JPH0521219A - Production of rare-earth permanent magnet - Google Patents

Production of rare-earth permanent magnet

Info

Publication number
JPH0521219A
JPH0521219A JP3198479A JP19847991A JPH0521219A JP H0521219 A JPH0521219 A JP H0521219A JP 3198479 A JP3198479 A JP 3198479A JP 19847991 A JP19847991 A JP 19847991A JP H0521219 A JPH0521219 A JP H0521219A
Authority
JP
Japan
Prior art keywords
phase
alloy
rare earth
phases
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3198479A
Other languages
Japanese (ja)
Other versions
JP3143157B2 (en
Inventor
Masao Kusunoki
的生 楠
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP03198479A priority Critical patent/JP3143157B2/en
Publication of JPH0521219A publication Critical patent/JPH0521219A/en
Application granted granted Critical
Publication of JP3143157B2 publication Critical patent/JP3143157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a well-balanced magnetic property by pressure-molding a mixed alloy powder in the magnetic field, sintering the molded body in a vacuum or atmosphere of inactive gas, and further applying aging heat treatment at such a low temperature as sintering temperature or below. CONSTITUTION:An A alloy is composed of an R<2>T<14>B phase mainly (R: at least one or more kinds of rare-earth elements including Nd, Pr and Dy mainly, T: Fe and Co). A B alloy contains R, Co, Fe and B, and is composed of an R<2>T<114>B phase and/or an R rich phase, and a combined phase with at least one or more kinds of RT<24>B phase, RT<23> phase, RT<22> phase, R<2>T<227> phase and RT<25> phase, and 99-70wt.% A alloy powder is mixed with 1-30wt.% B alloy powder. Thus well-balanced magnetic property can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種電気、電子機器に
用いられる、磁気特性に優れた希土類永久磁石の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth permanent magnet having excellent magnetic properties, which is used in various electric and electronic devices.

【0002】[0002]

【従来の技術】希土類磁石の中でもNd-Fe-B系磁石は、
主成分であるNdが資源的に豊富でコストが安く、磁気特
性に優れているために、近年益々その利用が広がりつつ
ある。磁気特性向上のための開発研究も、Nd系磁石の発
明以来精力的に行われてきており、数多くの研究や発明
が提案されている。Nd系焼結磁石の製造方法の1つであ
る2種類の組成の異なった合金粉体を混合、焼結して高
性能Nd磁石を製造する方法(以下、2合金法という)に
関しても数々の発明考案が提案されている。
2. Description of the Related Art Among rare earth magnets, Nd-Fe-B magnets are
Nd, which is the main component, is abundant in resources, low in cost, and excellent in magnetic properties, so that its use is expanding more and more in recent years. Since the invention of the Nd-based magnet, the research and development for improving the magnetic properties has been energetically carried out, and many studies and inventions have been proposed. There are also many methods for manufacturing high-performance Nd magnets by mixing and sintering two kinds of alloy powders with different compositions, which is one of the manufacturing methods for Nd-based sintered magnets. Invention proposals have been proposed.

【0003】これまでに提案されている2合金法を大き
く分けると、3種類に分類することができる。第1の方
法は、混合する原料合金粉体の一方を液体急冷法によっ
て非晶質あるいは微細結晶合金を作製し、それに通常の
希土類合金粉末を混合するか、あるいは両方の原料合金
粉体を共に液体急冷法で作製混合する方法[特開昭63-9
3841、 特開昭63-115307、特開昭63-252403、特開昭663-2
78208、特開平1-108707、 特開平1-146310、 特開平1-1463
09、 特開平1-155603各号公報参照]である。この液体急
冷法による合金を使用する2合金法については、最近50
MGOeを越える磁気特性が得られたと報告[E.Otuk
i,T.Otuka and T.Imai;11t
h.Int.Workshop on Rare Ea
rth Magnets,Pittsburgh,Pe
nnsylvania,USA,October(19
90),p.328参照]されている。
The two alloy methods proposed so far can be roughly classified into three types. The first method is to prepare an amorphous or fine crystal alloy by liquid quenching one of the raw material alloy powders to be mixed, and mix it with a normal rare earth alloy powder, or to mix both raw material alloy powders together. Method of preparing and mixing by liquid quenching method [Japanese Patent Laid-Open No. 63-9
3841, JP-A-63-115307, JP-A-63-252403, JP-A-663-2
78208, JP-A-1-108707, JP-A-1-146310, JP-A-1-1463
09, refer to Japanese Unexamined Patent Publication No. 1-155603]. Regarding the two-alloy method using the alloy by the liquid quenching method, the
Reported that magnetic characteristics exceeding MGOe were obtained [E. Otuk
i, T. Otuka and T.M. Imai; 11t
h. Int. Workshop on Rare Ea
rth Magnets, Pittsburgh, Pe
nsylvania, USA, October (19
90), p. 328].

【0004】第2の方法は、混合する2種類の原料合金
粉体を共に主としてRFe14B化合物とし含有される
希土類元素の種類、含有量を変えた合金を作製して混合
焼結する方法である。即ち、含有するNdリッチ相の量比
あるいは希土類元素の種類を変えた合金を2種類混合す
る方法[特開昭61-81603、特開昭61-81604、特開昭61-816
05、特開昭61-81606、特開昭61-81607、特開昭61-119007、
特開昭61-207546、特開昭63-245昭3、特開平1-177335各号
公報参照]である。
In the second method, two kinds of raw material alloy powders to be mixed are mainly used as an R 2 Fe 14 B compound, and an alloy in which the kinds and contents of rare earth elements contained therein are changed is prepared and mixed and sintered. Is the way. That is, a method of mixing two kinds of alloys in which the amount ratio of the contained Nd-rich phase or the kind of rare earth element is changed [JP-A-61-81603, JP-A-61-81604, and JP-A-61-816].
05, JP 61-81606, JP 61-81607, JP 61-119007,
JP-A 61-207546, JP-A 63-245 Sho 3, and JP-A 1-177335].

【0005】第3の方法は、一方の合金を主としてR2F
e14B化合物からなる合金粉末とし、これに各種低融点
元素、低融点合金、希土類合金、炭化物、硼化物、水素
化物等の粉末を混合焼結して、Nd系希土類磁石を製造す
る方法[特開昭60-230959、特開昭61-263201、特開昭62-18
1402、特開昭62-182249、特開昭62-206802、特開昭62-2707
46、特開昭63-6808、特開昭63-104406、特開昭63-114939、
特開昭63-272006、特開平1-111843、特開平1-146308各号
公報参照]である。
In the third method, one alloy is mainly used as R 2 F.
A method for producing an Nd-based rare earth magnet by forming an alloy powder composed of an e 14 B compound and mixing and sintering powders of various low melting point elements, low melting point alloys, rare earth alloys, carbides, borides, hydrides, etc. JP-A-60-230959, JP-A-61-263201, JP-A-62-18
1402, JP-A-62-182249, JP-A-62-206802, JP-A-62-2707
46, JP 63-6808, JP 63-104406, JP 63-114939,
See JP-A-63-272006, JP-A-1-111843, and JP-A-1-146308].

【0006】[0006]

【発明が解決しようとする課題】従来技術による2合金
法ではNd系磁石合金の真に優れた磁気特性を実現させる
のに適切でなかったり不充分だったりする点が多く存在
する。即ち、前述した第1の方法では磁石合金のエネル
ギ−積は高いが保磁力は約9kOe程度で、温度上昇によ
って保磁力が低下するというNd磁石特有の欠点のため
に、実用的には不充分な磁石特性である。最も大きな問
題点は、磁場配向性である。第1の方法でも組成を適当
に選ぶことによって、室温で磁性を示す合金を得ること
ができるが、液体急冷法によって得られる合金は非晶質
アモルファス相あるいは微細結晶となるため、微粉にし
て磁場中で配向させても特定の結晶方位を磁場方向に配
向させることができない。従って、混合した原料合金粉
体を磁場中成形しても得られる成形体の配向性は悪く、
焼結後充分な磁石特性が得られないことになる。
There are many points that the two-alloy method according to the prior art is not suitable or insufficient for realizing the truly excellent magnetic properties of Nd-based magnet alloys. That is, in the above-mentioned first method, the energy product of the magnet alloy is high, but the coercive force is about 9 kOe, and the coercive force is lowered by the temperature rise. Magnet characteristics. The biggest problem is magnetic field orientation. Even in the first method, an alloy exhibiting magnetism at room temperature can be obtained by appropriately selecting the composition. However, since the alloy obtained by the liquid quenching method becomes an amorphous amorphous phase or fine crystals, it is made into a fine powder and a magnetic field. Even if it is oriented inside, a specific crystal orientation cannot be oriented in the magnetic field direction. Therefore, even if the mixed raw material alloy powder is molded in a magnetic field, the orientation of the molded body obtained is poor,
Sufficient magnet characteristics cannot be obtained after sintering.

【0007】第2の方法においては、磁石合金中のR2F
e14B化合物と共存する相はNdリッチ相あるいはNd1+XFe
44相であり、この両相とも室温では磁性を示さない。
従って、磁性を持たない化合物の混在が配向性を乱すこ
とになって、磁気特性の優れた磁石は得られない。ま
た、混合する粉体として各種元素や種々の化合物を用い
る第3の方法においてもこれらの化合物は磁性をもたな
いために、磁場中配向時に反磁場が大きくなって有効磁
場強度が減少し、そのため磁場方向への磁性粒子の回転
が不充分となって配向が乱れる。
In the second method, R 2 F in the magnet alloy is used.
Phase coexisting with e 14 B compound is Nd rich phase or Nd 1 + X Fe
4 is a B 4 phase, exhibits no magnetism at room temperature with the two phases.
Therefore, the mixture of a compound having no magnetism disturbs the orientation, and a magnet having excellent magnetic properties cannot be obtained. Further, even in the third method in which various elements and various compounds are used as the powder to be mixed, since these compounds do not have magnetism, the demagnetizing field becomes large during the orientation in the magnetic field and the effective magnetic field strength decreases, Therefore, the rotation of the magnetic particles in the magnetic field direction is insufficient and the orientation is disturbed.

【0008】第3の方法において、混合する粉体に低融
点の元素あるいは合金を利用して磁気特性を向上させよ
うとする提案があるが、これは焼結中に混合した低融点
相が、R2Fe14B化合物の粒界に存在する格子欠陥や酸
化物相などのニュークリエーションサイトを除去し、粒
界をクリーニングして保磁力を向上させるという考え方
によるものである。しかし、低融点相の存在は次に述べ
るような理由から、実際には磁気特性の向上に対して逆
に不利な条件となっている。低融点相が例えば660℃付
近から融液となっていると、実際の焼結温度1,100℃で
は低融点相の粘度はかなり小さくなってしまう。その結
果、成形体は液相焼結によって収縮しながら同時に粒の
周囲を囲む融液の粘度が小さいために磁性粒子の回転が
容易に起り、配向が乱れて磁気特性が劣化する。つま
り、Nd磁石の液相焼結における望ましい液相成分は、適
当な粘度を保って粒子の配向を乱さず、かつまた成形体
を緻密化し、粒界を十分にクリーニングアップできるこ
とが必要なのである。従来の2合金法においては、液相
成分が関与する磁場配向性と保磁力向上の両方の役割を
充分に考慮し、これらが最適な条件となるよう液相合金
成分の磁性と融点を適切に調整してはいなかった。本発
明は2合金法における前述したような欠点を改良し、バ
ランスのとれた磁気特性に優れた希土類永久磁石の製造
方法を提供しようとするものである。
In the third method, there has been a proposal to improve the magnetic properties by utilizing a low melting point element or alloy in the powder to be mixed. This is because the low melting point phase mixed during sintering is This is based on the idea that the lattice defects existing at the grain boundaries of the R 2 Fe 14 B compound and the nucleation sites such as oxide phases are removed and the grain boundaries are cleaned to improve the coercive force. However, the existence of the low-melting-point phase is actually a disadvantageous condition for improving the magnetic properties, for the following reason. When the low melting point phase becomes a melt from around 660 ° C., the viscosity of the low melting point phase becomes considerably small at the actual sintering temperature of 1,100 ° C. As a result, the compact is contracted by liquid phase sintering, and at the same time, the viscosity of the melt surrounding the grains is small, so that the rotation of the magnetic grains easily occurs, the orientation is disturbed, and the magnetic properties are deteriorated. That is, the desirable liquid phase component in the liquid phase sintering of the Nd magnet is required to maintain an appropriate viscosity so as not to disturb the orientation of the particles, and also to densify the compact and sufficiently clean up the grain boundaries. In the conventional two-alloy method, the magnetic field and the melting point of the liquid-phase alloy component are properly adjusted so that the magnetic field orientation and the coercive force improving roles related to the liquid-phase component are fully considered. I didn't adjust. The present invention is intended to provide a method for manufacturing a rare earth permanent magnet excellent in well-balanced magnetic characteristics by improving the above-mentioned drawbacks in the two-alloy method.

【0009】[0009]

【課題を解決するための手段】本発明者等は、かかる課
題を解決するために2合金法を基本的に見直し、磁性体
構成相の種類、特性等を適切に選択し組合せることによ
り充分満足できるバランスのとれた磁気特性が得られる
ことを見出し、製造条件を詳細に検討して本発明を完成
させた。本発明の要旨は、A合金を主としてR214
相(ここにRは、Nd、Pr、Dyを主体とする少なくとも1種
以上の希土類元素、TはFeおよびCo表す)から成る合金
とし、B合金をR、Co、Fe、Bを含有し、かつ合金中の構
成相としてR2T■114B相および/またはRリッチ相(こ
こにRは上記に同じ、T1はFe、Coを主体とする遷移金属
元素を表す)並びにRT■24B相、RT■23相、RT2 2相、
2T■27相およびRT■25相(ここにRは上記に同じ、T2
はFe、Coを主体とする遷移金属元素、同遷移金属および
Bを表す)の5相の内1種または2種以上の相との混合
相から成る合金とし、A合金粉末99〜70重量%に対して
B合金粉末を1〜30重量%混合し、該混合合金粉末を磁
場中加圧成形し、該成形体を真空または不活性ガス雰囲
気中で焼結し、さらに焼結温度以下の低温で時効熱処理
することを特徴とする希土類永久磁石の製造方法であ
り、更に詳しくは、B合金に含まれるRT2 4B相、RT
2 3相、RT2 2相、R22 7相およびRT2 5相の5つの構
成相の内少なくとも1種以上の相の融点が700℃以上1,1
55℃以下の金属間化合物であり、少なくとも1種以上の
相が室温以上のキューリー温度を有する磁性体であり、
少なくとも1種以上の相が室温以上のキューリー温度な
らびに結晶磁気異方性を有する磁性体であることを特徴
とする希土類磁石の製造方法である。
The inventors of the present invention have basically reviewed the two-alloy method in order to solve the above problems, and it is sufficient to appropriately select and combine the types and characteristics of the magnetic material constituent phases. The inventors have found that a satisfactory balanced magnetic property can be obtained, and have studied the manufacturing conditions in detail to complete the present invention. The gist of the present invention is that the alloy A is mainly R 2 T 14 B
A phase (wherein R is at least one or more rare earth elements mainly composed of Nd, Pr and Dy, and T is Fe and Co), and a B alloy containing R, Co, Fe and B, In addition, R 2 T 1 14 B phase and / or R rich phase (where R is the same as above, T 1 represents a transition metal element mainly composed of Fe and Co) and RT 2 as constituent phases in the alloy. 4 B phase, RT ■ 2 3 phase, RT 2 2 phase,
R 2 T 2 7 phase and RT 2 5 5 phase (where R is the same as above, T 2
Is an alloy composed of a transition metal element mainly composed of Fe and Co, which represents the same transition metal and B) and a mixed phase with one or more of the five phases, and the alloy powder A is 99 to 70% by weight. 1 to 30% by weight of the B alloy powder, the mixed alloy powder is pressure-molded in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere, and the temperature is lower than the sintering temperature. A method for producing a rare earth permanent magnet, characterized in that the aging heat treatment is carried out with, and more specifically, RT 2 4 B phase, RT contained in B alloy, RT
Of the five constituent phases of 2 3 phase, RT 2 2 phase, R 2 T 2 7 phase and RT 2 5 phase, at least one phase has a melting point of 700 ° C. or higher 1,1
An intermetallic compound having a temperature of 55 ° C. or lower, and a magnetic substance in which at least one phase has a Curie temperature of room temperature or higher,
A method for producing a rare earth magnet, wherein at least one phase is a magnetic material having a Curie temperature of room temperature or higher and a crystalline magnetic anisotropy.

【0010】以下本発明を詳細に説明する。本発明は所
謂2合金法と称する希土類永久磁石(以下、磁石合金C
という)の製造方法であり、原料となるA合金は主とし
てR214B化合物相からなり、RはYを含むLa,Ce,Pr,
Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,YbおよびLuから選択さ
れるNd、Pr、Dyを主体とする少なくとも1種類以上の希土
類元素である。またTはFeおよびCoを表し、Coの含有量
は重量%で0.1〜40%である。Co添加によりA合金のキ
ューリー温度が上昇し、また合金の耐食性も改善され
る。A合金は原料金属を真空または不活性ガス、好まし
くはAr雰囲気中で溶解し鋳造する。原料金属は純希土類
元素あるいは希土類合金、純鉄、フェロボロン、さらに
はこれらの合金等を使用するが、一般的な工業生産にお
いて不可避な微量不純物は含まれるものとする。得られ
たインゴットは、R2Fe14B相がαFeと希土類リッチ相
との包晶反応によって形成されるため、鋳造後も凝固偏
析によってαFe相、Rリッチ相、Bリッチ相、Nd3C
o相等が残留する場合がある。本発明においてはA合金
中のR2Fe14B相が多いほうが望ましいので、必要に応
じて溶体化処理を行う。その条件は真空またはAr雰囲気
下、700〜1,200℃の温度領域で1時間以上熱処理すれば
良い。
The present invention will be described in detail below. The present invention is a so-called two-alloy method, which is a rare earth permanent magnet (hereinafter referred to as magnet alloy C).
That is, the raw material A alloy is mainly composed of R 2 T 14 B compound phase, and R is Y containing La, Ce, Pr,
It is at least one kind of rare earth element mainly composed of Nd, Pr and Dy selected from Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. Further, T represents Fe and Co, and the Co content is 0.1 to 40% by weight. The addition of Co raises the Curie temperature of the alloy A and also improves the corrosion resistance of the alloy. Alloy A is cast by melting the raw material metal in a vacuum or an inert gas, preferably Ar atmosphere. As the raw material metal, pure rare earth elements or rare earth alloys, pure iron, ferroboron, and alloys thereof are used, but trace impurities that are inevitable in general industrial production are included. In the obtained ingot, the R 2 Fe 14 B phase is formed by the peritectic reaction between αFe and the rare earth-rich phase, and therefore the αFe phase, the R-rich phase, the B-rich phase, and the Nd3C phase due to solidification segregation even after casting.
o phase etc. may remain. In the present invention, it is desirable that the A alloy has a large amount of R 2 Fe 14 B phases, and therefore, solution treatment is performed if necessary. The condition is that the heat treatment is performed in a temperature range of 700 to 1,200 ° C. for 1 hour or more under vacuum or Ar atmosphere.

【0011】B合金は主としてR、Co、Fe、BおよびGaか
ら成る合金で、組成式RaFebCocBdGae(ここにRは、
Yを含むLa,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb
およびLuから選択されるNd、Pr、Dyを主体とする少なくと
も1種以上の希土類元素、15≦a≦40、0≦b≦80、5≦c
≦85、0≦d≦20、0.1≦e≦20、a+b+c+d+e=100(各原子
%))で表わされ、A合金と同様に原料金属を真空また
は不活性ガス、好ましくはAr雰囲気中で溶解し鋳造す
る。原料金属としては純希土類元素あるいは希土類合
金、純鉄、純コバルト、フェロボロン、さらにはこれら
の合金等を使用するが、一般的な工業生産において不可
避な微量不純物は含まれるものとする。希土類元素Rの
量aが15原子%未満ではRが少な過ぎるために焼結工程
において十分な量の液相が得られず、焼結体の密度が上
がらなくなり、40原子%を越えると合金の融点が低くな
り過ぎて磁気特性の向上効果がなくなる。Coの量c が5
原子%未満ではRT■24B相、RT23相、RT22相、R2
2 7相およびRT2 5相等の各相が出現しなくなり、磁気
特性の向上効果が得られない。また、液体急冷法によっ
て得られた薄帯を熱処理してもB合金を作製することが
できる。即ち、液体急冷法において、急冷後のB合金は
アモルファス相或は微細結晶相となっており、これを結
晶化温度以上の温度で一定時間以上加熱することによ
り、結晶化或は再結晶成長させて、本発明の所定の構成
相を析出させることが出来る。
The B alloy is an alloy mainly composed of R, Co, Fe, B and Ga, and has the composition formula RaFebCocBdGae (where R is
La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb including Y
And at least one rare earth element mainly composed of Nd, Pr and Dy selected from Lu, 15 ≦ a ≦ 40, 0 ≦ b ≦ 80, 5 ≦ c
≦ 85, 0 ≦ d ≦ 20, 0.1 ≦ e ≦ 20, a + b + c + d + e = 100 (each atom%)), and the raw material metal is vacuum or inert gas like the A alloy. Preferably, it is melted and cast in an Ar atmosphere. As the raw material metal, pure rare earth elements or rare earth alloys, pure iron, pure cobalt, ferroboron, and alloys thereof are used, but trace impurities that are inevitable in general industrial production are included. If the amount a of the rare earth element R is less than 15 atomic%, the amount R is too small to obtain a sufficient amount of liquid phase in the sintering process and the density of the sintered body cannot be increased. The melting point becomes too low, and the effect of improving magnetic properties is lost. The amount c of Co is 5
If it is less than atomic%, RT 2 4 B phase, RT 2 3 phase, RT 2 2 phase, R 2
Each phase of T 2 7 phase and RT 2 5 equality is no longer appear, not the effect of improving magnetic characteristics. Further, the B alloy can be produced by heat-treating the ribbon obtained by the liquid quenching method. That is, in the liquid quenching method, the B alloy after quenching has an amorphous phase or a fine crystalline phase, and is heated at a temperature not lower than the crystallization temperature for a certain period of time to cause crystallization or recrystallization growth. Thus, the predetermined constituent phase of the present invention can be precipitated.

【0012】この組成範囲においてB合金中に主に出現
する相は、R21 14B相(主としてR2Fe14B相)、R
リッチ相(ここにRは上記に同じ、T1はFe、Coを主体と
する遷移金属元素を表す)並びにRT24相、RT■2
3相、RT■22相、R2T■27相およびRT2 5相(ここにRは
上記に同じ、T2はFe、Coを主体とする遷移金属元素、同
遷移金属およびBを表す)等であり、本発明では前2相
および後5相の内少なくとも1種または2種以上の相を
含むB合金を使用することに特徴がある。なおRリッチ
相と表記した相は、R成分が35原子%以上となるRに富
んだ各種の相全てを表すものとする。これら7種類の相
のうち、R2Fe14B相、Rリッチ相の2相は、従来公知
の2合金法や、通常の希土類鉄ボロン系磁石合金の製造
法によっても出現していた相である。残りのRT24B
相、RT23相、RT22相、R2 ■27相、RT25相の5種
類の相は、B合金に5原子%以上のCoを添加することに
より出現し、本発明の2合金法において特有のものであ
る。これら5相はCoを5原子%以上添加することによっ
て初めてB合金中に平衡相として出現したものである。
図1は本発明のB合金の鋳造組織写真を走査電子顕微鏡
により撮影し、組成をEPMA(電子プローブX線マイクロ
アナライザー)およびX線解析により求めた1例で1.R
2 4B相、2.RT2 3相、3.RT2 2相、4.Rリッチ相の存
在が明確に表されている。本発明による2合金法は、B
合金中にこれら5相のうち、少なくとも1種以上含むこ
とを特徴とし、これらの相の存在によって2合金法で作
製された磁石合金に高い磁気特性を実現することができ
た。
In this composition range, the phases mainly appearing in the B alloy are R 2 T 1 14 B phase (mainly R 2 Fe 14 B phase) and R
Rich phase (where R is the same as above, T 1 represents a transition metal element mainly composed of Fe and Co), RT 2 4 B phase, RT 2
3 phase, RT 2 2 2 phase, R 2 T 2 7 phase and RT 2 5 phase (where R is the same as above, T 2 is a transition metal element mainly composed of Fe and Co, the same transition metal and B) The present invention is characterized by using a B alloy containing at least one or two or more phases of the front two phases and the rear five phases. The phase described as the R-rich phase represents all the various R-rich phases in which the R component is 35 atomic% or more. Of these seven types of phases, the two phases, R 2 Fe 14 B phase and R rich phase, are phases that have also appeared in the conventionally known two-alloy method and the ordinary manufacturing method of rare earth iron boron magnet alloy. is there. Remaining RT 2 4B
Phase, RT 2 3-phase, RT 2 2-phase, R 2 T2 7 phase, five phase RT 2 5 phase emerges by adding 5 atomic% or more Co in B alloy, the present invention It is peculiar to the two alloy method. These five phases first appeared as equilibrium phases in the B alloy by adding Co in an amount of 5 atomic% or more.
FIG. 1 is an example of the composition of the B alloy of the present invention taken by scanning electron microscope and the composition was determined by EPMA (electron probe X-ray microanalyzer) and X-ray analysis.
T 2 4 B-phase, 2.RT 2 3-phase, 3.RT 2 2 phase, the presence of 4.R rich phase is represented clearly. The two-alloy method according to the invention is
The alloy is characterized by containing at least one or more of these five phases, and the presence of these phases made it possible to realize high magnetic properties in the magnet alloy produced by the two-alloy method.

【0013】本発明では以上述べたA合金、B合金を特
定割合に混合し、所謂2合金法によって磁石合金Cを作
製し、高い磁気特性を発現させることができた。以下、
B合金におけるこれら混合相の存在が磁石合金の高い磁
気特性をもたらした理由について述べる。まず第1の理
由として、これら混合相が室温以上のキューリー温度を
持つことが挙げられ、これは添加元素Coによって達成さ
れた。さらに、これらの相は特定の結晶方向に結晶磁気
異方性を持つ。従って、主な構成相としてこれらの相の
1種以上を含有するB合金粉末を主にR2Fe14B相から
成るA合金粉末に混合して磁場中配向させると、B合金
も強磁性体で磁気異方性を持つため、加えた磁場方向に
ほぼ全ての粒子が結晶方向を揃えて配向し、高い磁気特
性が得られることになる。
In the present invention, the above-mentioned alloy A and alloy B were mixed in a specific ratio, and the magnet alloy C was produced by the so-called two-alloy method, whereby high magnetic properties could be exhibited. Less than,
The reason why the presence of these mixed phases in the B alloy leads to the high magnetic properties of the magnet alloy will be described. The first reason is that these mixed phases have a Curie temperature above room temperature, which was achieved by the additive element Co. Further, these phases have magnetocrystalline anisotropy in a particular crystallographic direction. Therefore, when B alloy powder containing at least one of these phases as a main constituent phase is mixed with A alloy powder mainly composed of R2Fe14B phase and oriented in a magnetic field, B alloy is also a ferromagnetic substance and is magnetically anisotropic. As a result, almost all particles are oriented with their crystal directions aligned in the applied magnetic field direction, and high magnetic properties can be obtained.

【0014】第2の理由は、これらの相の融点がNd系希
土類磁石の液相焼結にとって適当な温度範囲、即ち700
℃以上1,155℃以下の範囲となることである。この温度
範囲はNdリッチ相の融点(500〜650℃)よりは高く、し
かもR2Fe14B相の融点(1,155℃)以下の温度である。
従って、通常の焼結温度においてNdリッチ相のみが存在
していて融液の粘度が下がり過ぎてしまい、その結果粒
子の配向を乱してしまうようなことがなく、かつまた液
相となって粒界をクリーニングしながら密度を上げ、焼
結後高い磁石特性を実現することになる。Co添加による
もう1つの効果として、耐食性の向上が挙げられる。B
合金はA合金より希土類元素を多く含有するため酸化劣
化しやすくなるが、Coを添加することにより酸化劣化を
防止することができ、安定した磁気特性が得られる。ま
たA合金にCoを添加することも合金の耐食性を向上させ
酸化劣化が少なくなって、安定した磁気特性が得られ
る。B合金に添加されるDyは、両者共焼結後も粒界近傍
に多く存在し、磁石合金Cの保磁力を向上させる効果が
ある。
The second reason is that the melting points of these phases are in a temperature range suitable for liquid phase sintering of Nd rare earth magnets, that is, 700.
It is to be in the range of ℃ to 1,155 ℃. This temperature range is higher than the melting point of the Nd-rich phase (500 to 650 ° C.) and lower than the melting point of the R 2 Fe 14 B phase (1,155 ° C.).
Therefore, at the normal sintering temperature, only the Nd-rich phase is present and the viscosity of the melt is too low, and as a result, the orientation of the particles is not disturbed, and the liquid phase is formed again. The density will be increased while cleaning the grain boundaries, and high magnet characteristics will be realized after sintering. Another effect of the addition of Co is improvement in corrosion resistance. B
Since the alloy contains more rare earth elements than the A alloy, it is prone to oxidative deterioration, but by adding Co, oxidative deterioration can be prevented and stable magnetic characteristics can be obtained. Further, addition of Co to the A alloy also improves the corrosion resistance of the alloy, reduces oxidative deterioration, and provides stable magnetic properties. A large amount of Dy added to the B alloy exists near the grain boundaries even after both are sintered, and has an effect of improving the coercive force of the magnet alloy C.

【0015】次に2合金法による磁石合金Cの製造方法
を述べる。上記のようにして得られたA合金およびB合
金は、各インゴットを別々に粉砕した後、所定割合に混
合される。粉砕は、湿式又は乾式粉砕にて行われる。希
土類合金は非常に活性であり、粉砕中の酸化を防ぐこと
を目的に、乾式粉砕の場合はAr又は窒素などの雰囲気中
で、湿式粉砕の場合はフロンなどの非反応性の有機溶媒
中で行われる。混合工程も必要に応じて不活性雰囲気又
は溶媒中で行われる。粉砕は一般に粗粉砕、微粉砕と段
階的に行われるが、混合はどの段階で行われても良い。
即ち粗粉砕後に所定量混合し引続いて微粉砕を行っても
よいし、全ての粉砕を完了した後に所定の割合に混合し
てもよい。A、B両合金がほぼ同じ平均粒径で均一に混
合されることが必要で、平均粒径は0.5〜20μmの範囲
が良く、0.5μm未満では酸化され劣化し易く、20μm
を越えると焼結性が悪くなる。
Next, a method for producing the magnet alloy C by the two-alloy method will be described. The A alloy and the B alloy obtained as described above are separately crushed and then mixed in a predetermined ratio. The crushing is performed by wet or dry crushing. Rare earth alloys are very active, in order to prevent oxidation during grinding, in an atmosphere such as Ar or nitrogen for dry grinding, in a non-reactive organic solvent such as CFC for wet grinding. Done. The mixing step is also performed in an inert atmosphere or a solvent as needed. Grinding is generally carried out in stages such as coarse grinding and fine grinding, but mixing may be carried out at any stage.
That is, a predetermined amount may be mixed after coarse pulverization and then fine pulverization may be performed, or a predetermined ratio may be mixed after all pulverization is completed. Both A and B alloys need to be mixed uniformly with almost the same average particle size, and the average particle size is preferably in the range of 0.5 to 20 μm. If the average particle size is less than 0.5 μm, it is easily oxidized and deteriorated.
If it exceeds, the sinterability will deteriorate.

【0016】A合金粉末とB合金粉末の混合割合は、A
合金粉末99〜70重量%に対してB合金粉末を1〜30重量
%の範囲で混合するのが良く、B合金粉末が1重量%未
満では焼結密度が上がらなくなり保磁力が得られない
し、30重量%を越えると焼結後の非磁性相の割合が大き
くなり過ぎて、残留磁束密度が小さくなってしまう。得
られたA合金とB合金の混合微粉は、次に磁場中成型プ
レスによって所望の寸法に成型され、さらに焼結熱処理
する。焼結は900〜1,200℃の温度範囲で真空又はアルゴ
ン雰囲気中にて30分以上行ない、続いて焼結温度以下の
低温で30分以上時効熱処理する。焼結後、磁石合金Cの
成形体の密度は対真密度比で95%以上に緻密化しており
高い残留磁束密度が得られる。
The mixing ratio of the A alloy powder and the B alloy powder is A
It is preferable to mix the B alloy powder in the range of 1 to 30% by weight with respect to the alloy powder 99 to 70% by weight. If the B alloy powder is less than 1% by weight, the sintered density cannot be increased and coercive force cannot be obtained. If it exceeds 30% by weight, the proportion of the non-magnetic phase after sintering becomes too large and the residual magnetic flux density becomes small. The obtained mixed fine powder of A alloy and B alloy is then molded into a desired size by a molding press in a magnetic field, and further sintered and heat treated. Sintering is performed in a temperature range of 900 to 1,200 ° C. in a vacuum or an argon atmosphere for 30 minutes or more, and then, an aging heat treatment is performed at a temperature lower than the sintering temperature for 30 minutes or more. After the sintering, the density of the molded body of the magnet alloy C is densified to 95% or more in terms of the true density ratio, and a high residual magnetic flux density can be obtained.

【0017】[0017]

【実施例】以下、本発明の具体的な実施態様を実施例を
挙げて説明するが、本発明はこれらに限定されるもので
はない。 (実施例1、比較例1)純度99.9重量%のNd、Feメタル
とフェロボロンを用いて組成式12.5Nd-6B-1.5Co-80Fe
(各原子%)の合金を、高周波溶解炉のAr雰囲気中にて
溶解鋳造した後、このインゴットを1,070℃、Ar雰囲気
中にて20時間溶体化した。これをA1合金とする。次に
同じく純度99.9重量%のNd、Dy、Fe、Coメタルとフェロボ
ロンを用いて組成式20Nd-10Dy-20Fe-6B-44Coの合金を高
周波溶解炉を用いAr雰囲気にて溶解鋳造し、これをB1
合金とした。A1合金インゴットとB1合金インゴット
をそれぞれ別々に窒素雰囲気中にて粗粉砕して30メッシ
ュ以下とし、次にA1合金粗粉90重量%にB1合金粗粉
を10重量%秤量して、窒素置換したVブレンダー中で30
分間混合した。この混合粗粉を高圧窒素ガスを用いたジ
ェットミルにて、平均粒径約5μmに微粉砕した。得ら
れた混合微粉末を15kOeの磁場中で配向させながら、約
1Ton/cm2の圧力でプレス成型した。次いで、この成形
体はAr雰囲気の焼結炉内で1,070℃で1時間焼結され、
さらに530℃で1時間時効熱処理して急冷し、磁石合金
C1を作製した。
EXAMPLES Hereinafter, specific embodiments of the present invention will be described with reference to examples, but the present invention is not limited to these. (Example 1, Comparative Example 1) Composition formula 12.5Nd-6B-1.5Co-80Fe using Nd, Fe metal and ferroboron having a purity of 99.9% by weight.
After alloy casting (at each atomic%) was melted and cast in an Ar atmosphere of a high frequency melting furnace, the ingot was solution-treated at 1,070 ° C. in an Ar atmosphere for 20 hours. This is an A1 alloy. Next, an alloy of composition formula 20Nd-10Dy-20Fe-6B-44Co was similarly melt-cast in an Ar atmosphere using a high-frequency melting furnace using Nd, Dy, Fe, Co metals and ferroboron with a purity of 99.9% by weight. B1
It was an alloy. The A1 alloy ingot and the B1 alloy ingot were separately coarsely crushed in a nitrogen atmosphere to 30 mesh or less, and then 90% by weight of the A1 alloy coarse powder and 10% by weight of the B1 alloy coarse powder were replaced with nitrogen. 30 in V blender
Mix for minutes. This mixed coarse powder was finely pulverized with a jet mill using high-pressure nitrogen gas to an average particle size of about 5 μm. The obtained mixed fine powder was press-molded at a pressure of about 1 Ton / cm 2 while orienting in a magnetic field of 15 kOe. Next, this compact was sintered in an Ar atmosphere sintering furnace at 1,070 ° C for 1 hour,
Further, the alloy was subjected to an aging heat treatment at 530 ° C. for 1 hour and rapidly cooled to prepare a magnet alloy C1.

【0018】比較のため実施例1と同じ組成となる合金
を従来の1合金法にて製造し、比較例1とした。即ち、
A1、B1両合金混合後と同じ組成(磁石合金C1)を
最初から秤量し、溶解、粉砕、焼結、時効熱処理して2
合金法による磁石(実施例1の磁石組成C1)と磁気特
性を比較した。この磁石合金C1の組成は、2合金法に
よる実施例1、1合金法による比較例1共に、13.1Nd-
0.8Dy-4.5Co-6.0B-75.6Feである。表1に実施例1と比
較例1の両焼結体磁石において得られた磁気特性の値と
焼結体密度を示す。実施例1の磁気特性は比較例1に比
較して、焼結体密度は殆ど同じであるが、残留磁束密
度、保磁力、最大エネルギ−積等、全ての値において実
施例1が大きく勝っている。このように磁石合金Cの組
成が全く同一でも磁気特性にはかなりの差が生じてお
り、2合金法がNd磁石の磁気特性向上のために極めて有
効な方法であることを示している。B1合金の鋳造状態
での金属組織を、図1に走査電子顕微鏡の反射電子像写
真によって示した。写真の明暗から判る通りB1合金中
の主な構成相は4つある。各相は、EPMA(電子プローブ
X線マイクロアナライザー)およびX線解析によって、
図中に示したようにRT2 4B相、RT2 3相、RT2 2相、
Rリッチ相であることが判明した。
For comparison, an alloy having the same composition as that of Example 1 was manufactured by the conventional one-alloy method to obtain Comparative Example 1. That is,
The same composition (magnet alloy C1) after mixing both A1 and B1 alloys is weighed from the beginning, melted, crushed, sintered, and aged heat treated to 2
The magnetic characteristics were compared with the magnet by the alloy method (magnet composition C1 of Example 1). The composition of this magnet alloy C1 is 13.1 Nd-in both Example 1 by the two-alloy method and Comparative Example 1 by the one-alloy method.
It is 0.8Dy-4.5Co-6.0B-75.6Fe. Table 1 shows the magnetic property values and the sintered body densities obtained for both the sintered body magnets of Example 1 and Comparative Example 1. The magnetic properties of Example 1 are almost the same as those of Comparative Example 1 in terms of the density of the sintered body, but the values of Example 1, such as residual magnetic flux density, coercive force, and maximum energy product, are much higher than those of Comparative Example 1. There is. Thus, even if the composition of the magnet alloy C is exactly the same, there is a considerable difference in the magnetic properties, indicating that the two-alloy method is an extremely effective method for improving the magnetic properties of the Nd magnet. The metal structure of the B1 alloy in the cast state is shown in FIG. 1 by a backscattered electron image photograph of a scanning electron microscope. As can be seen from the lightness and darkness of the photograph, there are four main constituent phases in the B1 alloy. Each phase is analyzed by EPMA (electron probe X-ray microanalyzer) and X-ray analysis.
RT 2 4 B-phase as shown in FIG, RT 2 3-phase, RT 2 2 phase,
It was found to be the R-rich phase.

【0019】(実施例2〜12、比較例2〜12)表1に示
したように実施例2〜12の合金組成に対応して、A合金
としてA1、A3、A5、A7〜A10、A12の組成合金を作り、B合金
としてB2、B3、B5、B6、B7、B9、B10、B12の組成合金を作製
し、以下実施例1と同様の方法で粉砕、所定の比率に混
合、磁場中成形、焼結(1,050〜1,120℃×1時間)、時
効処理(500〜600℃×1〜10時間)を行い2合金法磁石
合金C2〜C12を製造し、その磁気特性を測定して表
1、2に併記した。比較のため実施例2〜12と同じ組成
となる合金を1合金法により作製した以外は実施例2〜
12と同条件により磁石合金C2〜C12を製造し、磁気特
性を測定して比較例2〜12とし、表1、表2に併記し
た。
(Examples 2-12, Comparative Examples 2-12) As shown in Table 1, corresponding to the alloy compositions of Examples 2-12, A1, A3, A5, A7-A10, A12 as A alloys. Of the composition alloy B2, B3, B5, B6, B7, B9, B10, B12 as an alloy B, and then pulverized by the same method as in Example 1 and mixed in a predetermined ratio in a magnetic field. Molding, sintering (1,050 to 1,120 ° C x 1 hour), aging treatment (500 to 600 ° C x 1 to 10 hours) were carried out to produce a two-alloy method magnetic alloy C2 to C12, and its magnetic characteristics were measured to obtain Table 1 2 is also described. For comparison, Examples 2 to 2 except that alloys having the same compositions as those of Examples 2 to 12 were produced by the one alloy method.
Magnetic alloys C2 to C12 were manufactured under the same conditions as in Example 12, and the magnetic properties were measured to give Comparative Examples 2 to 12, which are also shown in Tables 1 and 2.

【0020】[0020]

【表1】 [Table 1]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明により作製した希土類永久磁石
は、高価な添加元素を有効に活用して、従来法の同一組
成の希土類磁石と比べて磁気特性が数段優れており、高
保磁力、高残留磁束密度、さらには高エネルギー積のバ
ランスのとれた高性能磁石を提供することが可能となっ
た。従って今後、各種電気、電子機器用の高性能磁石と
して広汎に利用されることが期待される。
EFFECTS OF THE INVENTION The rare earth permanent magnet manufactured according to the present invention effectively utilizes expensive additive elements and has several magnetic properties superior to those of the conventional rare earth magnets having the same composition. It has become possible to provide a high-performance magnet with a well-balanced residual magnetic flux density and high energy product. Therefore, it is expected to be widely used in the future as a high-performance magnet for various electric and electronic devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のB1合金の走査電子顕微鏡写真によ
る鋳造状態での金属組織図である。
FIG. 1 is a metallographic diagram in a cast state of a B1 alloy of Example 1 by a scanning electron microscope photograph.

【符号の説明】[Explanation of symbols]

1 RT2 4B相 2 RT2 3相 3 RT2 2相 4 Rリッチ相1 RT 2 4 B phase 2 RT 2 3 phase 3 RT 2 2 phase 4 R rich phase

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月10日[Submission date] July 10, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】これまでに提案されている2合金法を大き
く分けると、3種類に分類することができる。第1の方
法は、混合する原料合金粉体の一方を液体急冷法によっ
て非晶質あるいは微細結晶合金を作製し、それに通常の
希土類合金粉末を混合するか、あるいは両方の原料合金
粉体を共に液体急冷法で作製混合する方法[特開昭63-9
3841、 特開昭63-115307、特開昭63-252403、特開昭63-278
208、特開平1-108707、特開平1-146310、 特開平1-146309、
特開平1-155603各号公報参照]である。この液体急冷
法による合金を使用する2合金法については、最近50MG
Oeを越える磁気特性が得られたと報告[E.Otuki,T.Otuka
and T.Imai;11th.Int.Workshopon Rare Earth Magnet
s,Pittsburgh,Pennsylvania,USA,October(1990),p.328
参照 ]されている。
The two alloy methods proposed so far can be roughly classified into three types. The first method is to prepare an amorphous or fine crystal alloy by liquid quenching one of the raw material alloy powders to be mixed, and mix it with a normal rare earth alloy powder, or to mix both raw material alloy powders together. Method of preparing and mixing by liquid quenching method [Japanese Patent Laid-Open No. 63-9
3841, JP 63-115307, JP 63-252403, JP Akira 63 -278
208, JP-A-1-108707, JP-A-1-146310, JP-A-1-146309,
See Japanese Patent Laid-Open No. 1-155603]. Regarding the two-alloy method using the alloy by this liquid quenching method, recently, 50MG
Reported that magnetic properties exceeding Oe were obtained [E.Otuki, T.Otuka
and T.Imai; 11th.Int.Workshopon Rare Earth Magnet
s, Pittsburgh, Pennsylvania, USA, October (1990), p.328
Has been referred to].

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】第2の方法は、混合する2種類の原料合金
粉体を共に主としてR2 Fe14B化合物とし含有される希
土類元素の種類、含有量を変えた合金を作製して混合焼
結する方法である。即ち、含有するNdリッチ相の量比あ
るいは希土類元素の種類を変えた合金を2種類混合する
方法[特開昭61-81603、 特開昭61-81604、 特開昭61-816
05、 特開昭61-81606、 特開昭61-81607、 特開昭61-11900
7、特開昭61-207546、特開昭63-245903、特開平1-177335各
号公報参照]である。
In the second method, two kinds of raw material alloy powders to be mixed are mainly used as R 2 Fe 14 B compound, and an alloy in which the kind and content of the rare earth element contained are changed is prepared and mixed and sintered. Is the way. That is, a method of mixing two kinds of alloys in which the amount ratio of the contained Nd-rich phase or the kind of rare earth element is changed [JP-A-61-81603, JP-A-61-81604, and JP-A-61-816].
05, JP 61-81606, JP 61-81607, JP 61-11900
7, JP 61-207546, JP 63-245 90 3, Hei 1-177335 is the JP reference.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】A合金を主としてR214B相(ここにR
は、Nd、Pr、Dyを主体とする少なくとも1種以上の希土類
元素、TはFeおよびCoを表す)から成る合金とし、B合
金をR、Co、Fe、 Bを含有し、かつ合金中の構成相として
21 14B相および/またはRリッチ相(ここにRは
上記に同じ、T1はFe、Co を主体とする遷移金属元素を
表す)並びにRT2 4B相、RT2 3相、RT2 2相、R2
2 7相およびRT2 5相(ここにRは上記に同じ、T2 はF
e、Co を主体とする遷移金属元素、同遷移金属およびB
を表す)の5相の内1種または2種以上の相との混合相
から成る合金とし、A合金粉末99〜70重量%に対してB
合金粉末を1〜30重量%混合し、該混合合金粉末を磁場
中加圧成形し、該成形体を真空または不活性ガス雰囲気
中で焼結し、さらに焼結温度以下の低温で時効熱処理す
ることを特徴とする希土類永久磁石の製造方法。
1. An A alloy is mainly used as an R 2 T 14 B phase (here, R
Is an alloy of at least one or more rare earth elements mainly composed of Nd, Pr and Dy, and T represents Fe and Co), and the B alloy contains R, Co, Fe and B, and R 2 T 1 14 B phase and / or R rich phase (where R is the same as above, T 1 is a transition metal element mainly composed of Fe and Co), RT 2 4 B phase and RT 2 as constituent phases 3 phase, RT 2 2 phase, R 2 T
2 7 phase and RT 2 5 phase (wherein R is as defined above, T 2 is F
Transition metal elements mainly composed of e and Co, transition metals and B
The alloy consisting of one or two or more phases out of the five phases of A) and 99 to 70% by weight of alloy powder B
The alloy powder is mixed in an amount of 1 to 30% by weight, the mixed alloy powder is pressure-molded in a magnetic field, the molded body is sintered in a vacuum or an inert gas atmosphere, and further subjected to an aging heat treatment at a temperature lower than the sintering temperature. A method of manufacturing a rare earth permanent magnet, characterized in that
【請求項2】請求項1に記載のB合金に含まれるRT2 4
B相、RT2 3相、RT2 2相、R22 7相およびRT2 5
の5つの構成相の内少なくとも1種以上の相の融点が70
0 ℃以上1,155 ℃以下の金属間化合物であることを特徴
とする希土類永久磁石の製造方法。
2. RT 2 4 contained in the B alloy according to claim 1.
B phase, RT 2 3-phase, RT 2 2 phase, a melting point of at least one or more phases of the five constituent phases of R 2 T 2 7 phase and RT 2 5 phase 70
A method for producing a rare earth permanent magnet, which is an intermetallic compound having a temperature of 0 ° C to 1,155 ° C.
【請求項3】請求項1または2に記載のB合金に含まれ
る5つの構成相の内、少なくとも1種以上の相が室温以
上のキューリー温度を有する磁性体であることを特徴と
する希土類磁石の製造方法。
3. A rare earth magnet, wherein at least one of the five constituent phases contained in the B alloy according to claim 1 or 2 is a magnetic material having a Curie temperature of room temperature or higher. Manufacturing method.
【請求項4】請求項1または2または3に記載のB合金
に含まれる5つの構成相の内、少なくとも1種以上の相
が室温以上のキューリー温度ならびに結晶磁気異方性を
有する磁性体であることを特徴とする希土類磁石の製造
方法。
4. Among the five constituent phases contained in the B alloy according to claim 1, 2 or 3, at least one phase is a magnetic material having a Curie temperature of room temperature or higher and a crystalline magnetic anisotropy. A method for manufacturing a rare earth magnet, characterized by being present.
【請求項5】請求項1に記載のA合金、B合金およびA
B混合合金粉末の平均粒径が、0.5 〜20μmの範囲内で
あることを特徴とする希土類磁石の製造方法。
5. The A alloy, B alloy and A according to claim 1.
A method for producing a rare earth magnet, wherein the B mixed alloy powder has an average particle size within a range of 0.5 to 20 μm.
JP03198479A 1991-07-12 1991-07-12 Manufacturing method of rare earth permanent magnet Expired - Lifetime JP3143157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03198479A JP3143157B2 (en) 1991-07-12 1991-07-12 Manufacturing method of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03198479A JP3143157B2 (en) 1991-07-12 1991-07-12 Manufacturing method of rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH0521219A true JPH0521219A (en) 1993-01-29
JP3143157B2 JP3143157B2 (en) 2001-03-07

Family

ID=16391799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03198479A Expired - Lifetime JP3143157B2 (en) 1991-07-12 1991-07-12 Manufacturing method of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP3143157B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595608A (en) * 1993-11-02 1997-01-21 Tdk Corporation Preparation of permanent magnet
WO2000012771A1 (en) * 1998-08-28 2000-03-09 Showa Denko K.K. Alloy for use in preparation of r-t-b-based sintered magnet and process for preparing r-t-b-based sintered magnet
US6777097B2 (en) 2001-06-14 2004-08-17 Shin-Etsu Chemical Co., Ltd. Corrosion resistant rare earth magnet and its preparation
US7156928B2 (en) 2001-11-20 2007-01-02 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant rare earth element magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595608A (en) * 1993-11-02 1997-01-21 Tdk Corporation Preparation of permanent magnet
WO2000012771A1 (en) * 1998-08-28 2000-03-09 Showa Denko K.K. Alloy for use in preparation of r-t-b-based sintered magnet and process for preparing r-t-b-based sintered magnet
US6444048B1 (en) 1998-08-28 2002-09-03 Showa Denko K.K. Alloy for use in preparation of R-T-B-based sintered magnet and process for preparing R-T-B-based sintered magnet
CN1094991C (en) * 1998-08-28 2002-11-27 昭和电工株式会社 Alloy for use in preparation of R-T-B-based sintered magnet and process for preparing R-T-B-based sintered magnet
US6777097B2 (en) 2001-06-14 2004-08-17 Shin-Etsu Chemical Co., Ltd. Corrosion resistant rare earth magnet and its preparation
US7156928B2 (en) 2001-11-20 2007-01-02 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant rare earth element magnet

Also Published As

Publication number Publication date
JP3143157B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
Ormerod The physical metallurgy and processing of sintered rare earth permanent magnets
JPWO2005123974A1 (en) R-Fe-B rare earth permanent magnet material
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP2024020341A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
US5192372A (en) Process for producing isotropic permanent magnets and materials
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH0461042B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPS6077959A (en) Permanent magnet material and its manufacture
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP3254232B2 (en) Manufacturing method of rare earth permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JPH0467324B2 (en)
JP3202830B2 (en) Rare earth sintered magnet and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11