JP3143157B2 - Manufacturing method of rare earth permanent magnet - Google Patents

Manufacturing method of rare earth permanent magnet

Info

Publication number
JP3143157B2
JP3143157B2 JP03198479A JP19847991A JP3143157B2 JP 3143157 B2 JP3143157 B2 JP 3143157B2 JP 03198479 A JP03198479 A JP 03198479A JP 19847991 A JP19847991 A JP 19847991A JP 3143157 B2 JP3143157 B2 JP 3143157B2
Authority
JP
Japan
Prior art keywords
phase
alloy
rare earth
magnet
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03198479A
Other languages
Japanese (ja)
Other versions
JPH0521219A (en
Inventor
的生 楠
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP03198479A priority Critical patent/JP3143157B2/en
Publication of JPH0521219A publication Critical patent/JPH0521219A/en
Application granted granted Critical
Publication of JP3143157B2 publication Critical patent/JP3143157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種電気、電子機器に
用いられる、磁気特性に優れた希土類永久磁石の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth permanent magnet having excellent magnetic properties and used for various electric and electronic devices.

【0002】[0002]

【従来の技術】希土類磁石の中でもNd-Fe-B系磁石は、
主成分であるNdが資源的に豊富でコストが安く、磁気特
性に優れているために、近年益々その利用が広がりつつ
ある。磁気特性向上のための開発研究も、Nd系磁石の発
明以来精力的に行われてきており、数多くの研究や発明
が提案されている。Nd系焼結磁石の製造方法の1つであ
る2種類の組成の異なった合金粉体を混合、焼結して高
性能Nd磁石を製造する方法(以下、2合金法という)に
関しても数々の発明考案が提案されている。
2. Description of the Related Art Among rare earth magnets, Nd-Fe-B magnets are:
In recent years, Nd, which is a main component, is abundant in resources, low in cost, and excellent in magnetic properties, and thus its use has been expanding in recent years. Research and development for improving magnetic properties has been energetically conducted since the invention of the Nd-based magnet, and many studies and inventions have been proposed. There are many methods for manufacturing high-performance Nd magnets by mixing and sintering two types of alloy powders having different compositions, which is one of the methods for manufacturing Nd-based sintered magnets (hereinafter referred to as the two-alloy method). Inventions have been proposed.

【0003】これまでに提案されている2合金法を大き
く分けると、3種類に分類することができる。第1の方
法は、混合する原料合金粉体の一方を液体急冷法によっ
て非晶質あるいは微細結晶合金を作製し、それに通常の
希土類合金粉末を混合するか、あるいは両方の原料合金
粉体を共に液体急冷法で作製混合する方法[特開昭63-9
3841、 特開昭63-115307、特開昭63-252403、特開昭63-278
208、特開平1-108707、特開平1-146310、 特開平1-146309、
特開平1-155603各号公報参照]である。この液体急冷
法による合金を使用する2合金法については、最近50MG
Oeを越える磁気特性が得られたと報告[E.Otuki,T.Otuka
and T.Imai;11th.Int.Workshopon Rare Earth Magnet
s,Pittsburgh,Pennsylvania,USA,October(1990),p.328
参照 ]されている。
The two alloy methods proposed so far can be roughly classified into three types. In the first method, one of the raw material alloy powders to be mixed is made into an amorphous or microcrystalline alloy by a liquid quenching method, and a normal rare earth alloy powder is mixed therewith, or both raw material alloy powders are mixed together. A method of producing and mixing by a liquid quenching method [JP-A-63-9
3841, JP 63-115307, JP 63-252403, JP Akira 63 -278
208, JP-A-1-108707, JP-A-1-46310, JP-A-1-146309,
Japanese Patent Application Laid-Open No. 1-155603]. Recently, a 50MG alloy using this liquid quenching alloy has been
Reported that magnetic properties exceeding Oe were obtained [E. Otuki, T. Otuka
and T.Imai; 11th.Int.Workshopon Rare Earth Magnet
s, Pittsburgh, Pennsylvania, USA, October (1990), p. 328
See].

【0004】第2の方法は、混合する2種類の原料合金
粉体を共に主としてR2 Fe14B化合物とし含有される希
土類元素の種類、含有量を変えた合金を作製して混合焼
結する方法である。即ち、含有するNdリッチ相の量比あ
るいは希土類元素の種類を変えた合金を2種類混合する
方法[特開昭61-81603、 特開昭61-81604、 特開昭61-816
05、 特開昭61-81606、 特開昭61-81607、 特開昭61-11900
7、特開昭61-207546、特開昭63-245903、特開平1-177335各
号公報参照]である。
A second method is to prepare an alloy in which the two kinds of raw material alloy powders to be mixed are changed mainly as R 2 Fe 14 B compounds and the kinds and contents of the rare earth elements contained therein are mixed and sintered. Is the way. That is, a method of mixing two kinds of alloys in which the amount ratio of the contained Nd-rich phase or the kind of the rare earth element is changed [Japanese Patent Application Laid-Open Nos. 61-81603, 61-81604 and 61-816]
05, JP-A-61-81606, JP-A-61-81607, JP-A-61-11900
7, JP 61-207546, JP 63-245 90 3, Hei 1-177335 is the JP reference.

【0005】第3の方法は、一方の合金を主としてR2
Fe14B化合物からなる合金粉末とし、これに各種低融点
元素、低融点合金、希土類合金、炭化物、硼化物、水素
化物等の粉末を混合焼結して、Nd系希土類磁石を製造す
る方法 [特開昭60-230959、特開昭61-263201、特開昭62-1
81402、特開昭62-182249、特開昭62-206802、特開昭62-270
746、特開昭63-6808、特開昭63-104406、特開昭63-114939、
特開昭63-272006、特開平1-111843、 特開平1-146308各号
公報参照] である。
The third method is to use one of the alloys mainly as R 2
A method of producing an Nd-based rare earth magnet by mixing and sintering powders of various low-melting elements, low-melting alloys, rare-earth alloys, carbides, borides, hydrides and the like into an alloy powder composed of an Fe 14 B compound [ JP-A-60-230959, JP-A-61-263201, JP-A-62-1
81402, JP-A-62-182249, JP-A-62-206802, JP-A-62-270
746, JP-A-63-6808, JP-A-63-104406, JP-A-63-114939,
JP-A-63-272006, JP-A-1-111843, and JP-A-1-146308.

【0006】[0006]

【発明が解決しようとする課題】従来技術による2合金
法ではNd系磁石合金の真に優れた磁気特性を実現させる
のに適切でなかったり不充分だったりする点が多く存在
する。即ち、前述した第1の方法では磁石合金のエネル
ギ−積は高いが保磁力は約9kOe 程度で、温度上昇によ
って保磁力が低下するというNd磁石特有の欠点のため
に、実用的には不充分な磁石特性である。最も大きな問
題点は、磁場配向性である。第1の方法でも組成を適当
に選ぶことによって、室温で磁性を示す合金を得ること
ができるが、液体急冷法によって得られる合金は非晶質
アモルファス相あるいは微細結晶となるため、微粉にし
て磁場中で配向させても特定の結晶方位を磁場方向に配
向させることができない。従って、混合した原料合金粉
体を磁場中成形しても得られる成形体の配向性は悪く、
焼結後充分な磁石特性が得られないことになる。
There are many points that the two-alloy method according to the prior art is not suitable or insufficient for realizing the truly excellent magnetic properties of Nd-based magnet alloys. That is, in the first method described above, the energy product of the magnet alloy is high, but the coercive force is about 9 kOe, and the coercive force decreases with increasing temperature. Magnet properties. The biggest problem is the magnetic field orientation. In the first method, an alloy exhibiting magnetism at room temperature can be obtained by appropriately selecting the composition. However, since the alloy obtained by the liquid quenching method becomes an amorphous amorphous phase or a fine crystal, the alloy is formed into a fine powder and a magnetic field. A specific crystal orientation cannot be oriented in the direction of the magnetic field even if it is oriented in a magnetic field. Therefore, the orientation of the molded body obtained even when the mixed raw material alloy powder is molded in a magnetic field is poor,
After sintering, sufficient magnet properties cannot be obtained.

【0007】第2の方法においては、磁石合金中のR2
Fe14B化合物と共存する相はNdリッチ相あるいはNd1+X
Fe44 相であり、この両相とも室温では磁性を示さな
い。従って、磁性を持たない化合物の混在が配向性を乱
すことになって、磁気特性の優れた磁石は得られない。
また、混合する粉体として各種元素や種々の化合物を用
いる第3の方法においてもこれらの化合物は磁性をもた
ないために、磁場中配向時に反磁場が大きくなって有効
磁場強度が減少し、そのため磁場方向への磁性粒子の回
転が不充分となって配向が乱れる。
In the second method, R 2 in the magnet alloy is
The phase coexisting with Fe 14 B compound is Nd rich phase or Nd 1 + X
Fe 4 B 4 phase, both of which do not show magnetism at room temperature. Therefore, the presence of a compound having no magnetism disturbs the orientation, and a magnet having excellent magnetic properties cannot be obtained.
Also, in the third method using various elements and various compounds as powders to be mixed, since these compounds do not have magnetism, the demagnetizing field increases during orientation in a magnetic field, and the effective magnetic field strength decreases. Therefore, the rotation of the magnetic particles in the direction of the magnetic field becomes insufficient, and the orientation is disturbed.

【0008】第3の方法において、混合する粉体に低融
点の元素あるいは合金を利用して磁気特性を向上させよ
うとする提案があるが、これは焼結中に混合した低融点
相が、R2 Fe14B化合物の粒界に存在する格子欠陥や酸
化物相などのニュークリエーションサイトを除去し、粒
界をクリーニングして保磁力を向上させるという考え方
によるものである。しかし、低融点相の存在は次に述べ
るような理由から、実際には磁気特性の向上に対して逆
に不利な条件となっている。低融点相が例えば660 ℃付
近から融液となっていると、実際の焼結温度1,100 ℃で
は低融点相の粘度はかなり小さくなってしまう。その結
果、成形体は液相焼結によって収縮しながら同時に粒の
周囲を囲む融液の粘度が小さいために磁性粒子の回転が
容易に起り、配向が乱れて磁気特性が劣化する。つま
り、Nd磁石の液相焼結における望ましい液相成分は、適
当な粘度を保って粒子の配向を乱さず、かつまた成形体
を緻密化し、粒界を十分にクリーニングアップできるこ
とが必要なのである。従来の2合金法においては、液相
成分が関与する磁場配向性と保磁力向上の両方の役割を
充分に考慮し、これらが最適な条件となるよう液相合金
成分の磁性と融点を適切に調整してはいなかった。本発
明は2合金法における前述したような欠点を改良し、バ
ランスのとれた磁気特性に優れた希土類永久磁石の製造
方法を提供しようとするものである。
In the third method, there is a proposal to improve the magnetic properties by using a low melting point element or alloy in the powder to be mixed. This is based on the idea that nucleation sites such as lattice defects and oxide phases existing at the grain boundaries of the R 2 Fe 14 B compound are removed and the grain boundaries are cleaned to improve the coercive force. However, the presence of the low melting point phase is actually a disadvantageous condition for improving the magnetic properties for the following reasons. If the low-melting phase is melted from, for example, around 660 ° C., the viscosity of the low-melting phase becomes considerably small at an actual sintering temperature of 1,100 ° C. As a result, the compact shrinks due to liquid phase sintering, and at the same time, the viscosity of the melt surrounding the grains is low, so that the rotation of the magnetic particles easily occurs, the orientation is disturbed, and the magnetic properties deteriorate. In other words, a desirable liquid phase component in the liquid phase sintering of the Nd magnet needs to maintain an appropriate viscosity without disturbing the orientation of the particles, and also to densify the compact and sufficiently clean up the grain boundaries. In the conventional two-alloy method, the roles of the magnetic field orientation and the coercive force improvement involving the liquid phase component are both sufficiently taken into consideration, and the magnetism and melting point of the liquid phase alloy component are appropriately adjusted so that these become the optimum conditions. I didn't adjust it. An object of the present invention is to improve the above-mentioned drawbacks of the two-alloy method and to provide a method for producing a rare-earth permanent magnet having excellent balanced magnetic properties.

【0009】[0009]

【課題を解決するための手段】本発明者等は、かかる課
題を解決するために2合金法を基本的に見直し、磁性体
構成相の種類、特性等を適切に選択し組合せることによ
り充分満足できるバランスのとれた磁気特性が得られる
ことを見出し、製造条件を詳細に検討して本発明を完成
させた。本発明の要旨は、A合金を主としてR2 14
相(ここにRは、Nd、 Pr、 Dyを主体とする少なくとも
1種以上の希土類元素、TはFe及びCo表す)から成る
合金とし、B合金をR,Co,Fe,Bを含有し、かつ合金
中の構成相としてR2 1 14B相および/またはRリッ
チ相(ここにRは上記に同じ、T1 はFe、 Coを主体と
する遷移金属元素を表す)並びにRT2 4 B相、RT2
3 相、RT2 2 相、R2 2 7 相およびRT2 5 相(こ
こにRは上記に同じ、T2 はFe、 Coを主体とする遷移
金属元素、または該遷移金属元素およびBを表す)の5
相の内1種または2種以上の相との混合相から成る合金
とし、A合金粉末99〜70重量%に対してB合金粉末を1
〜30重量%混合し、該混合合金粉末を磁場中加圧成形
し、該成形体を真空または不活性ガス雰囲気中で焼結
し、さらに焼結温度以下の低温で時効熱処理してCoを含
有する磁石合金とすることを特徴とする希土類永久磁石
の製造方法であり、更に詳しくは、B合金に含まれるR
2 4 B相、RT2 3 相、RT2 2 相、R2 2 7 相お
よびRT2 5 相の5つの構成相の内少なくとも1種以上
の相の融点が700℃以上1,155℃以下の金属間化合物であ
り、少なくとも1種以上の相が室温以上のキューリー温
度を有する磁性体であり、少なくとも1種以上の相が室
温以上のキューリー温度ならびに結晶磁気異方性を有す
る磁性体であることを特徴とする希土類磁石の製造方法
である。
Means for Solving the Problems In order to solve the above problems, the present inventors have basically reviewed the two-alloy method, and it is sufficient to properly select and combine the types and characteristics of the constituent phases of the magnetic material. The present inventors have found that satisfactory and well-balanced magnetic properties can be obtained, and have studied the manufacturing conditions in detail to complete the present invention. The gist of the present invention is that the alloy A is mainly composed of R 2 T 14 B
Phase (here R is, Nd, Pr, at least one or more rare earth elements mainly containing Dy, T represents Fe and Co) and alloys consisting of, a B alloy containing R, Co, Fe, and B and R 2 T 1 14 B phase and / or the R-rich phase as a phase in the alloy (in which R is as defined above, T 1 represents a transition metal element mainly Fe, a Co) and RT 2 4 Phase B, RT 2
3-phase, RT 2 2-phase, R 2 T 2 7 phase and RT 2 5 phase (wherein R is as defined above, the transition metal element T 2 are mainly Fe, and Co, or the transition metal elements and B 5)
An alloy consisting of one or more of the above phases, and a B alloy powder in an amount of 99 to 70% by weight of the A alloy powder.
-30% by weight, and press-molding the mixed alloy powder in a magnetic field, sintering the compact in a vacuum or inert gas atmosphere, and further aging heat treatment at a low temperature below the sintering temperature to contain Co A method for producing a rare earth permanent magnet, characterized in that the magnet alloy comprises
T 2 4 B-phase, RT 2 3-phase, RT 2 2-phase, R 2 T 2 7 phase and RT 2 5-phase five of at least one or more phases of the constituent phases melting point 1,155 ° C. or less of 700 ° C. or higher An intermetallic compound, wherein at least one phase is a magnetic material having a Curie temperature of room temperature or higher, and at least one phase is a magnetic material having a Curie temperature of room temperature or higher and crystal magnetic anisotropy This is a method for producing a rare earth magnet.

【0010】以下本発明を詳細に説明する。本発明は所
謂2合金法と称する希土類永久磁石(以下、磁石合金C
という)の製造方法であり、原料となるA合金は主とし
てR214B化合物相からなり、RはYを含む La,Ce,P
r,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,YbおよびLuから選択
されるNd、Pr、Dyを主体とする少なくとも1種類以上の希
土類元素である。またTはFeおよびCoを表し、Coの含有
量は重量%で0.1 〜40%である。Co添加によりA合金の
キューリー温度が上昇し、また合金の耐食性も改善され
る。A合金は原料金属を真空または不活性ガス、好まし
くはAr雰囲気中で溶解し鋳造する。原料金属は純希土類
元素あるいは希土類合金、純鉄、フェロボロン、さらに
はこれらの合金等を使用するが、一般的な工業生産にお
いて不可避な微量不純物は含まれるものとする。得られ
たインゴットは、R2 Fe14B相がαFeと希土類リッチ相
との包晶反応によって形成されるため、鋳造後も凝固偏
析によってαFe相、Rリッチ相、Bリッチ相、Nd3C
o相等が残留する場合がある。本発明においてはA合金
中のR2 Fe14B相が多いほうが望ましいので、必要に応
じて溶体化処理を行う。その条件は真空またはAr雰囲気
下、700 〜1,200 ℃の温度領域で1時間以上熱処理すれ
ば良い。
Hereinafter, the present invention will be described in detail. The present invention relates to a rare-earth permanent magnet (hereinafter referred to as a magnet alloy C) called a so-called two-alloy method.
A) as a raw material is mainly composed of an R 2 T 14 B compound phase, and R is Y containing La, Ce, P
It is at least one or more rare earth elements mainly composed of Nd, Pr, and Dy selected from r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. T represents Fe and Co, and the Co content is 0.1 to 40% by weight. The addition of Co increases the Curie temperature of the A alloy and also improves the corrosion resistance of the alloy. The alloy A is prepared by melting a raw metal in a vacuum or an inert gas, preferably an Ar atmosphere. As a raw material metal, a pure rare earth element or a rare earth alloy, pure iron, ferroboron, or an alloy thereof is used, but a trace impurity inevitable in general industrial production is included. In the obtained ingot, since the R 2 Fe 14 B phase is formed by the peritectic reaction between αFe and the rare-earth rich phase, the αFe phase, R-rich phase, B-rich phase, Nd3C
An o-phase or the like may remain. In the present invention, it is desirable that the amount of the R 2 Fe 14 B phase in the A alloy is large, so that a solution treatment is performed as necessary. The heat treatment may be performed in a vacuum or Ar atmosphere at a temperature of 700 to 1,200 ° C. for 1 hour or more.

【0011】B合金は主としてR、Co、Fe、Bから
成る合金で、組成式R a Fe b Co cB d(ここにRは、Y
を含むLa,Ce,Pr,Nd,Pm,Eu,Gd,Tb,Dy,Ho,Er,
Tm,YbおよびLuから選択されるNd,Pr,Dyを主体とする
少なくとも1種以上の希土類元素、15≦a≦40、0≦b
≦80、5≦c≦85、0≦d≦20、a+b+c+d=100(各
原子%))で表わされ、A合金と同様に原料金属を真空
または不活性ガス、好ましくはAr雰囲気中で溶解し鋳造
する。原料金属としては純希土類元素あるいは希土類合
金、純鉄、純コバルト、フェロボロン、さらにはこれら
の合金等を使用するが、一般的な工業生産においては不
可避な微量不純物は含まれるものとする。希土類元素R
の量aが15原子%未満ではRが少な過ぎるために焼結工
程において十分な量の液相が得られず、焼結体の密度が
上がらなくなり、40原子%をえると合金の融点が低く
なり過ぎて磁気特性の向上効果がなくなる。Coの量cが
5原子%未満ではRT2 4 B相、RT2 3 相、RT2 2
相、R2 2 7 相およびRT2 5 相等の各相が出現しな
くなり、磁気特性の向上効果が得られない。また、液体
急冷法によって得られた薄帯を熱処理してもB合金を作
製することができる。即ち、液体急冷法において、急冷
後のB合金はアモルファス相或は微細結晶相となってお
り、これを結晶化温度以上の温度で一定時間以上加熱す
ることにより、結晶化或は再結晶成長させて、本発明の
所定の構成相を析出させることが出来る。
The B alloy is an alloy mainly composed of R, Co, Fe, and B , and has a composition formula RaFebCocBd (where R is Y
La, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er,
At least one or more rare earth elements mainly composed of Nd, Pr and Dy selected from Tm, Yb and Lu, 15 ≦ a ≦ 40, 0 ≦ b
≤ 80, 5 ≤ c ≤ 85, 0 ≤ d ≤ 20, a + b + c + d = 100 (atomic%)). Is melted and cast in an Ar atmosphere. As a raw material metal, a pure rare earth element or a rare earth alloy, pure iron, pure cobalt, ferroboron, or an alloy thereof is used, but a trace impurity inevitable in general industrial production is included. Rare earth element R
Amount a is not obtained a sufficient amount of liquid phase at the sintering step for R is too small it is less than 15 atomic%, no longer rise density of the sintered body, is a 40 atomic percent is exceeded and alloy melting point It becomes too low and the effect of improving the magnetic properties is lost. RT 2 4 B phase in an amount c is less than 5 atomic% of Co, RT 2 3-phase, RT 2 2
Phases, each phase of the R 2 T 2 7 phase and RT 2 5 equality is no longer appear, not the effect of improving magnetic characteristics. Further, a B alloy can be produced by heat-treating a ribbon obtained by the liquid quenching method. That is, in the liquid quenching method, the B alloy after quenching is in an amorphous phase or a fine crystalline phase. By heating this at a temperature higher than the crystallization temperature for a certain period of time, crystallization or recrystallization growth is performed. Thus, the predetermined constituent phase of the present invention can be precipitated.

【0012】この組成範囲においてB合金中に主に出現
する相は、R2 1 14B相(主としてR2 Fe14B相)、
Rリッチ相(ここにRは上記に同じ、T1 はFe、 Coを
主体とする遷移金属元素を表す)並びにRT2 4 B相、
RT2 3 相、RT2 2 相、R2 2 7 相およびRT2 5
相(ここにRは上記に同じ、T2 はFe、 Coを主体とす
る遷移金属元素、または該遷移金属元素およびBを表
す)等であり、本発明では前2相および後5相の内少な
くとも1種または2種以上の相を含むB合金を使用する
ことに特徴がある。なおRリッチ相と表記した相は、R
成分が35原子%以上となるRに富んだ各種の相全てを表
すものとする。これら7種類の相のうち、R2 Fe14
相、Rリッチ相の2相は、従来公知の2合金法や、通常
の希土類鉄ボロン系磁石合金の製造法によっても出現し
ていた相である。残りのRT2 4 B相、RT2 3 相、R
2 2 相、R2 2 7 相、RT2 5 相の5種類の相は、
B合金に5原子%以上のCoを添加することにより出現
し、本発明の2合金法において特有のものである。これ
ら5相はCoを5原子%以上添加することによって初め
てB合金中に平衡相として出現したものである。図1は
本発明のB合金の鋳造組織写真を走査電子顕微鏡により
撮影し、組成をEPMA(電子プローブX線マイクロアナラ
イザー)およびX線回析により求めた1例で1.RT2
4 B相、2.RT2 3 相、3.RT2 2 相、4.Rリッ
チ相の存在が明確に表されている。本発明による2合金
法は、B合金中にこれら5相のうち、少なくとも1種以
上含むことを特徴とし、これらの相の存在によって2合
金法で作製された磁石合金に高い磁気特性を実現するこ
とができた。
[0012] Phase mainly appears in B alloy in this composition range, R 2 T 1 14 B phase (mainly R 2 Fe 14 B phase)
R-rich phase (wherein R is as defined above, T 1 represents a transition metal element Fe, a Co mainly) and RT 2 4 B-phase,
RT 2 3-phase, RT 2 2-phase, R 2 T 2 7 phase and RT 2 5
Phase (here, R is the same as above, and T 2 is a transition metal element mainly composed of Fe or Co, or the transition metal element and B), and the like in the present invention. It is characterized in that a B alloy containing at least one or two or more phases is used. The phase described as R-rich phase is R-phase.
It is intended to represent all of the various R-rich phases whose components are at least 35 atomic%. Of these seven phases, R 2 Fe 14 B
The two phases, the R-rich phase and the R-rich phase, are phases that have also appeared by a conventionally known two-alloy method or a normal rare-earth iron-boron-based magnet alloy manufacturing method. Remaining RT 2 4 B phase, RT 2 3 phase, R
T 2 2-phase, R 2 T 2 7 phase, five phase RT 2 5 phase,
Appears by adding 5 atomic% or more of Co to the B alloy and is unique to the two-alloy method of the present invention. These five phases first appeared as an equilibrium phase in the B alloy by adding 5 atomic% or more of Co. FIG. 1 shows an example in which a photograph of the casting structure of the alloy B of the present invention was taken with a scanning electron microscope and the composition was determined by EPMA (electron probe X-ray microanalyzer) and X-ray diffraction . RT 2
4 Phase B; RT 2 3-phase, 3. RT 2 2 phase, 4. The presence of the R-rich phase is clearly shown. The two-alloy method according to the present invention is characterized in that at least one of these five phases is contained in the B alloy, and the presence of these phases realizes high magnetic properties for the magnet alloy produced by the two-alloy method. I was able to.

【0013】本発明では以上述べたA合金、B合金を特
定割合に混合し、所謂2合金法によって磁石合金Cを作
製し、高い磁気特性を発現させることができた。以下、
B合金におけるこれら混合相の存在が磁石合金の高い磁
気特性をもたらした理由について述べる。まず第1の理
由として、これら混合相が室温以上のキューリー温度を
持つことが挙げられ、これは添加元素Coによって達成さ
れた。さらに、これらの相は特定の結晶方向に結晶磁気
異方性を持つ。従って、主な構成相としてこれらの相の
1種以上を含有するB合金粉末を主にR2Fe14 B相から
成るA合金粉末に混合して磁場中配向させると、B合金
も強磁性体で磁気異方性を持つため、加えた磁場方向に
ほぼ全ての粒子が結晶方向を揃えて配向し、高い磁気特
性が得られることになる。
In the present invention, the above alloys A and B are mixed at a specific ratio, and a magnet alloy C is produced by a so-called two-alloy method, whereby high magnetic properties can be exhibited. Less than,
The reason why the presence of these mixed phases in the B alloy resulted in the high magnetic properties of the magnet alloy will be described. The first reason is that these mixed phases have a Curie temperature above room temperature, which was achieved by the additive element Co. Further, these phases have magnetocrystalline anisotropy in a specific crystal direction. Therefore, when a B alloy powder containing one or more of these phases as a main constituent phase is mixed with an A alloy powder mainly composed of R2Fe14 B phase and oriented in a magnetic field, the B alloy is also a ferromagnetic material and has a different magnetic property. Since it has anisotropy, almost all particles are oriented with the crystal direction aligned in the direction of the applied magnetic field, and high magnetic properties can be obtained.

【0014】第2の理由は、これらの相の融点がNd系希
土類磁石の液相焼結にとって適当な温度範囲、即ち700
℃以上1,155 ℃以下の範囲となることである。この温度
範囲はNdリッチ相の融点(500 〜 650℃)よりは高く、
しかもR2Fe14 B相の融点(1,155 ℃)以下の温度であ
る。従って、通常の焼結温度においてNdリッチ相のみが
存在していて融液の粘度が下がり過ぎてしまい、その結
果粒子の配向を乱してしまうようなことがなく、かつま
た液相となって粒界をクリーニングしながら密度を上
げ、焼結後高い磁石特性を実現することになる。Co添加
によるもう1つの効果として、耐食性の向上が挙げられ
る。B合金はA合金より希土類元素を多く含有するため
酸化劣化しやすくなるが、Coを添加することにより酸化
劣化を防止することができ、安定した磁気特性が得られ
る。またA合金にCoを添加することも合金の耐食性を向
上させ酸化劣化が少なくなって、安定した磁気特性が得
られる。B合金に添加されるDyは、両者共焼結後も粒界
近傍に多く存在し、磁石合金Cの保磁力を向上させる効
果がある。
The second reason is that the melting points of these phases are in a temperature range suitable for liquid phase sintering of Nd-based rare earth magnets, ie, 700 ° C.
It should be in the range of not less than 1,155 ° C. This temperature range is higher than the melting point of the Nd-rich phase (500-650 ° C),
In addition, the temperature is lower than the melting point of the R 2 Fe 14 B phase (1,155 ° C.). Therefore, at the normal sintering temperature, only the Nd-rich phase is present and the viscosity of the melt does not decrease too much, so that the orientation of the particles is not disturbed, and the liquid phase is formed. The density is increased while cleaning the grain boundaries, and high magnet properties are realized after sintering. Another effect of the addition of Co is an improvement in corrosion resistance. The B alloy contains more rare earth elements than the A alloy and thus is easily oxidized and deteriorated. However, by adding Co, the oxidized deterioration can be prevented and stable magnetic properties can be obtained. Addition of Co to the A alloy also improves the corrosion resistance of the alloy, reduces oxidative degradation, and provides stable magnetic properties. Dy added to the B alloy is present in the vicinity of the grain boundary even after co-sintering, and has an effect of improving the coercive force of the magnet alloy C.

【0015】次に2合金法による磁石合金Cの製造方法
を述べる。上記のようにして得られたA合金およびB合
金は、各インゴットを別々に粉砕した後、所定割合に混
合される。粉砕は、湿式又は乾式粉砕にて行われる。希
土類合金は非常に活性であり、粉砕中の酸化を防ぐこと
を目的に、乾式粉砕の場合はAr又は窒素などの雰囲気中
で、湿式粉砕の場合はフロンなどの非反応性の有機溶媒
中で行われる。混合工程も必要に応じて不活性雰囲気又
は溶媒中で行われる。粉砕は一般に粗粉砕、微粉砕と段
階的に行われるが、混合はどの段階で行われても良い。
即ち粗粉砕後に所定量混合し引続いて微粉砕を行っても
よいし、全ての粉砕を完了した後に所定の割合に混合し
てもよい。A、B両合金がほぼ同じ平均粒径で均一に混
合されることが必要で、平均粒径は0.5 〜20μmの範囲
が良く、0.5 μm未満では酸化され劣化し易く、20μm
を越えると焼結性が悪くなる。
Next, a method for producing the magnet alloy C by the two-alloy method will be described. The A alloy and the B alloy obtained as described above are separately mixed and then mixed at a predetermined ratio. The pulverization is performed by wet or dry pulverization. Rare earth alloys are very active, and are used in an atmosphere such as Ar or nitrogen in the case of dry grinding and in a non-reactive organic solvent such as Freon in the case of wet grinding in order to prevent oxidation during grinding. Done. The mixing step is also performed in an inert atmosphere or a solvent as necessary. The pulverization is generally performed stepwise as coarse pulverization and fine pulverization, but mixing may be performed at any stage.
That is, a predetermined amount may be mixed after coarse pulverization and then finely pulverized, or may be mixed at a predetermined ratio after all pulverization is completed. It is necessary that both the A and B alloys are uniformly mixed with substantially the same average particle size. The average particle size is preferably in the range of 0.5 to 20 μm, and if it is less than 0.5 μm, it is easily oxidized and deteriorated.
If it exceeds sinterability, the sinterability deteriorates.

【0016】A合金粉末とB合金粉末の混合割合は、A
合金粉末99〜70重量%に対してB合金粉末を1〜30重量
%の範囲で混合するのが良く、B合金粉末が1重量%未
満では焼結密度が上がらなくなり保磁力が得られない
し、30重量%を越えると焼結後の非磁性相の割合が大き
くなり過ぎて、残留磁束密度が小さくなってしまう。得
られたA合金とB合金の混合微粉は、次に磁場中成型プ
レスによって所望の寸法に成型され、さらに焼結熱処理
する。焼結は900 〜1,200 ℃の温度範囲で真空又はアル
ゴン雰囲気中にて30分以上行ない、続いて焼結温度以下
の低温で30分以上時効熱処理する。焼結後、磁石合金C
の成形体の密度は対真密度比で95%以上に緻密化してお
り高い残留磁束密度が得られる。
The mixing ratio of the A alloy powder and the B alloy powder is
It is preferable to mix the B alloy powder in the range of 1 to 30% by weight with respect to 99 to 70% by weight of the alloy powder. If it exceeds 30% by weight, the proportion of the nonmagnetic phase after sintering becomes too large, and the residual magnetic flux density becomes small. The obtained mixed powder of the alloy A and the alloy B is molded into a desired size by a molding press in a magnetic field, and further subjected to a sintering heat treatment. The sintering is performed in a vacuum or argon atmosphere at a temperature in the range of 900 to 1,200 ° C. for 30 minutes or more, followed by an aging heat treatment at a temperature lower than the sintering temperature for 30 minutes or more. After sintering, magnet alloy C
The compact has a density of 95% or more in terms of true density, so that a high residual magnetic flux density can be obtained.

【0017】[0017]

【実施例】以下、本発明の具体的な実施態様を実施例を
挙げて説明するが、本発明はこれらに限定されるもので
はない。 (実施例1、比較例1) 純度99.9重量%のNd、 Feメタルとフェロボロンを用いて
組成式12.5Nd-6B-1.5Co-80Fe(各原子%)の合金を、高
周波溶解炉のAr雰囲気中にて溶解鋳造した後、このイン
ゴットを1,070 ℃、Ar雰囲気中にて20時間溶体化した。
これをA1合金とする。次に同じく純度99.9重量%のN
d、Dy、Fe、Co メタルとフェロボロンを用いて組成式20Nd-
10Dy-20Fe-6B-44Coの合金を高周波溶解炉を用いAr雰囲
気にて溶解鋳造し、これをB1合金とした。A1合金イ
ンゴットとB1合金インゴットをそれぞれ別々に窒素雰
囲気中にて粗粉砕して30メッシュ以下とし、次にA1合
金粗粉90重量%にB1合金粗粉を10重量%秤量して、窒
素置換したVブレンダー中で30分間混合した。この混合
粗粉を高圧窒素ガスを用いたジェットミルにて、平均粒
径約5μmに微粉砕した。得られた混合微粉末を15kOe
の磁場中で配向させながら、約1Ton/cm2 の圧力でプレ
ス成型した。次いで、この成形体はAr雰囲気の焼結炉内
で1,070 ℃で1時間焼結され、さらに530 ℃で1時間時
効熱処理して急冷し、磁石合金C1を作製した。
EXAMPLES Hereinafter, specific embodiments of the present invention will be described with reference to examples, but the present invention is not limited thereto. (Example 1, Comparative Example 1) An alloy having a composition formula of 12.5Nd-6B-1.5Co-80Fe (each atomic%) was prepared using Nd and Fe metal having a purity of 99.9% by weight and ferroboron in an Ar atmosphere of a high-frequency melting furnace. After ingot casting, the ingot was solution-solutioned at 1,070 ° C. in an Ar atmosphere for 20 hours.
This is an A1 alloy. Next, 99.9% by weight of N
d, Dy, Fe, Co Using metal and ferroboron, formula 20Nd-
An alloy of 10Dy-20Fe-6B-44Co was melt-cast in an Ar atmosphere using a high-frequency melting furnace to obtain a B1 alloy. The A1 alloy ingot and the B1 alloy ingot were each separately coarsely pulverized in a nitrogen atmosphere to 30 mesh or less, and then the A1 alloy coarse powder was weighed to 90% by weight and the B1 alloy coarse powder was weighed by 10% by weight and replaced with nitrogen. Mix in V blender for 30 minutes. This mixed coarse powder was finely pulverized with a jet mill using high-pressure nitrogen gas to an average particle size of about 5 μm. 15 kOe of the obtained mixed fine powder
Press molding at a pressure of about 1 Ton / cm 2 while orienting in a magnetic field. Next, this compact was sintered in a sintering furnace in an Ar atmosphere at 1,070 ° C. for 1 hour, and further subjected to aging heat treatment at 530 ° C. for 1 hour and rapidly cooled to produce a magnet alloy C1.

【0018】比較のため実施例1と同じ組成となる合金
を従来の1合金法にて製造し、比較例1とした。即ち、
A1、B1両合金混合後と同じ組成(磁石合金C1)を
最初から秤量し、溶解、粉砕、焼結、時効熱処理して2
合金法による磁石(実施例1の磁石組成C1)と磁気特
性を比較した。この磁石合金C1の組成は、2合金法に
よる実施例1、1合金法による比較例1共に、13.1Nd-
0.8Dy-4.5Co-6.0B-75.6Fe である。表1に実施例1と
比較例1の両焼結体磁石において得られた磁気特性の値
と焼結体密度を示す。実施例1の磁気特性は比較例1に
比較して、焼結体密度は殆ど同じであるが、残留磁束密
度、保磁力、最大エネルギ−積等、全ての値において実
施例1が大きく勝っている。このように磁石合金Cの組
成が全く同一でも磁気特性にはかなりの差が生じてお
り、2合金法がNd磁石の磁気特性向上のために極めて有
効な方法であることを示している。B1合金の鋳造状態
での金属組織を、図1に走査電子顕微鏡の反射電子像写
真によって示した。写真の明暗から判る通りB1合金中
の主な構成相は4つある。各相は、EPMA(電子プローブ
X線マイクロアナライザー)およびX線解析によって、
図中に示したようにRT2 4B相、RT2 3相、RT2 2相、
Rリッチ相であることが判明した。
For comparison, an alloy having the same composition as in Example 1 was produced by a conventional one-alloy method, and Comparative Example 1 was obtained. That is,
The same composition (magnet alloy C1) as after mixing both alloys A1 and B1 was weighed from the beginning, melted, pulverized, sintered, and subjected to aging heat treatment.
The magnet characteristics were compared with the magnet by the alloy method (magnet composition C1 of Example 1). The composition of this magnet alloy C1 was 13.1 Nd- in both Example 1 by the two-alloy method and Comparative Example 1 by the one-alloy method.
0.8Dy-4.5Co-6.0B-75.6Fe. Table 1 shows the values of the magnetic properties and the sintered body densities obtained for both sintered body magnets of Example 1 and Comparative Example 1. The magnetic properties of Example 1 are almost the same as those of Comparative Example 1, but the density of the sintered body is almost the same. However, Example 1 is far superior in all values such as residual magnetic flux density, coercive force, and maximum energy product. I have. As described above, even if the composition of the magnet alloy C is exactly the same, there is a considerable difference in the magnetic properties, indicating that the two-alloy method is a very effective method for improving the magnetic properties of the Nd magnet. The metal structure of the B1 alloy in the cast state is shown in FIG. 1 by a backscattered electron image photograph of a scanning electron microscope. As can be seen from the light and dark of the photograph, there are four main constituent phases in the B1 alloy. Each phase is analyzed by EPMA (electron probe X-ray microanalyzer) and X-ray analysis.
RT 2 4 B-phase as shown in FIG, RT 2 3-phase, RT 2 2 phase,
It turned out to be an R-rich phase.

【0019】(実施例2〜、比較例2〜) 表1に示したように実施例2〜の合金組成に対応し
て、A合金としてA1、A3、A5〜A7 A9 の組成合金を作り、
B合金としてB2、B4 〜B7 B9 の組成合金を作製し、以下
実施例1と同様の方法で粉砕、所定の比率に混合、磁場
中成形、焼結(1,050 〜1,120 ℃×1時間)、時効処理
(500 〜600 ℃×1〜10時間)を行い2合金法磁石合金
C2〜Cを製造し、その磁気特性を測定して表1、2
に併記した。比較のため実施例2〜と同じ組成となる
合金を1合金法により作製した以外は実施例2〜と同
条件により磁石合金C2〜Cを製造し、磁気特性を測
定して比較例2〜とし、表1、表2に併記した。
(Examples 2 to 9 , Comparative Examples 2 to 9 ) As shown in Table 1, corresponding to the alloy compositions of Examples 2 to 9 , the compositions of A1, A3, A5 to A7 , and A9 as A alloys Make an alloy,
A composition alloy of B2, B4 to B7 , and B9 was prepared as a B alloy, pulverized in the same manner as in Example 1, mixed in a predetermined ratio, molded in a magnetic field, and sintered (1,050 to 1,120 ° C. × 1 hour). performs an aging treatment (500 ~600 ℃ × 1~10 hours) to produce a 2 alloy method magnet alloy C2~C 9, tables 1 and 2 to measure its magnetic properties
It was also described in. Except prepared by alloy 1 alloy method having the same composition as in Example 2-9 for comparison to produce magnet alloy C2~C 9 by the same conditions as in Example 2-9, Comparative Example to measure the magnetic properties 2 to 9 are shown in Tables 1 and 2.

【0020】[0020]

【表1】 [Table 1]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明により作製した希土類永久磁石
は、高価な添加元素を有効に活用して、従来法の同一組
成の希土類磁石と比べて磁気特性が数段優れており、高
保磁力、高残留磁束密度、さらには高エネルギー積のバ
ランスのとれた高性能磁石を提供することが可能となっ
た。従って今後、各種電気、電子機器用の高性能磁石と
して広汎に利用されることが期待される。
The rare-earth permanent magnet produced according to the present invention has several steps of superior magnetic properties to the conventional rare-earth magnet having the same composition by effectively utilizing expensive additional elements, and has high coercive force and high coercivity. It has become possible to provide a high-performance magnet with a good balance of residual magnetic flux density and high energy product. Therefore, it is expected that it will be widely used as a high-performance magnet for various electric and electronic devices in the future.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のB1合金の走査電子顕微鏡写真によ
る鋳造状態での金属組織図である。
FIG. 1 is a metallographic view of a cast state of a B1 alloy of Example 1 by a scanning electron micrograph.

【符号の説明】[Explanation of symbols]

1 RT2 4B相 2 RT2 3相 3 RT2 2相 4 Rリッチ相1 RT 2 4 B-phase 2 RT 2 3-phase 3 RT 2 2 Phase 4 R-rich phase

フロントページの続き (56)参考文献 特開 平2−288305(JP,A) 特開 平1−111843(JP,A) 特開 昭63−313807(JP,A) 特開 平3−250607(JP,A)Continuation of the front page (56) References JP-A-2-288305 (JP, A) JP-A-1-111184 (JP, A) JP-A-63-313807 (JP, A) JP-A-3-250607 (JP) , A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 A合金を主としてR214B相(ここに
Rは、Nd、Pr、Dyを主体とする少なくとも1種以上の希
土類元素、TはFe及びCoを表す)から成る合金とし、B
合金をR,Co,Fe,Bを含有し、かつ合金中の構成相とし
てR21 14B相および/またはRリッチ相(ここにRは
上記に同じ、T1はFe、Coを主体とする遷移金属元素を
表す)並びにRT2 4B相、RT2 3相、RT2 2相、R22
7相およびRT2 5相(ここにRは上記に同じ、T2はFe、
Coを主体とする遷移金属元素、または該遷移金属元素
よびBを表す)の5相の内1種または2種以上の相との
混合相から成る合金とし、A合金粉末99〜70重量%に対
してB合金粉末を1〜30重量%混合し、該混合合金粉末
を磁場中加圧成形し、該成形体を真空または不活性ガス
雰囲気中で焼結し、さらに焼結温度以下の低温で時効熱
処理してCoを含有する磁石合金とすることを特徴とする
希土類永久磁石の製造方法。
1. An alloy A mainly composed of an R 2 T 14 B phase (where R represents at least one or more rare earth elements mainly composed of Nd, Pr, and Dy, and T represents Fe and Co). , B
Alloy R, Co, Fe, and containing B, and R 2 T 1 14 B phase and / or the R-rich phase as a phase in the alloy (in which R is as defined above, T 1 is mainly Fe, and Co and a transition metal element represents a) and RT 2 4 B phase, RT 2 3-phase, RT 2 2-phase, R 2 T 2
7 phase and RT 2 5 phase (where R is as above, T 2 is Fe,
A transition metal element mainly composed of Co or a mixed phase of one or more of the five phases of the transition metal element and B); B alloy powder is mixed in an amount of 1 to 30% by weight with respect to 70% by weight, the mixed alloy powder is molded under pressure in a magnetic field, and the molded body is sintered in a vacuum or an inert gas atmosphere. A method for producing a rare-earth permanent magnet, comprising aging heat treatment at a low temperature equal to or lower than a temperature to obtain a Co-containing magnet alloy.
【請求項2】 請求項1に記載のB合金に含まれるRT
2 4B相、RT2 3相、RT2 2相、R22 7相およびRT2 5
相の5つの構成相の内少なくとも1種以上の相の融点が
700℃以上1,155℃以下の金属間化合物であることを特徴
とする希土類永久磁石の製造方法。
2. The RT contained in the B alloy according to claim 1.
2 4 B-phase, RT 2 3-phase, RT 2 2-phase, R 2 T 2 7 phase and RT 2 5
The melting point of at least one of the five constituent phases of the phase
A method for producing a rare earth permanent magnet, which is an intermetallic compound having a temperature of 700 ° C. or more and 1,155 ° C. or less.
【請求項3】 請求項1または2に記載のB合金に含ま
れる5つの構成相の内、少なくとも1種以上の相が室温
以上のキューリー温度を有する磁性体であることを特徴
とする希土類磁石の製造方法。
3. A rare earth magnet, wherein at least one of the five constituent phases contained in the B alloy according to claim 1 or 2 is a magnetic material having a Curie temperature of room temperature or higher. Manufacturing method.
【請求項4】 請求項1または2または3に記載のB合
金に含まれる5つの構成相の内、少なくとも1種以上の
相が室温以上のキューリー温度ならびに結晶磁気異方性
を有する磁性体であることを特徴とする希土類磁石の製
造方法。
4. A magnetic material in which at least one of the five constituent phases contained in the B alloy according to claim 1 or 2 or 3 has a Curie temperature of room temperature or higher and a magnetocrystalline anisotropy. A method for producing a rare earth magnet, comprising:
【請求項5】 請求項1に記載のA合金、B合金および
AB混合合金粉末の平均粒径が、0.5〜20μmの範囲内
であることを特徴とする希土類磁石の製造方法。
5. A method for producing a rare earth magnet, wherein the average particle size of the A alloy, B alloy and AB mixed alloy powder according to claim 1 is in the range of 0.5 to 20 μm.
JP03198479A 1991-07-12 1991-07-12 Manufacturing method of rare earth permanent magnet Expired - Lifetime JP3143157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03198479A JP3143157B2 (en) 1991-07-12 1991-07-12 Manufacturing method of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03198479A JP3143157B2 (en) 1991-07-12 1991-07-12 Manufacturing method of rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH0521219A JPH0521219A (en) 1993-01-29
JP3143157B2 true JP3143157B2 (en) 2001-03-07

Family

ID=16391799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03198479A Expired - Lifetime JP3143157B2 (en) 1991-07-12 1991-07-12 Manufacturing method of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP3143157B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69434323T2 (en) * 1993-11-02 2006-03-09 Tdk Corp. Preparation d'un aimant permanent
JP4450996B2 (en) * 1998-08-28 2010-04-14 昭和電工株式会社 Raw material alloy, alloy mixture, and method for producing RTB-based sintered magnet used for manufacturing RTB-based sintered magnet
KR100877875B1 (en) 2001-06-14 2009-01-13 신에쓰 가가꾸 고교 가부시끼가이샤 Corrosion Resistant Rare Earth Magnet and Its Preparation
JP4162884B2 (en) 2001-11-20 2008-10-08 信越化学工業株式会社 Corrosion-resistant rare earth magnet

Also Published As

Publication number Publication date
JPH0521219A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
US5071493A (en) Rare earth-iron-boron-based permanent magnet
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JPH0531807B2 (en)
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
JPH0316761B2 (en)
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JPH01219143A (en) Sintered permanent magnet material and its production
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JP2747236B2 (en) Rare earth iron permanent magnet
JPH045740B2 (en)
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JPH0461042B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JPH045739B2 (en)
JPH0536495B2 (en)
JPH045738B2 (en)
JP3254232B2 (en) Manufacturing method of rare earth permanent magnet
JP2632122B2 (en) Manufacturing method of rare earth permanent magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11