JP3009804B2 - Method for producing raw material powder for R-Fe-B-based permanent magnet - Google Patents

Method for producing raw material powder for R-Fe-B-based permanent magnet

Info

Publication number
JP3009804B2
JP3009804B2 JP5062916A JP6291693A JP3009804B2 JP 3009804 B2 JP3009804 B2 JP 3009804B2 JP 5062916 A JP5062916 A JP 5062916A JP 6291693 A JP6291693 A JP 6291693A JP 3009804 B2 JP3009804 B2 JP 3009804B2
Authority
JP
Japan
Prior art keywords
phase
atomic
alloy powder
powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5062916A
Other languages
Japanese (ja)
Other versions
JPH06251916A (en
Inventor
裕治 金子
尚幸 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP5062916A priority Critical patent/JP3009804B2/en
Publication of JPH06251916A publication Critical patent/JPH06251916A/en
Application granted granted Critical
Publication of JP3009804B2 publication Critical patent/JP3009804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、R(RはYを含む希土類
元素のうち少なくとも1種)、Fe、Bを主成分とするR-Fe-
B系永久磁石の製造に用いる原料粉末の製造方法に係
り、溶解粉砕法により得られたR2Fe14B相を主相とする
主相系合金粉末に直接還元拡散法により得られたR2Fe17
相を含む調整用合金粉末を添加配合して、磁石特性を劣
化させるBリッチ相やNdリッチ相の量を低減したR-Fe-B
系永久磁石用原料粉末の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an R-Fe-based alloy containing R (R is at least one of rare earth elements including Y), Fe and B as main components.
B system relates to a method of manufacturing a raw material powder used in the production of the permanent magnet, R 2 obtained by dissolving pulverization method Fe 14 B phase R 2 obtained by direct reduction diffusion process in the main phase alloy powder to main phase Fe 17
R-Fe-B with a reduced amount of B-rich and Nd-rich phases that degrade magnet properties
Relates to the production how raw material powder for the system permanent magnet.

【0002】[0002]

【従来の技術】今日、高性能永久磁石として代表的なR-
Fe-B系永久磁石(特開昭59-46008号)は、三元系正方晶化
合物の主相とRリッチ相を有する組織にて高磁石特性を
発現し、iHcが25kOe以上、(BH)maxが45MGOe以上と、従
来の高性能希土類コバルト磁石と比較しても、格段の高
性能を発揮する。また、用途に応じ、選定された種々の
磁石特性を発揮するよう、種々組成のR-Fe-B系永久磁石
が提案されている。
2. Description of the Related Art Today, a typical R-type high performance permanent magnet
Fe-B-based permanent magnet (JP-A-59-46008) exhibits high magnet properties in a structure having a main phase and an R-rich phase of a ternary tetragonal compound, iHc is 25 kOe or more, (BH) With a max of 45MGOe or more, it exhibits remarkably high performance even when compared with conventional high performance rare earth cobalt magnets. Further, R-Fe-B permanent magnets of various compositions have been proposed so as to exhibit various magnet properties selected according to the application.

【0003】上記種々の組成のR-Fe-B系焼結永久磁石を
製造するには、所要組成の磁石用の合金粉末を製造する
必要があり、電解により還元された希土類原料を用い
て、溶解して鋳型に鋳造し所要磁石組成の合金塊を作成
し、これを粉砕して所要粒度の合金粉末とする溶解粉砕
法(特開昭60-63304号、特開昭60-119701号)と、希土類
酸化物、Fe粉等を用い直接磁石組成合金粉を作成する直
接還元拡散法(特開昭59-219404号、特開昭60-77943号)
がある。
[0003] In order to produce R-Fe-B sintered permanent magnets having the above-mentioned various compositions, it is necessary to produce alloy powders for magnets having a required composition, using a rare earth material reduced by electrolysis. Melt and cast into a mold to create an alloy lump of the required magnet composition, pulverize and melt and pulverize to an alloy powder of the required particle size (JP-A-60-63304, JP-A-60-119701) and , Rare earth oxides, direct reduction diffusion method of preparing alloy composition powder directly using Fe powder etc. (JP 59-219404, JP 60-77943)
There is.

【0004】溶解粉砕法は、鋳造時にFe初晶が発生し易
くRリッチ相が大きく偏析するが、鋳塊の粗粉砕工程で
容易に酸化防止が可能な工程で粉砕ができるため、比較
的低含有酸素量の合金粉末が得られる。
In the dissolution pulverization method, primary Fe crystals are easily generated during casting, and the R-rich phase is largely segregated. However, since the ingot can be easily pulverized in the coarse pulverization step, oxidation can be prevented. An alloy powder having an oxygen content is obtained.

【0005】直接還元拡散法は、上記の溶解粉砕法と比
較して磁石用原料粉末を作成する時に溶解・粗粉砕等の
工程を省略することができることが利点であるが、R2Fe
14B主相の周囲にRリッチ相がとり囲んだ状態で作成さ
れ、また、Rリッチ相の大きさは前者と比較して小さく
良く分散されるため、製造時に酸化され易く含有酸素量
が多く、磁石組成によっては希土類元素が消耗されて磁
石特性のバラツキ等の発生原因となる問題がある。
[0005] direct reduction diffusion method, an advantage that it is possible to omit the step of melting and coarse grinding, etc. when creating the raw material powder for a magnet as compared with the dissolution pulverization method, R 2 Fe
14 The R-rich phase is created with the R-rich phase surrounding the B main phase.The size of the R-rich phase is small and well dispersed compared to the former, so it is easily oxidized during production and contains a large amount of oxygen. However, depending on the magnet composition, there is a problem that the rare earth element is consumed and causes a variation in magnet characteristics.

【0006】[0006]

【発明が解決しようとする課題】発明者は先に、R-Fe-B
系永久磁石の磁石特性を劣化させる合金粉末中の含有酸
素量の低減を目的に、直接還元拡散法にてRリッチ相の
少ないR2Fe14B相に近い組成で合金粉末を作成し、またR
リッチな合金粉末を、Co元素の添加によってR3Co相(但
しCoの部あるいは大部分をFeにて置換できる)を含むR
2(Fe,Co)17相等からなる金属間化合物粉末を作成し、両
者を混合したR-Fe-B系永久磁石用原料粉末を提案(特願
平2-229685号)した。
SUMMARY OF THE INVENTION The inventor has previously proposed R-Fe-B
In order to reduce the oxygen content in the alloy powder that degrades the magnet properties of the permanent magnet, an alloy powder with a composition close to the R 2 Fe 14 B phase with a small R-rich phase was created by the direct reduction diffusion method. R
R including rich alloy powder, R 3 Co phase by the addition of Co element (except the part or most of Co can be substituted by Fe)
2 (Fe, Co) An intermetallic compound powder composed of 17 phases and the like was prepared, and a raw material powder for R-Fe-B-based permanent magnet in which both were mixed was proposed (Japanese Patent Application No. 2-229685).

【0007】先に提案したR-Fe-B系永久磁石用原料粉末
は、合金粉末中及び得られた磁石の含有酸素量の低減に
は極めて有効であるが、磁石内には主相のR2Fe14B相の
ほかにBリッチ相及び粒界相としてRリッチ相が存在し、
これら各相の存在量を精密に制御することは極めて困難
であり、磁石特性がばらつく原因となっていた。
The raw material powder for R-Fe-B permanent magnets proposed above is extremely effective in reducing the oxygen content in the alloy powder and the obtained magnet, but the main phase R In addition to the 2 Fe 14 B phase, there is an R-rich phase as a B-rich phase and a grain boundary phase,
It is extremely difficult to precisely control the abundance of each of these phases, and this has caused variations in magnet properties.

【0008】この発明は、R-Fe-B系永久磁石特性の高性
能化を阻害する磁石構成相のBリッチ相及びRリッチ相を
できるだけ低減でき、かつ主相のR2Fe14B相を増加さ
せ、さらに合金粉末中の含有酸素量を低減でき、種々の
磁石特性に応じた組成の合金粉末を製造性よく容易に提
供できるR-Fe-B系永久磁石用原料粉末の製造方法の提供
を目的としている。
According to the present invention, the B-rich phase and the R-rich phase of the magnet constituting phase, which hinder high performance of the R-Fe-B-based permanent magnet characteristics, can be reduced as much as possible, and the main phase of the R 2 Fe 14 B phase is reduced. The present invention provides a method for producing a raw material powder for R-Fe-B-based permanent magnets, which can increase and further reduce the oxygen content in the alloy powder, and can easily provide an alloy powder having a composition according to various magnet properties with good productivity. It is an object.

【0009】[0009]

【課題を解決するための手段】一般に、R-Fe合金、例え
ばNd-Fe合金中、Nd2Fe17相はキュリー点が室温付近で、
C面内に容易磁化方向を有する金属間化合物であり、従
来、R-Fe-B系焼結永久磁石において、B量が6原子%より
少ない場合は、磁石内に例えばNd2Fe17相が生成して保
磁力が低下するとされてきた。しかし、発明者は種々検
討の結果、R2Fe14B相を主相とするR-Fe-B系合金粉末にR
2 Fe 17相、例えばNd2Fe17相を含むR-Fe系合金粉末を特定
量添加配合した原料粉末は、粒界相のNdリッチ相中のNd
とR-Fe系合金粉末中のNd2Fe17との共晶温度690℃付近に
おいて、例えば、 Nd+Nd2Fe17相←→液相 の反応が起
こることにより、この低融点の液相がR-Fe-B系合金粉末
の焼結を促進することを知見した。
In general, in an R-Fe alloy, for example, an Nd-Fe alloy, the Nd 2 Fe 17 phase has a Curie point near room temperature,
An intermetallic compound having an easy magnetization direction in the C plane.Conventionally, in an R-Fe-B based sintered permanent magnet, when the B content is less than 6 atomic%, for example, a Nd 2 Fe 17 phase is contained in the magnet. It has been said that the coercive force is reduced by generation. However, as a result of various studies, the inventor found that R-Fe-B-based alloy powder having R 2 Fe 14 B
2 Fe 17 phase, for example, a raw material powder in which a specific amount of R-Fe alloy powder containing Nd 2 Fe 17 phase is added and blended, Nd in the Nd-rich phase of the grain boundary phase
And the eutectic temperature 690 around ℃ the Nd 2 Fe 17 of R-Fe-based alloy powder, for example, by reaction of Nd + Nd 2 Fe 17 phase ← → the liquid phase takes place, the liquid phase of the low melting point It has been found that sintering of R-Fe-B alloy powder is promoted.

【0010】Nd2Fe17相を含む調整用合金粉末とR2Fe14B
相を主相とするR-Fe-B系合金粉末は、焼結中に下記反応
を起こし、主相であるR2Fe14B相を増加させる作用があ
る。13/17Nd2Fe17+1/4Nd1.1Fe4B4+133/6800Nd→Nd2Fe14
Bすなわち、発明者は上記の反応式において、調整用合
金粉末中のNd2Fe17相と主相系R-Fe-B系合金粉末中のBリ
ッチ相及びNdリッチ相との反応により、新たにNd2Fe14B
相が生成されることになるので、従来法のR2Fe14B相を
主相とする合金粉末のみで得られた永久磁石では磁石特
性を劣化させる要因の一つであるBリッチ相及びNdリッ
チ相の量を低減できることを知見した。
Preparation alloy powder containing Nd 2 Fe 17 phase and R 2 Fe 14 B
The R-Fe-B-based alloy powder having a main phase has the following reaction during sintering, and has an effect of increasing the R 2 Fe 14 B phase as a main phase. 13 / 17Nd 2 Fe 17 + 1 / 4Nd 1.1 Fe 4 B 4 + 133 / 6800Nd → Nd 2 Fe 14
B In other words, in the above reaction formula, the inventor newly obtained the reaction between the Nd 2 Fe 17 phase in the alloy powder for adjustment and the B-rich phase and the Nd-rich phase in the main phase R-Fe-B-based alloy powder. Nd 2 Fe 14 B
Since a phase is generated, the B-rich phase and Nd, which are one of the factors deteriorating the magnet properties, in the permanent magnet obtained only with the alloy powder having the main phase of the R 2 Fe 14 B phase according to the conventional method. It has been found that the amount of the rich phase can be reduced.

【0011】さらに、発明者はR-Fe-B系磁石を粉末冶金
的手法で製造する際、粉砕しやすい原料合金粉末を得る
ことは前記磁石の製造上大きな利点になることより、R-
Fe-B系永久磁石用原料粉末の製造方法について種々検討
した結果、R2Fe14B相を主相とする主相系合金粉末を溶
解粉砕法にて製造し、また、R 2 Fe 17 相を含む調整用合金
粉末を直接還元拡散法にて製造し、得られ主た主相系合
金粉末と調整用合金粉末を所要の配合量にて混合してな
るR-Fe-B系永久磁石用原料粉末を知見した。
[0011] Furthermore, when producing the R-Fe-B-based magnet by powder metallurgy, obtaining the raw material alloy powder that is easily crushed is a great advantage in the production of the magnet.
As a result of various studies on the production method of the raw material powder for the Fe-B permanent magnet, a main phase alloy powder having a main phase of R 2 Fe 14 B phase was produced by a melting and pulverization method, and an R 2 Fe 17 phase was produced. For R-Fe-B permanent magnets, which are prepared by directly reducing the diffusion alloy method containing the adjustment alloy powder containing the main phase-based alloy powder and the adjustment alloy powder in the required amount. Raw material powder was found.

【0012】すなわち、この発明において、R2Fe14B相
を主相とする主相系合金粉末を溶解粉砕法にて得ること
は、鋳塊の粗粉砕工程で容易に酸化防止可能な工程で粉
砕できるため、比較的低含有酸素量の合金粉末が得ら
れ、かつ、R2Fe14B相の化学量論的組成よりもR及びB量
を過剰にすることにより、合金中に晶出するFe初晶の晶
出量を低減でき、その結果、極めて粉砕しやすい合金鋳
塊を得ることが可能である。また、この発明において
は、主相系合金粉末にR 2 Fe 17 相を含む調整用合金粉末を
所要量添加配合することにより、組成を調節できるた
め、主相系合金粉末の組成を上記のR2Fe14B相の化学量
論的組成よりもR及びB量を過剰に設定した合金塊のみか
ら作成した磁石の特性値より、はるかにすぐれた磁石特
性を有するR-Fe-B系永久磁石の製造が可能となる。一
方、前記調整用合金粉末を直接還元拡散法にて得る利点
は、一般にR-Fe-B系三元系合金粉末を直接還元拡散法に
て製造すると、Ndリッチ相が主相やBリッチ相を取り囲
んだ状態となり、Ndリッチ相は酸化あるいは水酸化しや
すく、得られた合金粉末の含有酸素量は増加し、また極
めて安定性の悪い合金原料粉末となるため、R-Fe-B系永
久磁石を製造する際は特別な雰囲気対策が必要となる
が、この発明においては調整用合金粉末のR2Fe17相は単
相として比較的安定な化合物であるため、直接還元拡散
法で製造しても、低含有酸素量の合金粉末が得られる。
しかも前記R2Fe17相を含む調整用合金粉末を溶解粉砕法
にて製造すると、鋳造条件によって、得られた合金塊に
α-Feや他のR-Fe化合物相が晶出するため、安定な原料
合金粉末とするためには、前記合金塊を熱処理して均質
化する必要があり、合金粉末の製造コストの点よりも直
接還元拡散法が有利である。
That is, in the present invention, obtaining the main phase alloy powder having the R 2 Fe 14 B phase as the main phase by the melting and pulverizing method is a step which can be easily prevented from being oxidized in the ingot rough pulverizing step. Since it can be pulverized, an alloy powder with a relatively low oxygen content is obtained, and crystallized in the alloy by making the R and B contents excess from the stoichiometric composition of the R 2 Fe 14 B phase It is possible to reduce the crystallization amount of Fe primary crystals, and as a result, it is possible to obtain an alloy ingot that is extremely easily crushed. Further, in the present invention, the composition can be adjusted by adding and mixing a required amount of the adjusting alloy powder containing the R 2 Fe 17 phase to the main phase alloy powder, so that the composition of the main phase alloy powder can be adjusted to the above-mentioned R. 2 R-Fe-B permanent magnets with magnet properties far superior to those of magnets made from only alloy lumps with R and B contents set to be excessively higher than the stoichiometric composition of the Fe 14 B phase Can be manufactured. On the other hand, the advantage of obtaining the adjusting alloy powder by the direct reduction diffusion method is generally that when the R-Fe-B ternary alloy powder is manufactured by the direct reduction diffusion method, the Nd-rich phase becomes the main phase or the B-rich phase. , The Nd-rich phase is easily oxidized or hydroxylated, the oxygen content of the obtained alloy powder increases, and the alloy raw material powder becomes extremely unstable, so that R-Fe-B permanent Special atmosphere measures are required when manufacturing magnets, but in the present invention, the R 2 Fe 17 phase of the alloy powder for adjustment is a relatively stable compound as a single phase, so it is manufactured by the direct reduction diffusion method. However, an alloy powder having a low oxygen content can be obtained.
Moreover, when the adjusting alloy powder containing the R 2 Fe 17 phase is produced by a melting and pulverization method, α-Fe and other R-Fe compound phases are crystallized in the obtained alloy mass depending on casting conditions, so that the alloy is stable. In order to obtain a raw material alloy powder, it is necessary to heat treat the alloy ingot and homogenize it, and the direct reduction diffusion method is more advantageous than the production cost of the alloy powder.

【0013】すなわち、この発明は、R(但しRはYを含む
希土類元素のうち少なくとも1種)12原子%〜20原子%、B6
原子%〜15原子%、残部Fe(但しFeの部をCo、Niの1種ま
たは2種にて置換できる)及び不可避的不純物からなり、
溶解粉砕法により得られたR2Fe14B相を主相とする合金
粉末に、R(但しRはYを含む希土類元素のうち少なくとも
1種)20原子%以下、残部Fe(但しFeの部をCo、Niの1種
または2種にて置換できる)及び不可避的不純物からな
り、直接還元拡散法により得られたR2Fe17相を含む調整
用合金粉末を混合粉末の60wt%以下添加配合したことを
特徴とするR-Fe-B系永久磁石用原料粉末の製造方法であ
る。
That is, the present invention relates to a method for producing a compound comprising R (where R is at least one of rare earth elements including Y) of 12 at% to 20 at%,
Atomic% to 15 atomic%, the (a part of provided that Fe Co, can be substituted by one or two of Ni) balance of Fe and unavoidable impurities,
In the alloy powder having a main phase of R 2 Fe 14 B phase obtained by the melting and pulverization method, R (where R is at least a rare earth element including Y)
One) 20 atomic% or less, a part of the remainder Fe (except Fe Co, can be substituted by one or two of Ni) and consists unavoidable impurities, R 2 Fe 17 obtained by direct reduction diffusion process A method for producing a raw material powder for an R-Fe-B-based permanent magnet, characterized in that an adjusting alloy powder containing a phase is added and blended in an amount of 60 wt % or less of the mixed powder .

【0014】この発明において、特定量のR、Fe、Bを有
するR2Fe14B相を主相とする合金粉末に添加配合するRが
20原子%以下のR2Fe17相を含むR-Fe系調整用合金粉末の
添加量を混合粉末の60wt%以下としたのは、60wt%を超え
ると異方性磁石を作製するために磁界中で成形した際
に、一軸異方性であるR2Fe14B相の量が少なくなり、配
向度が低下するため好ましくなく、Brの低下を招来する
ためである。より好ましい添加配合量は0.1〜40wt%であ
る。
In the present invention, R to be added and compounded to an alloy powder having a main phase of R 2 Fe 14 B having specific amounts of R, Fe, and B is
The addition amount of the R-Fe-based adjusting alloy powder containing the R 2 Fe 17 phase of 20 atomic% or less was set to 60 wt % or less of the mixed powder because if it exceeds 60 wt %, an anisotropic magnet is produced. This is because when formed in a magnetic field, the amount of the uniaxially anisotropic R 2 Fe 14 B phase decreases and the degree of orientation decreases, which is not preferable, and leads to a decrease in Br. A more preferable addition amount is 0.1 to 40 wt %.

【0015】この発明に用いる希土類元素Rは、Yを包含
し軽希土類及び重希土類を包含する希土類元素であり、
これらのうち少なくとも1種、好ましくはNd、Pr等の軽
希土類を主体として、あるいはNd、Pr等との混合物を用
いる。すなわち、Rとしては、Nd,Pr,La,Ce,Tb,Dy,Ho,E
r,Eu,Sm,Gd,Pm,Tm,Yb,Lu,Yを用いることができる。この
Rは純希土類元素でなくてもよく、工業上入手可能な範
囲で製造上不可避な不純物を含有するものでも差支えな
い。
The rare earth element R used in the present invention is a rare earth element including Y and including light rare earths and heavy rare earths,
At least one of these, preferably a light rare earth element such as Nd or Pr, or a mixture with Nd, Pr or the like is used. That is, as R, Nd, Pr, La, Ce, Tb, Dy, Ho, E
r, Eu, Sm, Gd, Pm, Tm, Yb, Lu, Y can be used. this
R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0016】このR2Fe14B相を主相とする合金粉末を得
るには、Rが12原子%未満では、R、Bの拡散しない残留鉄
部の増加となり、20原子%を超えるとRリッチ相が増加し
て粉砕時に含有酸素量が増えるため、Rは12原子%〜20原
子%とする。より好ましいR量は13原子%〜16原子%であ
る。また、Bは、6原子%未満では高い保磁力(iHc)が得ら
れず、15原子%を超えると残留磁束密度(Br)が低下する
ため、すぐれた永久磁石が得られないため、Bは6原子%
〜15原子%とする。より好ましいB量は6原子%〜10原子%
である。さらに、残部はFe及び不可避的不純物からな
り、Feは65原子%〜82原子%の範囲が好ましい。Feは65原
子%未満では相対的に希土類元素及びBがリッチとなりR
リッチ相、Bリッチ相が増加し、82原子%を超えると相対
的に希土類元素及びBが少なくなり、残留Fe部が増加し
不均一な合金粉末となるため好ましくない。より好まし
いFe量は74原子%〜81原子%である。主相系合金粉末中の
CoとNiの1種または2種は、R2Fe14B主相中のFeと置換さ
れて保磁力を低下させるため、Coは10原子%以下、Niは3
原子%以下とする。ただし、上述のCoまたはNiでFeの一
部を置換した場合、Feは55原子%〜72原子%の範囲であ
る。
In order to obtain an alloy powder having the R 2 Fe 14 B phase as a main phase, when R is less than 12 atomic%, the residual iron portion where R and B do not diffuse increases, and when R exceeds 20 atomic%, R increases. R is set to 12 at% to 20 at% because the rich phase increases and the oxygen content increases during grinding. A more preferred amount of R is 13 atomic% to 16 atomic%. B is less than 6 atomic%, a high coercive force (iHc) cannot be obtained, and if it exceeds 15 atomic%, the residual magnetic flux density (Br) decreases. 6 atom%
To 15 atomic%. More preferable B amount is 6 atomic% to 10 atomic%.
It is. Further, the balance consists of Fe and unavoidable impurities, and the content of Fe is preferably in the range of 65 atomic% to 82 atomic%. If Fe is less than 65 atomic%, the rare earth element and B become relatively rich and R
When the rich phase and the B-rich phase increase, and when the content exceeds 82 atomic%, the rare earth element and B relatively decrease, and the residual Fe portion increases, which is not preferable because the alloy powder becomes non-uniform. A more preferred amount of Fe is 74 atomic% to 81 atomic%. In main phase alloy powder
One or two of Co and Ni are substituted with Fe in the R 2 Fe 14 B main phase to reduce the coercive force, so that Co is 10 atomic% or less, Ni is 3 atomic% or less.
Atomic% or less. However, when a part of Fe is substituted by Co or Ni described above, the content of Fe is in the range of 55 to 72 atomic%.

【0017】R2Fe17相を含む調整用合金粉末を得るに
は、Rが20原子%を超えると合金粉末の作製時にRリッチ
な相が増加して酸化等の問題があり好ましくなく、Rの
好ましい量は5〜15原子%である。さらに、残部はFe及び
不可避的不純物からなり、Feは85原子%〜95原子%の範囲
が好ましい。
In order to obtain an adjusting alloy powder containing the R 2 Fe 17 phase, if R exceeds 20 atomic%, an R-rich phase increases during the preparation of the alloy powder, which causes problems such as oxidation. Is preferably 5 to 15 atomic%. Further, the balance consists of Fe and unavoidable impurities, and the content of Fe is preferably in the range of 85 atomic% to 95 atomic%.

【0018】この発明において、R2Fe14B相を主相とす
る合金粉末は公知の溶解粉砕法にて製造し、またR2Fe17
相を含む調整用合金粉末は公知の直接還元拡散法により
製造する。
[0018] In the present invention, the alloy powder as a main phase an R 2 Fe 14 B phase is produced by a known dissolution grinding method, also R 2 Fe 17
The adjustment alloy powder containing the phase is produced by a known direct reduction diffusion method.

【0019】得られる粉末をそのまま用いる際に、合金
粉末の粒度が大きすぎると永久磁石の磁気特性、とりわ
け高い保磁力が得られず、また、平均粒度が1μm未満で
は、永久磁石の作製工程、すなわち、プレス成形、焼
結、時効処理工程における酸化が著しく、すぐれた磁気
特性が得られず、また80μmを超えると保磁力の低下の
原因となるので、1〜80μmの平均粒度が好ましく、さら
に、すぐれた磁気特性を得るには、平均粒度2〜10μmの
合金粉末が望ましい。また、得られる合金粉末を用い
て、高い残留磁束密度と高い保磁力を共に有するすぐれ
たR-Fe-B系永久磁石を得るためには、配合した原料粉末
は、R12原子%〜25原子%、B4原子%〜10原子%、Co0.1原子
%〜10原子%、Fe68原子%〜80原子%の組成が好ましい。
When the obtained powder is used as it is, if the particle size of the alloy powder is too large, the magnetic properties of the permanent magnet, especially a high coercive force, cannot be obtained. If the average particle size is less than 1 μm, the process of preparing the permanent magnet, That is, press molding, sintering, oxidation in the aging process is remarkable, excellent magnetic properties are not obtained, and if it exceeds 80 μm, it causes a decrease in coercive force, so an average particle size of 1 to 80 μm is preferable, and In order to obtain excellent magnetic properties, an alloy powder having an average particle size of 2 to 10 μm is desirable. In addition, using the obtained alloy powder, in order to obtain an excellent R-Fe-B-based permanent magnet having both a high residual magnetic flux density and a high coercive force, the compounded raw material powder is R12 atomic% to 25 atomic%. , B4% -10%, Co0.1 atom
% To 10 at%, and 68 to 80 at% Fe.

【0020】さらに、配合したR2Fe14B相を主相とする
合金粉末および/またはR2Fe17相を含む調整用合金粉末
に、 Cu3.5原子%以下、S2.5原子%以下、 Ti4.5原子%以下、Si15原子%以下、 V9.5原子%以下、Nb12.5原子%以下、 Ta10.5原子%以下、Cr8.5原子%以下、 Mo9.5原子%以下、W9.5原子%以下、 Mn3.5原子%以下、Al9.5原子%以下、 Sb2.5原子%以下、Ge7原子%以下、 Sn3.5原子%以下、Zr5.5原子%以下、 Hf5.5原子%以下、Ca8.5原子%以下、 Mg8.5原子%以下、Sr7.0原子%以下、 Ba7.0原子%以下、Be7.0原子%以下、 のうち少なくとも1種を添加含有させることにより、得
られる永久磁石の高保磁力化、高耐食性化、温度特性の
改善が可能になる。
Further, the compounded alloy powder containing the R 2 Fe 14 B phase as a main phase and / or the adjustment alloy powder containing the R 2 Fe 17 phase contains Cu 3.5 atomic% or less, S2.5 atomic% or less, Ti4.5 atomic% or less, Si15 atomic% or less, V9.5 atomic% or less, Nb12.5 atomic% or less, Ta10.5 atomic% or less, Cr8.5 atomic% or less, Mo9.5 atomic% or less, W9.5 Atomic% or less, Mn3.5 atomic% or less, Al9.5 atomic% or less, Sb2.5 atomic% or less, Ge7 atomic% or less, Sn3.5 atomic% or less, Zr5.5 atomic% or less, Hf5.5 atomic% or less , Ca 8.5 atom% or less, Mg 8.5 atom% or less, Sr 7.0 atom% or less, Ba 7.0 atom% or less, Be 7.0 atom% or less Higher coercive force, higher corrosion resistance, and improved temperature characteristics of the permanent magnet can be achieved.

【0021】この発明による合金粉末を用いて製造した
永久磁石の組成が、R11原子%〜25原子%、B4原子%〜10原
子%、Co30原子%以下、Fe66原子%〜82原子%の場合、得ら
れる磁気異方性永久磁石は、保磁力iHC≧5kOe、(BH)max
≧20MGOeの磁気特性を示し、さらに、残留磁束密度の温
度係数が、0.1%/℃以下となり、すぐれた特性が得られ
る。また、永久磁石組成のRの主成分がその50%以上を軽
希土類金属が占める場合で、R12原子%〜20原子%、B4原
子%〜10原子%、Fe66原子%〜82原子%、Co20原子%以下を
含有するとき最もすぐれた磁気特性を示し、特に軽希土
類金属がNd、Pr、Dyの場合には、(BH)maxはその最大値
が40MGOe以上に達する。
When the composition of the permanent magnet manufactured by using the alloy powder according to the present invention is R11 atomic% to 25 atomic%, B4 atomic% to 10 atomic%, Co 30 atomic% or less, Fe 66 atomic% to 82 atomic%, The obtained magnetic anisotropic permanent magnet has a coercive force i H C ≧ 5 kOe, (BH) max
The magnetic properties of ≧ 20MGOe are exhibited, and the temperature coefficient of the residual magnetic flux density is 0.1% / ° C. or less, and excellent properties are obtained. In the case where the main component of R in the permanent magnet composition occupies 50% or more of the light rare earth metal, R12 atom% to 20 atom%, B4 atom% to 10 atom%, Fe66 atom% to 82 atom%, Co20 atom %, The most excellent magnetic properties are exhibited. Particularly, when the light rare earth metal is Nd, Pr, or Dy, the maximum value of (BH) max reaches 40 MGOe or more.

【0022】[0022]

【作用】この発明は、溶解粉砕法により得られたR2Fe14
B相を主相とするR-Fe-B系合金粉末に全量の60wt%以下の
直接還元拡散法により得られたNd2Fe17相を含む調整用
合金粉末を添加配合することにより、調整用合金粉末中
のNd2Fe17相と主相系R-Fe-B系合金粉末中のBリッチ相及
びNdリッチ相との反応により、新たにNd2Fe14B相が生成
されるため、永久磁石の磁石特性を劣化させるBリッチ
相及びNdリッチ相の量を調整低減でき、得られる磁石の
高性能化を図ることができ、さらに合金粉末中の含有酸
素量を低減でき、種々の磁石特性に応じた組成の合金粉
末を容易に提供できる。
According to the present invention, R 2 Fe 14
It is adjusted by adding and blending the adjustment alloy powder containing the Nd 2 Fe 17 phase obtained by the direct reduction diffusion method of 60 wt % or less of the total amount to the R-Fe-B alloy powder having the B phase as the main phase. Reaction between the Nd 2 Fe 17 phase in the alloy powder for use and the B-rich phase and the Nd-rich phase in the main phase R-Fe-B-based alloy powder generates a new Nd 2 Fe 14 B phase, Various magnets that can adjust and reduce the amount of the B-rich phase and Nd-rich phase that degrade the magnet properties of the permanent magnet, improve the performance of the resulting magnet, and reduce the oxygen content in the alloy powder An alloy powder having a composition according to characteristics can be easily provided.

【0023】[0023]

【実施例】実施例1 主相系の溶解粉砕法での原料は、 Ndメタル(純度98%) 160g、 Dyメタル(純度98%) 10.5g、 純度99%の電解鉄 299g、 B含有量19.1%のFe-B粉 34g、 を用い、Ar雰囲気中で得られた合金塊をジョークラッシ
ャーやディスクミルで粉砕し、平均粒径10μmの粉末450
gを得た。得られた粉末はNd14.2原子%、Pr0.2原子%、Dy
0.8原子%、B8原子%、残部Feからなり、EPMAで観察した
ところR2Fe14B相が大部分であることを確認した。また
含有酸素量は800ppmであった。なお、合金塊の組織につ
いてもEPMAで観察したところ、Fe初晶の晶出はほとんど
観察されなかった。
[Example] Example 1 Raw materials in the melting and pulverization method of the main phase were 160 g of Nd metal (98% purity), 10.5 g of Dy metal (98% purity), 299 g of electrolytic iron with 99% purity, and B content of 19.1. % Fe-B powder 34 g, using a jaw crusher or a disk mill, pulverize the alloy mass obtained in an Ar atmosphere, and powder 450 having an average particle size of 10 μm.
g was obtained. The obtained powder was Nd 14.2 atomic%, Pr 0.2 atomic%, Dy
It consisted of 0.8 atomic%, B 8 atomic%, and the balance Fe. Observation by EPMA confirmed that the R 2 Fe 14 B phase was the majority. The oxygen content was 800 ppm. When the structure of the alloy mass was observed by EPMA, almost no crystallization of the primary Fe crystal was observed.

【0024】また、R 2 Fe 17 相を含む調整用合金粉末の原
料に、 Nd2O3(純度98%) 255g Dy2O3(純度98%) 23g 純度99%の電解鉄 765g を用いて、これを純度99%の金属Ca 180g、無水CaCl2
30gとを混合し、ステンレス容器内に装入し、Ar気流中
にて950℃×3時間の条件にてCa還元、拡散を行なった。
その後、冷却して生成混合物を水洗し、不要なCa分を除
去した。得られた粉末スラリーをアルコール等で水置換
後、真空中で加熱乾燥して、約900gの原料粉末を得た。
得られた粉末は、Nd9.7原子%、Pr91原子%、Dy0.8原子
%、残部Feからなり、EPMAによりほぼR2Fe17単一相であ
ることを確認した。また含有酸素量は700ppmであった。
In addition, Nd 2 O 3 (purity: 98%) 255 g Dy 2 O 3 (purity: 98%) 23 g Electrolytic iron having a purity of 99% 765 g was used as a raw material of the adjusting alloy powder containing the R 2 Fe 17 phase. , This is 99% pure metal Ca 180g, anhydrous CaCl 2
Then, the mixture was charged into a stainless steel container, and reduced and diffused with Ca at 950 ° C. for 3 hours in an Ar gas stream.
After cooling, the resulting mixture was washed with water to remove unnecessary Ca. The obtained powder slurry was replaced with alcohol and the like, and then dried by heating under vacuum to obtain about 900 g of raw material powder.
The obtained powder has Nd 9.7 atom%, Pr 91 atom%, Dy 0.8 atom
%, The balance being Fe, and it was confirmed by EPMA that it was almost a single phase of R 2 Fe 17 . The oxygen content was 700 ppm.

【0025】上記の2種の原料粉末を用いて、主相系合
金粉末に25wt%の調整用合金粉末を配合混合した。この
原料粉末をジェットミル等の粉砕機に装入して約3μmま
で微粉砕し、得られた微粉末を約10kOeの磁界中で配向
し、磁界に直角方向に約1.5Ton/cm2の圧力で成型し、8m
m×15mm×10mmの成型体を作成した。この成型体を1100
℃×3時間のAr雰囲気中条件で焼結し、550℃×1時間の
時効処理を行なった。得られた磁石の磁石特性を表1に
表す。なお、磁石組成からR2Fe14B相、Bリッチ相、Rリ
ッチ相(酸化物含む)を算出すると、この発明では、94:
0.5:5.5であった。
Using the above two kinds of raw material powders, a 25 wt % adjusting alloy powder was mixed and mixed with the main phase alloy powder. This raw material powder is charged into a pulverizer such as a jet mill and pulverized to about 3 μm, and the obtained fine powder is oriented in a magnetic field of about 10 kOe, and a pressure of about 1.5 Ton / cm 2 is applied in a direction perpendicular to the magnetic field. 8m
A molded body of m × 15 mm × 10 mm was prepared. 1100
Sintering was carried out in an Ar atmosphere at 3 ° C. for 3 hours, followed by aging at 550 ° C. for 1 hour. Table 1 shows the magnet properties of the obtained magnet. Incidentally, when the R 2 Fe 14 B phase, the B-rich phase, and the R-rich phase (including oxides) were calculated from the magnet composition, in the present invention, 94:
0.5: 5.5.

【0026】比較例1 主相系の合金粉末として、 Nd2O3(純度98%) 263g Dy2O3(純度98%) 16g B含有量19.1%Fe-B粉 49g 純度99%の電解鉄 417g を用いて、これに純度99%の金属Caを180g、無水CaCl2
28gを混合して、ステンレス容器内に装入し、Ar気流中
に930℃×5時間の条件にてCa還元拡散を行った後、冷却
して生成混合物を水洗して不要なCa分を除去後、処理し
てNd14.2原子%、Pr0.2原子%、Dy0.8原子%、B8原子%、残
部Feからなる600gの主相系合金粉末を得た。これに実施
例1の直接還元拡散法にて得た調整用合金粉末を25wt%添
加配合後、実施例1と同一条件にて磁石を作製した。し
かしながら、比較例1にて得た配合合金粉末中にO2量=28
00ppmと多いため、十分なる焼結が行われず、表1に示す
ように磁気特性は低値であった。
Comparative Example 1 Nd 2 O 3 (purity 98%) 263 g Dy 2 O 3 (purity 98%) 16 g B content 19.1% Fe-B powder 49 g Electrolytic iron of 99% purity Using 417 g, 180 g of 99% pure metal Ca and anhydrous CaCl 2 were added thereto.
After mixing 28 g, the mixture was charged into a stainless steel container, and subjected to Ca reduction diffusion in an Ar gas flow at 930 ° C. for 5 hours, and then cooled, and the resulting mixture was washed with water to remove unnecessary Ca components. Thereafter, treatment was performed to obtain 600 g of a main phase alloy powder composed of 14.2 atomic% of Nd, 0.2 atomic% of Pr, 0.8 atomic% of Dy, 8 atomic% of B, and the balance Fe. To this was added 25 wt % of the adjusting alloy powder obtained by the direct reduction diffusion method of Example 1 and blended, and then a magnet was produced under the same conditions as in Example 1. However, the amount of O 2 in the blended alloy powder obtained in Comparative Example 1 was 28.
Since the content was as high as 00 ppm, sufficient sintering was not performed, and the magnetic properties were low as shown in Table 1.

【0027】比較例2 調整用合金粉末を得るために Ndメタル(純度98%) 111g Dyメタル(純度98%) 10.5g 電解鉄(純度99%) 383g をAr雰囲気中で高周波溶解してNd9.7原子%、Pr0.1原子
%、Dy0.8原子%、残部Feからなる合金塊を得た後、ジョ
ークラッシャーディスクミル等で粉砕を試みたが、極め
て粉砕され難く、しかも粉砕後の粉末は酸化しやすく、
含有酸素量は2000ppmとなってしまった。実施例1で作製
した主相系合金粉末に前記調整用合金粉末25wt%添加配
合して、実施例1と同様に磁石を作製し、その磁気特性
を表1に表す。
Comparative Example 2 Nd metal (purity 98%) 111 g Dy metal (purity 98%) 10.5 g Electrolytic iron (purity 99%) 383 g was melted with high frequency in an Ar atmosphere to obtain Nd9. 7 atom%, Pr 0.1 atom
%, Dy 0.8 atomic%, after obtaining an alloy ingot consisting of the balance Fe, pulverization was attempted with a jaw crusher disk mill, etc., but it is extremely difficult to pulverize, and the powder after pulverization is easily oxidized,
The oxygen content was 2000 ppm. A magnet was prepared in the same manner as in Example 1 by adding and mixing 25 wt % of the adjusting alloy powder to the main phase alloy powder prepared in Example 1, and the magnetic properties are shown in Table 1.

【0028】比較例3 比較例1で直接還元拡散法で作製した主相系原料粉末に
比較例2で溶解粉砕法にて作製した調整用原料粉末25wt%
添加配合後、実施例1と同様に磁石を作製し、その磁気
特性を表1に示す。
Comparative Example 3 25% by weight of the raw material powder for adjustment prepared in Comparative Example 2 by the dissolution pulverization method with the raw material powder for main phase produced in Comparative Example 1 by the direct reduction diffusion method
After the addition and blending, a magnet was prepared in the same manner as in Example 1, and the magnetic properties are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】この発明は、R-Fe-B系永久磁石用原料粉
末を得るのに、R2Fe14B相を主相とする主相系合金粉末
を溶解粉砕法にて製造し、また、R 2 Fe 17 相を含む調整用
合金粉末を直接還元拡散法にて製造し、R2Fe14B相を主
相とするR-Fe-B系合金粉末に全量の60%以下のNd2Fe17
を含む調整用合金粉末を添加配合することにより、極め
て粉砕しやすい合金鋳塊を得ることが可能であり、永久
磁石の磁石特性を劣化させるBリッチ相及びNdリッチ相
の量を低減でき、実施例に明らかなように得られる磁石
の高性能化を図ることができ、さらに合金粉末中の含有
酸素量を低減でき、種々の磁石特性に応じた組成の合金
粉末を容易に提供できる。
According to the present invention, in order to obtain a raw material powder for an R-Fe-B permanent magnet, a main phase alloy powder having a main phase of R 2 Fe 14 B phase is produced by a melting and pulverizing method. In addition, an adjustment alloy powder containing an R 2 Fe 17 phase is produced by a direct reduction diffusion method, and an R-Fe-B-based alloy powder having an R 2 Fe 14 B phase as a main phase has Nd of 60% or less of the total amount. 2 By adding and blending the adjustment alloy powder containing the Fe 17 phase, it is possible to obtain an alloy ingot that is extremely easy to grind, and to reduce the amount of the B-rich phase and the Nd-rich phase that deteriorate the magnet properties of the permanent magnet. As can be seen from the examples, it is possible to improve the performance of the magnet obtained, further reduce the oxygen content in the alloy powder, and easily provide an alloy powder having a composition according to various magnet properties. it can.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/06 B22F 9/04 C22C 33/02 C22C 38/00 303 H01F 1/053 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01F 1/06 B22F 9/04 C22C 33/02 C22C 38/00 303 H01F 1/053

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R(但しRはYを含む希土類元素のうち少な
くとも1種)12原子%〜20原子%、B6原子%〜15原子%、残部
Fe(但しFeの部をCo、Niの1種または2種にて置換でき
る)及び不可避的不純物からなり、溶解粉砕法により得
られたR2Fe14B相を主相とする合金粉末に、R(但しRはY
を含む希土類元素のうち少なくとも1種)20原子%以下、
残部Fe(但しFeの部をCo、Niの1種または2種にて置換
できる)及び不可避的不純物からなり、直接還元拡散法
により得られたR2Fe17相を含む調整用合金粉末を混合粉
末の60wt%以下添加配合したことを特徴とするR-Fe-B系
永久磁石用原料粉末の製造方法。
1. R (where R is at least one of the rare earth elements containing Y) 12 to 20 atomic%, B6 to 15 atomic%, balance
Fe (except the part of Fe Co, can be substituted by one or two of Ni) and consists unavoidable impurities, the R 2 Fe 14 B phase obtained by dissolving pulverization method in the alloy powder as a main phase , R (where R is Y
At least one of the rare earth elements containing) 20 atomic% or less,
Remainder Fe (except the part of Fe Co, can be substituted by one or two of Ni) and consists unavoidable impurities, the adjusting alloy powder containing the R 2 Fe 17 phase obtained by direct reduction diffusion process Mixed powder
A method for producing a raw material powder for an R-Fe-B-based permanent magnet, wherein the raw material powder is added and blended in an amount of not more than 60 wt % of the powder.
JP5062916A 1993-02-26 1993-02-26 Method for producing raw material powder for R-Fe-B-based permanent magnet Expired - Lifetime JP3009804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5062916A JP3009804B2 (en) 1993-02-26 1993-02-26 Method for producing raw material powder for R-Fe-B-based permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5062916A JP3009804B2 (en) 1993-02-26 1993-02-26 Method for producing raw material powder for R-Fe-B-based permanent magnet

Publications (2)

Publication Number Publication Date
JPH06251916A JPH06251916A (en) 1994-09-09
JP3009804B2 true JP3009804B2 (en) 2000-02-14

Family

ID=13214063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5062916A Expired - Lifetime JP3009804B2 (en) 1993-02-26 1993-02-26 Method for producing raw material powder for R-Fe-B-based permanent magnet

Country Status (1)

Country Link
JP (1) JP3009804B2 (en)

Also Published As

Publication number Publication date
JPH06251916A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
JP2782024B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
US5387291A (en) Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3009804B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0461042B2 (en)
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2789269B2 (en) Raw material powder for R-Fe-B permanent magnet
JP3020717B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3299000B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3151088B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP2986598B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JPH0467324B2 (en)
JPH0524975B2 (en)
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JP2886378B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2005286174A (en) R-t-b-based sintered magnet
JPH0526858B2 (en)
JPH0778709A (en) Manufacture of r-fe-b permanent magnet material
JPH0521219A (en) Production of rare-earth permanent magnet
JPH0735521B2 (en) Raw material powder for R-Fe-B permanent magnets
JPH10335125A (en) R-fe-b system alloy powder for permanent magnet
JPH06283318A (en) Manufacture of rare-earth permanent magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 14

EXPY Cancellation because of completion of term