom% to 10 atom%, Fe66 atom% to 82 atom%, Co20 atom %, The most excellent magnetic properties are exhibited. Particularly, when the light rare earth metal is Nd, Pr, or Dy, the maximum value of (BH) max reaches 40 MGOe or more.

【0025】[0025]

【実施例】実施例1 主相系の溶解・粉化法による原料は、高純度のNd、Dy、
B、Co、Fe等を使用してアルゴン雰囲気中で高周波溶解
し、得られた合金塊をジョークラッシャーなどにより粗
粉砕して平均粒径約15μmの合金粉末にした。得られた
粉末は、Nd9.5原子%、Pr0.1原子%、Dy2.3原子%、B5.9原
子%、Co1.0原子%、残部Feからなるもので、含有酸素量
は850ppmであった。
EXAMPLES Example 1 Raw materials obtained by the dissolution / pulverization method of the main phase system were high- purity Nd, Dy,
B, Co, Fe, etc. were melted by high frequency in an argon atmosphere, and the obtained alloy lump was roughly pulverized by a jaw crusher or the like to obtain an alloy powder having an average particle size of about 15 μm. The obtained powder was composed of 9.5 atomic% of Nd, 0.1 atomic% of Pr, 2.3 atomic% of Dy, 5.9 atomic% of B, 1.0 atomic% of Co, and the balance of Fe, with an oxygen content of 850 ppm. Was.

【0026】Rリッチな金属間化合物粉末の原料は、直
接還元拡散法によりNd2O3、Dy2O3等の希土類酸化物と、
Fe-B粉、Co粉、Fe粉を出発原料に用いて所要割合に配合
し、これに金属Ca、無水CaCl2の所定量を混合し、ステ
ンレス容器内に装入し、Ar気流中にて1000℃×3時間の
条件にてCa還元、拡散を行った後、冷却、水洗、水置換
後、真空中で加熱乾燥してNd25.2原子%、Pr1.2原子%、D
y0.5原子%、B10原子%、Co7.7原子%、残部Feからなる合
金粉末を得た。
The raw material of the R-rich intermetallic compound powder is obtained by a direct reduction diffusion method using rare earth oxides such as Nd 2 O 3 and Dy 2 O 3 ;
Fe-B powder, Co powder, using Fe powder as the starting material mixed in the required ratio, this metal Ca, a mixture of a predetermined amount of anhydrous CaCl 2, was charged into the stainless steel container, in an Ar gas stream After reducing and diffusing Ca under the condition of 1000 ° C × 3 hours, cooling, washing with water, replacing with water, heating and drying in vacuum, Nd 25.2 atomic%, Pr 1.2 atomic%, D
An alloy powder composed of 0.5 atomic% of y, 10 atomic% of B, 7.7 atomic% of Co, and the balance Fe was obtained.

【0027】EPMA等の観察では、Nd3Co相(Coの一部をFe
で置換)と主相であるR2Fe17相(Feの一部がCoで置換)及
びR2(FeCo)14B相等の金属間化合物が観察され、含有酸
素量は1000ppmであった。
In the observation of EPMA and the like, the Nd 3 Co phase (a part of Co
) And intermetallic compounds such as the main phase R 2 Fe 17 phase (a part of Fe was substituted by Co) and R 2 (FeCo) 14 B phase were observed, and the oxygen content was 1000 ppm.

【0028】この両者の原料粉末を用いて、主相系合金
粉末80%、Rリッチな金属間化合物粉末20%の割合で配合
混合し、Nd12.2原子%、Pr0.2原子%、Dy2.0原子%、B6.6
原子%、Co2.1原子%、残部Feからなる配合原料粉末を磁
石の出発原料とした。この原料粉末をジェットミル等の
粉砕機で約3μmまで微粉砕し、得られた微粉末を金型に
装入し、約10kOeの磁界中で配向し、磁界に直角方向に
約1.5ton/cm 2 の圧力で成型し、15mm×20mm×8mmの成型
体を作成した。この成型体を1090℃×3 時間のAr雰囲気
中条件で焼結し、530℃×2時間の時効処理を行った。
られた試験片の磁石特性は、Br=12.2kG、(BH)max=34.9M
GOe、iHc=22.5kOeであり、含有酸素量は4600ppmであっ
た。
Using these two raw material powders, 80% of the main phase alloy powder and 20% of the R-rich intermetallic compound powder were blended and mixed, and 12.2 atomic% of Nd, 0.2 atomic% of Pr, and 0.2% of Dy2. 0 atomic%, B6.6
A raw material powder composed of atomic%, 2.1 atomic% of Co, and the balance Fe was used as a starting material for the magnet. This raw material powder is
Finely pulverized to about 3μm with a pulverizer, and the obtained fine powder is molded
Charge and orient in a magnetic field of about 10 kOe, perpendicular to the magnetic field
Molded at a pressure of about 1.5 ton / cm 2, molding of 15 mm × 20 mm × 8 mm
Created body. Argon atmosphere of 1090 ℃ × 3 hours
It was sintered under medium conditions and subjected to aging treatment at 530 ° C. for 2 hours. The magnet properties of the obtained test piece were Br = 12.2 kG, (BH) max = 34.9 M
GOe, iHc = 22.5 kOe, and the oxygen content was 4600 ppm.

【0029】比較例1 高純度のNd金属、Dy金属、Co金属、B、Feを高周波溶解
し、Nd12.2原子%、Pr0.2原子%、Dy2.0原子%、B6.6原子
%、Co2.1原子%、残部Feからなる合金塊を作製した。EPM
A等の観察では、Nd3Co相とNdリッチ相(Nd=約95%)が偏在
していることが観察された。この出発原料粉末を用い、
実施例1と同工程で磁石を作成して得られた試験片の磁
石特性は、Br=11.8kG、(BH)max=33.2MGOe、iHc=22kOeで
あり、含有酸素量は5400ppmであった。
COMPARATIVE EXAMPLE 1 High-purity Nd metal, Dy metal, Co metal, B and Fe were melted by high frequency, and Nd was 12.2 atomic%, Pr 0.2 atomic%, Dy 2.0 atomic%, and B6.6 atomic.
%, Co atomic% of 2.1 and the balance of Fe were prepared. EPM
In the observation of A and the like, it was observed that the Nd 3 Co phase and the Nd-rich phase (Nd = about 95%) were unevenly distributed. Using this starting material powder,
The magnet properties of a test piece obtained by preparing a magnet in the same process as in Example 1 were Br = 11.8 kG, (BH) max = 33.2 MGOe, iHc = 22 kOe, and the oxygen content was 5400 ppm.

【0030】[0030]

【発明の効果】この発明は、溶解・粉化法にてRリッチ
相の少ないR2Fe14B相に近い組成で合金粉末を作成し、
また直接還元拡散法により、Rリッチな金属間化合物粉
末をCo元素の添加によって合金粒子がR3Co相あるいは前
記R3Co相のCoの一部をFeで置換されたR2(FeCo)17相や及
びR2(FeCo)14B相等他の金属間化合物相から成る金属間
化合物合金粉末を作成し、両者を混合することにより、
含有酸素量の少なく高磁石特性が得られる所定の磁石組
成合金粉末を容易に得ることができる。また、この発明
は、要求される数種の磁石特性に応じて希土類元素種と
その量を変化させ、複数種の組成からなるR-Fe-B系永久
磁石用原料合金粉末を製造するに際し、例えば、所要組
成の一種類の主相系合金粉末と、目的組成の希土類元素
種とその量に応じて、金属間化合物の含有希土類元素比
率を変化させて作製した複数種の金属間化合物粉末を配
合することにより、要求される磁石特性に応じた複数種
組成の合金粉末を容易に得ることができる。
According to the present invention, an alloy powder having a composition close to the R 2 Fe 14 B phase having a small R-rich phase is prepared by a melting and pulverizing method.
The more direct reduction diffusion method, the alloy particles by the addition of R-rich intermetallic compound powder of Co element R 3 Co phase or the R 3 Co phase R 2 a portion substituted with Fe in the Co (FeCo) By preparing an intermetallic compound alloy powder consisting of 17 phases and other intermetallic compound phases such as R 2 (FeCo) 14 B phase, by mixing both,
It is possible to easily obtain a predetermined magnet composition alloy powder having a low oxygen content and high magnetic properties. Further, the present invention is to change the rare earth element species and the amount thereof according to the required several kinds of magnet properties, when producing a raw material alloy powder for R-Fe-B-based permanent magnet composed of a plurality of kinds of compositions, For example, one kind of main phase alloy powder having a required composition, and a plurality of kinds of intermetallic compound powders produced by changing the rare earth element content ratio of the intermetallic compound according to the rare earth element species and the amount of the target composition. By blending, it is possible to easily obtain an alloy powder having a plurality of compositions according to the required magnet properties.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 303 B22F 1/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00 303 B22F 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R(但しRはYを含む希土類元素のうち少な
くとも1種)11原子%〜13原子%、B4原子%〜12原子%、残部
Fe及び不可避的不純物からなり、溶解・粉化法によるR2
Fe14B相を主相とする合金粉末60wt%〜97wt%と、R(但しR
はYを含む希土類元素のうち少なくとも1種)13原子%〜45
原子%、B12原子%以下、残部Co(但しCoの1部あるいは大
部分をFeにて置換できる)及び不可避的不純物からな
り、直接還元拡散法により、R3Co相を含むCo又はFeとR
との金属間化合物相(但しCoの1部あるいは大部分をFeに
て置換できる)及びR2(FeCo)14B相等からなる金属間化合
物粉末40wt%〜3wt%とを、R-Fe-B系永久磁石の所要組成
に配合したことを特徴とするR-Fe-B系永久磁石用原料粉
末の製造方法。
1. R (where R is at least one of rare earth elements including Y) 11 at% to 13 at%, B 4 at% to 12 at%, balance
R 2 composed of Fe and unavoidable impurities and dissolved and powdered
An alloy powder having a Fe 14 B phase as a main phase is 60 wt% to 97 wt%, and R (however, R
Is at least one of the rare earth elements containing Y) 13 atomic% to 45 atomic%
Atomic%, B12 atomic% or less, the balance consists of Co (however, part or most of Co can be replaced by Fe) and unavoidable impurities, and by direct reduction diffusion method, Co or Fe and R containing R 3 Co phase
And an intermetallic compound phase comprising 40 wt% to 3 wt% of an intermetallic compound phase (however, part or most of Co can be replaced by Fe) and R 2 (FeCo) 14 B phase, and R-Fe-B A method for producing a raw material powder for an R-Fe-B-based permanent magnet, wherein the raw material powder is blended with a required composition of the R-Fe-B-based permanent magnet.
【請求項2】 R(但しRはYを含む希土類元素のうち少な
くとも1種)11原子%〜13原子%、B4原子%〜12原子%と、Co
10原子%以下、残部Fe及び不可避的不純物からなり、溶
解・粉化法によR2 Fe 14B相又はR2(FeCo)14B相を主相と
する合金粉末60wt%〜97wt%と、R(但しRはYを含む希土類
元素のうち少なくとも1種)13原子%〜45原子%、B12原子%
以下、残部Co(但しCoの1部あるいは大部分をFeにて置換
できる)及び不可避的不純物からなり、直接還元拡散法
により、R3Co相を含むCo又はFeとRとの金属間化合物相
(但しCoの1部あるいは大部分をFeにて置換できる)及びR
2(FeCo)14B相等からなる金属間化合物粉末40wt%〜3wt%
とを、R-Fe-B系永久磁石の所要組成に配合したことを特
徴とするR-Fe-B系永久磁石用原料粉末の製造方法。
2. R (where R is at least one of the rare earth elements containing Y) 11 at% to 13 at%, B 4 at% to 12 at%, and Co
10 atomic% or less, and the balance Fe and unavoidable impurities, that by the dissolution and powdering method R 2 Fe 14 B phase or R 2 (Fe Co) 14 B phase alloy powder 60 wt% of the main phase of ~97Wt% And R (where R is at least one of the rare earth elements including Y) 13 atom% to 45 atom%, B 12 atom%
Hereinafter, the balance consists of Co (however, a part or most of Co can be replaced by Fe) and unavoidable impurities, and the intermetallic compound phase of Co or Fe and R including R 3 Co phase by direct reduction diffusion method.
(However, part or most of Co can be replaced with Fe) and R
2 (FeCo) 14 B phase intermetallic compound powder 40 wt% to 3 wt%
And a compound having the required composition of R-Fe-B-based permanent magnets.
JP4056314A 1992-02-05 1992-02-05 Method for producing raw material powder for R-Fe-B-based permanent magnet Expired - Lifetime JP3020717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4056314A JP3020717B2 (en) 1992-02-05 1992-02-05 Method for producing raw material powder for R-Fe-B-based permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4056314A JP3020717B2 (en) 1992-02-05 1992-02-05 Method for producing raw material powder for R-Fe-B-based permanent magnet

Publications (2)

Publication Number Publication Date
JPH05214495A JPH05214495A (en) 1993-08-24
JP3020717B2 true JP3020717B2 (en) 2000-03-15

Family

ID=13023699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4056314A Expired - Lifetime JP3020717B2 (en) 1992-02-05 1992-02-05 Method for producing raw material powder for R-Fe-B-based permanent magnet

Country Status (1)

Country Link
JP (1) JP3020717B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558230B2 (en) 2000-06-23 2003-05-06 Sumitomo Special Metals Co., Ltd. Method for polishing and chamfering rare earth alloy, and method and machine for sorting out ball media

Also Published As

Publication number Publication date
JPH05214495A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
JP2782024B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0340082B2 (en)
JP2006219723A (en) R-Fe-B-BASED RARE EARTH PERMANENT MAGNET
JP3020717B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0372124B2 (en)
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP2986598B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0461042B2 (en)
JP2789269B2 (en) Raw material powder for R-Fe-B permanent magnet
JP2886378B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0524975B2 (en)
JP3009804B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3299000B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3151088B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JPH066727B2 (en) Method for producing raw material powder for permanent magnet material
JPH0526858B2 (en)
JP2005281795A (en) R-T-B BASED SINTERED MAGNET ALLOY CONTAINING Dy AND Tb AND ITS PRODUCTION METHOD
JPH0586441B2 (en)
JPH0735521B2 (en) Raw material powder for R-Fe-B permanent magnets

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13