JPH07105289B2 - Rare earth permanent magnet manufacturing method - Google Patents
Rare earth permanent magnet manufacturing methodInfo
- Publication number
- JPH07105289B2 JPH07105289B2 JP61049245A JP4924586A JPH07105289B2 JP H07105289 B2 JPH07105289 B2 JP H07105289B2 JP 61049245 A JP61049245 A JP 61049245A JP 4924586 A JP4924586 A JP 4924586A JP H07105289 B2 JPH07105289 B2 JP H07105289B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- alloy
- weight
- permanent magnet
- earth permanent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
- C22C1/0441—Alloys based on intermetallic compounds of the type rare earth - Co, Ni
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類永久磁石の製造方法、特には少量の添加
物で高いiHcを得ることができ、添加元素によるBrの低
下を最小限に抑え、(BH)maxを向上させることができ
る希土類永久磁石の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is a method for producing a rare earth permanent magnet, and in particular, a high iHc can be obtained with a small amount of an additive, and a decrease in Br due to an additive element can be minimized. , (BH) max, and a method for manufacturing a rare earth permanent magnet.
(従来の技術と問題点) 希土類永久磁石のうち、Nd−Fe−B系磁石はその高い磁
気特性のため近年大変注目されている材料であり、特に
省エネルギー、機器の小型化のため強力な磁石が要求さ
れるモーターの分野では大きな需要が見込まれている。(Prior Art and Problems) Among rare earth permanent magnets, Nd-Fe-B magnets have attracted much attention in recent years due to their high magnetic properties, and are particularly powerful magnets for energy saving and device miniaturization. Large demand is expected in the field of motors that require
しかしながら、この系の磁石は温度係数が大きく、高温
で磁気特性が低下する欠点があり、モーターの動作中に
温度が上昇し100℃ないし150℃近くになると磁気特性の
低下が大きくなるため、高温でも良好な磁性特性を保持
できる磁石が必要とされている。However, the magnet of this system has a large temperature coefficient and has a drawback that the magnetic characteristics are deteriorated at high temperature. When the temperature rises during operation of the motor and the temperature rises to 100 ° C to 150 ° C, the magnetic characteristics decrease greatly. However, there is a need for a magnet that can maintain good magnetic properties.
Nd−Fe−B系磁石では残留磁化(Br)の温度変化は−0.
13%/℃であり、保磁力(iHc)の温度変化は−0.6%/
℃であるが、この中で特に問題なのはiHcの温度変化で
ある。−0.6%/℃の変化とは例えば室温より100℃まで
昇温した時iHcは約半分になることを意味する。それゆ
え、従来はNd磁石の使用温度範囲は高々50℃〜70℃が限
度とされてきた。In the Nd-Fe-B system magnet, the temperature change of the residual magnetization (Br) is -0.
13% / ℃, coercive force (iHc) temperature change is -0.6% /
The temperature change of iHc is the most serious problem. The change of −0.6% / ° C. means that iHc becomes about half when the temperature is raised from room temperature to 100 ° C., for example. Therefore, conventionally, the operating temperature range of Nd magnets has been limited to 50 ° C to 70 ° C at the maximum.
iHcの温度変化を改善するには2つの手段があり、その
1つは従来行なわれてきたようにDy、Tbのような重希土
類元素やAl、Nb、Vのような軽金属元素、遷移金属を添
加した合金を使用することであり(特開昭59−89401、
特開昭60−32306公報参照)、他の1つは保磁力発生の
メカニズムを変えて例えば2相分離型にすることである
が、この方法は未だ成功していない。There are two methods to improve the temperature change of iHc, one of which is to use heavy rare earth elements such as Dy and Tb, light metal elements such as Al, Nb and V, and transition metals as has been conventionally done. It is to use the added alloy (JP-A-59-89401,
The other one is to change the mechanism of coercive force generation to, for example, a two-phase separation type, but this method has not been successful yet.
前者の方法は添加元素によって室温で高いiHcを実現
し、昇温してiHcが低下しても実用上充分なiHcを持たせ
るようにするものである。しかるにAl、Nb、Vは非磁性
元素であって添加によりBrは添加量に比例し、あるいは
それ以上に低下する。Dy、Tbのような重希土類元素は、
遷移金属とは磁気モーメントが反平行に揃うため前記A
l、Nb、V以上にBrの低下が大きい。このため従来の高
保磁力タイプのNd磁石合金は、3元系のNd−Fe−B系磁
石よりBrが大巾に低下しているのが常であった。The former method achieves a high iHc at room temperature by using an additive element, and provides a sufficient iHc for practical use even if the temperature rises and the iHc decreases. However, Al, Nb, and V are nonmagnetic elements, and the addition of Br causes the proportion thereof to be proportional to or more than that of Br. Heavy rare earth elements such as Dy and Tb
Since the magnetic moments are antiparallel to those of transition metals,
The decrease of Br is large above l, Nb, and V. For this reason, in the conventional high coercive force type Nd magnet alloy, Br was always much lower than that of the ternary Nd-Fe-B magnet.
Nd磁石の保磁力機構は核発生成長型である(J.Appl.Phy
s.55,1984 P2083)。これは結晶粒界が非常に滑らかで
かつ清浄であるため磁化と反対方向に磁場をかけても逆
磁区の芽が発生し難いが、粒界近傍の狭い領域に磁壁が
強くピン止めされるためとされている。The coercive force mechanism of Nd magnet is a nucleation growth type (J.Appl.Phy
s. 55, 1984 P2083). This is because the crystal grain boundaries are very smooth and clean, so even if a magnetic field is applied in the direction opposite to the magnetization, it is difficult for reverse magnetic domain buds to occur, but since the domain wall is strongly pinned in a narrow region near the grain boundaries. It is said that.
最近になり平賀、佐川らの電子顕微鏡観察により(Japa
n.,J.Appl.Phys.24,1985 L30)、Nd磁石中はNd2Fe14B結
晶粒の表面を磁気的にソフトな薄いbcc相が包んでいる
ような構造になっており、しかも両者の境界は非常にク
リーンで歪みのない状態であることが明らかになった。
このことから最外層の磁気的にソフトなbcc相に磁壁が
ピン止めされるため大きな保磁力が発生するものと考え
られる。重希土類元素やAl、Nd等は2:14:1化合物の異方
性磁場を増加させたり、結晶粒界近傍のモルフォロジー
に影響を与えるためiHcを増加させるものと考えられ
る。Recently, electron microscopy of Hiraga and Sagawa (Japa
n., J.Appl.Phys. 24, 1985 L30), in Nd magnet has become the surface of the Nd 2 Fe 14 B crystal grains structure as wrapped is magnetically soft thin bcc phase, moreover It became clear that the boundary between the two was very clean and undistorted.
From this fact, it is considered that a large coercive force is generated because the domain wall is pinned to the magnetically soft bcc phase of the outermost layer. It is considered that heavy rare earth elements, Al, Nd, etc. increase iHc because they increase the anisotropic magnetic field of the 2: 14: 1 compound and affect the morphology near the grain boundaries.
本発明者はこのような知見の上で保磁力向上のためには
結晶粒界近傍のみを制御すれば良いことに気づき本発明
に至ったものである。Based on such knowledge, the present inventor has reached the present invention by realizing that it is necessary to control only the vicinity of the crystal grain boundary in order to improve the coercive force.
(発明の構成) 本発明は希土類磁石の製造方法に関するもので、これは
重量百分比で25〜35%のR I(R IはCe、Nd、Pr、Smから
なる軽希土類元素の1種以上、但し該軽希土類元素の内
Ndおよび/またはPrは50%以上である)、0.7〜1.5%の
B、残部がM I(M IはFeまたはFeとCo)であるR I−B
−M I系合金組成物95〜97重量部と、重量百分比で30〜8
6%のR II(R IIはTb、Dy、Ho、Er、Tmからなる重希土
類元素の1種以上、但し該重希土類元素の内Tb、Dyおよ
び/またはHoは50%以上である)と70〜14%がM II(M
IIはAlである)であるR II−M II合金組成物5〜3重量
部とからなる合金粉末を成形し、焼結することを特徴と
するものであり、またこの希土類永久磁石はR II−M II
合金組成物がDyAl2のラーベス相からなる希土類永久磁
石に係るものである。(Structure of the Invention) The present invention relates to a method for manufacturing a rare earth magnet, which comprises 25 to 35% by weight of RI (RI is one or more light rare earth elements consisting of Ce, Nd, Pr and Sm, provided that Of the light rare earth elements
RI-B in which Nd and / or Pr is 50% or more), 0.7 to 1.5% B, and the balance is MI (MI is Fe or Fe and Co)
-95 to 97 parts by weight of MI-based alloy composition and 30 to 8 by weight percentage
6% R II (R II is one or more heavy rare earth elements consisting of Tb, Dy, Ho, Er and Tm, provided that Tb, Dy and / or Ho of the heavy rare earth elements are 50% or more) 70 to 14% is M II (M
II is Al), and an alloy powder consisting of 5 to 3 parts by weight of the R II-M II alloy composition is molded and sintered, and the rare earth permanent magnet is R II. −M II
The alloy composition relates to a rare earth permanent magnet composed of a Laves phase of DyAl 2 .
以下これについて詳しく説明すると、本発明は従来のよ
うに保磁力増加元素を予め秤量・溶解して、添加元素が
均一にインゴット中に分散しているものを使用するので
はなく、主な磁性を担うNd−Fe−B合金と保磁力増加元
素であるAl合金を別々に作成しておき、微粉砕し混合を
同時に行なう方法(以下2合金法という)である。従来
のように溶解時に元素を添加して合金中に均一に分布さ
せる方法では、結晶粒界の近傍に影響を与えるためには
多量の元素を添加せねばならなかったが、本発明による
2合金法では、添加元素はマトリックス相と別に作成し
粉末状態で混ぜ合せてあるため、焼結過程でNd2−Fe14
−Bマトリックス相に表面から拡散して行くが、結晶粒
の中心部までは拡散しない。このため本発明では粒界近
傍の添加物濃度が高く、中心部には殆ど存在しないよう
な不均一状態である。したがって少量の添加物で粒界近
傍のみの異方性磁場、モルフォロジーに大きな影響を与
える効果を生じるのであり、実際にこの点をX線マイク
ロアナライザーで確認した。また、添加物が少量でもiH
c増大効果が大きいためBrの低下が少なくて済み、高い
最大エネルギー積(BH)maxを示した。Explaining this in detail below, the present invention does not use the one in which the coercive force-increasing element is previously weighed and dissolved as in the prior art, and the additive element is uniformly dispersed in the ingot. In this method, the Nd-Fe-B alloy and the Al alloy, which is an element for increasing the coercive force, are separately prepared, finely pulverized, and simultaneously mixed (hereinafter referred to as a two-alloy method). In the conventional method of adding an element during melting and uniformly distributing it in the alloy, a large amount of the element had to be added in order to affect the vicinity of the grain boundary. In the method, the additive element was created separately from the matrix phase and mixed in the powder state, so Nd 2 -Fe 14
-Diffuses into the B matrix phase from the surface, but does not diffuse to the center of the crystal grain. Therefore, in the present invention, the concentration of the additive near the grain boundary is high, and there is almost no heterogeneous state in the central portion. Therefore, a small amount of the additive produces an effect of greatly affecting the anisotropic magnetic field and morphology only in the vicinity of the grain boundary, and this point was actually confirmed by an X-ray microanalyzer. In addition, iH
Since the effect of increasing c was great, the decrease of Br was small, and the maximum energy product (BH) max was high.
本発明で使用される前記したR I−B−M I系合金組成物
は、重量百分比で25〜35%のR Iと0.7〜1.5%のBおよ
び残部がM Iからなるものとされるが、このR IはCe、N
d、Pr、Smなどの軽希土類元素の1種以上とされるもの
で、この軽希土類元素はその50%以上がNdおよび/また
はPrであるものとされる。The RI-B-MI based alloy composition used in the present invention is composed of 25 to 35% by weight of RI, 0.7 to 1.5% of B, and the balance of MI. Ce, N
One or more kinds of light rare earth elements such as d, Pr, and Sm, and 50% or more of the light rare earth elements are Nd and / or Pr.
また、ここに使用される他の合金組成物であるR II−M
II系合金組成物な重量百分比で30〜80%のR IIと70〜14
%のM II(M IIはAlである)とからなるものとされる
が、このR IIはTb、Dy、Ho、Er、Tmからなる重希土類元
素の1種以上とされ、この重希土類元素はその50%以上
がTb、Dyおよび/またはHoからなるものとされる。Also, another alloy composition used here, R II-M
II-based alloy composition 30-80% R II and 70-14% by weight
% M II (M II is Al), and this R II is one or more of the heavy rare earth elements consisting of Tb, Dy, Ho, Er, and Tm. Of which 50% or more is composed of Tb, Dy and / or Ho.
本発明の希土類永久磁石の製造方法はこのR I−B−M I
系合金組成物とR II−M II系合金組成物とからなる合金
粉末を成形し、焼結すればよいが、この2種類の合金組
成物はそれぞれの合金を構成する純度が99.0%以上の各
成分を秤取したのち混合し、これらを高周波炉で溶解し
て得たインゴットを使用すればよい。The method for producing a rare earth permanent magnet of the present invention is the RI-B-MI.
The alloy powder consisting of the system alloy composition and the R II-M II system alloy composition may be molded and sintered. These two alloy compositions have the purity of each alloy of 99.0% or more. The components may be weighed and then mixed, and an ingot obtained by melting these components in a high frequency furnace may be used.
このR I−B−M I系合金組成物とR II−M II系合金組成
物との混合比は重量百分比でR I−B−M I系合金組成物
95〜97重量部とR II−M II系合金組成物3〜5重量とす
ればよいが、本発明におけるR II−M II合金の割合を3
〜5重量部の範囲に限定した理由は、3重量部未満では
iHc増大効果が少ないためであり、5重量部を超えるとB
rの低下が大きいためである。また添加するR II−M II
合金の組成を限定した理由は、R II30重量%以下では合
金が粘くなって粉砕しにくくなり、R II86重量%以上で
は合金の酸化が著しくなるためである。なお、R IIを重
希土類元素にしたのは重希土類のR II2−Fe14−B化合
物はNd2−Fe14−B化合物より異方性磁場の大きいもの
が多く保磁力増大効果があるためであり、M IIをAlにし
たのはこれが単体でも保磁力増加効果があり、R II−M
II合金にすることにより両方の相乗効果が期待できるた
めである。なお、このR II−M II合金としてDyAl2のラ
ベス相を特に選んだのは、種々のR II−M II合金中でこ
のものが特に脆く粉砕し易いことと粉末が酸化しにく
く、添加効果が大きいためである。FeをCoで置換するの
は、キューリー点を上げることができるので可逆温度係
数が改善されるためである。The RI-B-MI based alloy composition and the R II-M II based alloy composition are mixed in a weight percentage of the RI-B-MI based alloy composition.
95 to 97 parts by weight and 3 to 5 parts by weight of the R II-M II alloy composition may be used, but the ratio of the R II-M II alloy in the present invention is 3 parts by weight.
The reason for limiting the range to 5 parts by weight is that if less than 3 parts by weight
This is because the iHc increasing effect is small, and if it exceeds 5 parts by weight, B
This is because the decrease of r is large. Also added R II-M II
The reason for limiting the composition of the alloy is that when the content of R II is 30% by weight or less, the alloy becomes viscous and becomes difficult to grind, and when the content of R II is 86% by weight or more, the oxidation of the alloy becomes remarkable. The heavy rare earth element is used for R II because the heavy rare earth R II 2 -Fe 14 -B compound has a larger anisotropic magnetic field than the Nd 2 -Fe 14 -B compound and has an effect of increasing coercive force. The reason why M II is Al is that it has an effect of increasing coercive force even if it is a single element.
This is because the synergistic effect of both can be expected by using the II alloy. Incidentally, the Laves phase of DyAl 2 was particularly selected as this R II-M II alloy because it is particularly brittle and easily crushed among various R II-M II alloys and the powder is difficult to oxidize, and the addition effect is Is large. The reason why Fe is replaced with Co is that the reversible temperature coefficient is improved because the Curie point can be raised.
このR I−B−M I系合金組成物とR II−M II系合金組成
物はこれら合金粉末を混合し、成形したのち、焼結する
ことによって希土類永久磁石とされるが、この混合はこ
れらの合金組成物のインゴットをディスクミルなどで20
メッシュアンダーに粗粉砕後、秤量して混合し、ジェッ
トミルなどで微粉砕したのち磁場中で配向し、プレス成
形などで成形体とすることがよい。The RI-B-MI-based alloy composition and the RII-MII-based alloy composition are made into rare earth permanent magnets by mixing these alloy powders, molding and then sintering. 20 ingots of alloy composition with a disc mill
After coarsely pulverizing into a mesh under, weighing and mixing, finely pulverizing with a jet mill or the like, and then orienting in a magnetic field, it is preferable to obtain a compact by press molding or the like.
この焼結はこの成形体を例えば1,050℃で1時間Arガス
中で焼結すればよいが、この焼結体はついで550℃程度
で1時間熱処理したのち不活性ガスを用いて急冷すれば
目的とする希土類永久磁石を得ることができる。This sintering may be carried out by, for example, sintering the compact at 1,050 ° C. for 1 hour in Ar gas. The sintered body is then heat-treated at about 550 ° C. for 1 hour and then rapidly cooled by using an inert gas. The rare earth permanent magnet can be obtained.
(発明の効果) 本発明による希土類永久磁石の製造方法は前記のように
組成の異なる2種の合金粉末を混合し、成形して焼結す
る、2合金法に特徴があり、これによれば少量の添加物
で高いiHcを得ることができ、しかも従来避けられなか
った添加元素によるBrの低下を最小限に抑え、(BH)ma
xを向上させることができる。また、R II−M II合金
は、脆いため粉末化が容易であり、合金化しない希土類
メタルよりも微粉砕時の酸化が低減できるという効果が
得られる。(Effect of the Invention) The method for producing a rare earth permanent magnet according to the present invention is characterized by the two-alloy method in which two kinds of alloy powders having different compositions are mixed, shaped and sintered as described above. High iHc can be obtained with a small amount of additive, and the decrease of Br due to the additive element, which has been inevitable in the past, can be minimized, and (BH) ma
x can be improved. Further, since the R II-M II alloy is brittle, it is easy to be powdered, and it is possible to obtain the effect that the oxidation during fine pulverization can be reduced as compared with the rare earth metal which is not alloyed.
(実施例) つぎに本発明の実施例、比較例をあげる。(Example) Next, the Example of this invention and a comparative example are given.
実施例1、比較例1〜3 純度が99.4%のNdと純度99.5%のFeと純度99.5%のBを
重量百分比で34%Nd、64.9%Fe、1.1%Bになるように
秤量し試料Iとした。Example 1, Comparative Examples 1 to 3 Nd having a purity of 99.4%, Fe having a purity of 99.5%, and B having a purity of 99.5% were weighed so as to be 34% Nd, 64.9% Fe, and 1.1% B by weight, and sample I was used. And
これとは別に純度99.4%のDyと純度99.9%のAlとを、7
5.1重量%Dy、24.9重量%Alになるように秤量し試料II
とした。Separately, Dy with a purity of 99.4% and Al with a purity of 99.9% were
Sample II was weighed to be 5.1 wt% Dy and 24.9 wt% Al.
And
各々を別々に高周波炉で溶解してインゴットを作製し
た。このインゴットを別々にディスクミルで20メッシュ
アンダーに粗粉砕後、得られた粗粉を、4種類の重量比
で秤量、混合し、N2ガスによるジェットミルで平均粒径
3.0μmに微粉砕した。この粉末を10KOeの磁場中で配向
し、1.5t/cm2の圧力でプレス成形後4個の成形体とし、
1,050℃で1時間Arガス中で焼結を行なった。この焼結
体を550℃で1時間熱処理した後不活性ガスを用いて急
冷した。焼結体の磁気特性を測定した結果は表1のとお
りであった。Each was separately melted in a high frequency furnace to prepare an ingot. The ingots were separately crushed to 20 mesh under by a disc mill, and the obtained coarse powders were weighed and mixed in four weight ratios, and the average particle diameter was measured by a jet mill with N 2 gas.
Finely pulverized to 3.0 μm. This powder was orientated in a magnetic field of 10 KOe, press-molded at a pressure of 1.5 t / cm 2 into 4 compacts,
Sintering was performed in Ar gas at 1,050 ° C. for 1 hour. This sintered body was heat-treated at 550 ° C. for 1 hour and then rapidly cooled with an inert gas. The results of measuring the magnetic properties of the sintered body are shown in Table 1.
このものはDy−Al添加合金の添加量によりiHcが急激に
増加することがわかるが、比較例1は試料IIを添加しな
い場合であり、比較例2、3は試料IIが3%未満のもの
である。It can be seen that iHc rapidly increases depending on the amount of the Dy-Al-added alloy added, but Comparative Example 1 is the case where Sample II is not added, and Comparative Examples 2 and 3 are those in which Sample II is less than 3%. Is.
実施例2 試料Iと試料IIとを表2における重量百分比で示す量に
それぞれの元素を調整した後、実施例1における操作と
同様な処理を行い、各々の焼結体を得た。この焼結体の
磁気特性を測定した結果は表2に示す通りであった。 Example 2 Samples I and II were adjusted to the respective amounts shown by weight percentage in Table 2 and then the same treatment as in Example 1 was performed to obtain each sintered body. The results of measuring the magnetic properties of this sintered body are shown in Table 2.
Claims (2)
d、Pr、Smからなる軽希土類元素の1種以上、但し該軽
希土類元素の内Ndおよび/またはPrは50%以上であ
る)、0.7〜1.5%のB、残部がM I(M IはFeまたはFeと
Co)であるR I−B−M I系合金組成物95〜97重量部と、
重量百分比で30〜86%のR II(R IIはTb、Dy、Ho、Er、
Tmからなる重希土類元素の1種以上、但し該重希土類元
素の内Tb、Dyおよび/またはHoは50%以上である)と70
〜14%がM II(M IIはAlである)であるR II−M II合金
組成物5〜3重量部とからなる合金粉末を成形し、焼結
することを特徴とする希土類永久磁石の製造方法。1. RI of 25 to 35% by weight percentage (RI is Ce, N
One or more light rare earth elements consisting of d, Pr and Sm, provided that Nd and / or Pr of the light rare earth elements are 50% or more), B of 0.7 to 1.5%, and the balance MI (MI is Fe or Fe and
95 to 97 parts by weight of the RI-B-MI alloy composition which is Co),
30% to 86% by weight of R II (R II is Tb, Dy, Ho, Er,
One or more heavy rare earth elements consisting of Tm, provided that Tb, Dy and / or Ho of the heavy rare earth elements are 50% or more) and 70
Alloy powder consisting of 5 to 3 parts by weight of an R II-M II alloy composition in which -14% is M II (M II is Al) is molded and sintered. Production method.
相からなるものである特許請求の範囲第1項記載の希土
類永久磁石の製造方法。 2. The method for producing a rare earth permanent magnet according to claim 1, wherein the R II-M II alloy composition comprises a Laves phase of DyAl 2 .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61049245A JPH07105289B2 (en) | 1986-03-06 | 1986-03-06 | Rare earth permanent magnet manufacturing method |
DE8787400473T DE3760962D1 (en) | 1986-03-06 | 1987-03-04 | A rare earth-based permanent magnet |
EP19870400473 EP0237416B1 (en) | 1986-03-06 | 1987-03-04 | A rare earth-based permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61049245A JPH07105289B2 (en) | 1986-03-06 | 1986-03-06 | Rare earth permanent magnet manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62206802A JPS62206802A (en) | 1987-09-11 |
JPH07105289B2 true JPH07105289B2 (en) | 1995-11-13 |
Family
ID=12825469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61049245A Expired - Lifetime JPH07105289B2 (en) | 1986-03-06 | 1986-03-06 | Rare earth permanent magnet manufacturing method |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0237416B1 (en) |
JP (1) | JPH07105289B2 (en) |
DE (1) | DE3760962D1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1336866C (en) * | 1986-08-04 | 1995-09-05 | Setsuo Fujimura | Rare earth magnet having excellent corrosion resistance |
EP0265006A1 (en) * | 1986-10-13 | 1988-04-27 | Koninklijke Philips Electronics N.V. | Method of manufacturing a permanent magnet |
US5000800A (en) * | 1988-06-03 | 1991-03-19 | Masato Sagawa | Permanent magnet and method for producing the same |
GB2232165A (en) * | 1989-03-22 | 1990-12-05 | Cookson Group Plc | Magnetic compositions |
BE1007857A3 (en) * | 1993-12-06 | 1995-11-07 | Philips Electronics Nv | Permanent magnet based on RE-FE-B |
US6319336B1 (en) | 1998-07-29 | 2001-11-20 | Dowa Mining Co., Ltd. | Permanent magnet alloy having improved heat resistance and process for production thereof |
CN1169165C (en) * | 1998-10-14 | 2004-09-29 | 日立金属株式会社 | R-T-B series sintered permanent magnet |
CN1246864C (en) | 2001-01-30 | 2006-03-22 | 株式会社新王磁材 | Method for preparation of permanent magnet |
WO2003052778A1 (en) * | 2001-12-18 | 2003-06-26 | Showa Denko K.K. | Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet |
JP2005286176A (en) * | 2004-03-30 | 2005-10-13 | Tdk Corp | R-t-b-based sintered magnet and its manufacturing method |
US8123832B2 (en) | 2005-03-14 | 2012-02-28 | Tdk Corporation | R-T-B system sintered magnet |
KR101474946B1 (en) * | 2007-07-27 | 2014-12-19 | 히다찌긴조꾸가부시끼가이사 | R-Fe-B RARE EARTH SINTERED MAGNET |
JP2010263172A (en) | 2008-07-04 | 2010-11-18 | Daido Steel Co Ltd | Rare earth magnet and manufacturing method of the same |
US8480815B2 (en) * | 2011-01-14 | 2013-07-09 | GM Global Technology Operations LLC | Method of making Nd-Fe-B sintered magnets with Dy or Tb |
CN104347218A (en) * | 2014-10-30 | 2015-02-11 | 浙江鑫盛永磁科技有限公司 | Novel sintered ndfeb permanent magnet and preparation method thereof |
FR3030866B1 (en) | 2014-12-18 | 2021-03-12 | Commissariat Energie Atomique | FRIED PERMANENT MAGNET |
FR3044161B1 (en) | 2015-11-25 | 2019-05-03 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | PERMANENT FRITTE MAGNET |
CN107275029B (en) * | 2016-04-08 | 2018-11-20 | 沈阳中北通磁科技股份有限公司 | A kind of high-performance Ne-Fe-B permanent magnet and manufacturing method with neodymium iron boron waste material production |
CN110483031A (en) * | 2019-08-21 | 2019-11-22 | 南通成泰磁材科技有限公司 | Permanent-magnet ferrite magnetic material resistant to high temperature and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0778269B2 (en) * | 1983-05-31 | 1995-08-23 | 住友特殊金属株式会社 | Rare earth / iron / boron tetragonal compound for permanent magnet |
CA1316375C (en) * | 1982-08-21 | 1993-04-20 | Masato Sagawa | Magnetic materials and permanent magnets |
EP0106948B1 (en) * | 1982-09-27 | 1989-01-25 | Sumitomo Special Metals Co., Ltd. | Permanently magnetizable alloys, magnetic materials and permanent magnets comprising febr or (fe,co)br (r=vave earth) |
JPS6032306A (en) * | 1983-08-02 | 1985-02-19 | Sumitomo Special Metals Co Ltd | Permanent magnet |
CA1235631A (en) * | 1984-02-28 | 1988-04-26 | Hitoshi Yamamoto | Process for producing permanent magnets and products thereof |
US4767450A (en) * | 1984-11-27 | 1988-08-30 | Sumitomo Special Metals Co., Ltd. | Process for producing the rare earth alloy powders |
JP2537189B2 (en) * | 1985-10-25 | 1996-09-25 | 株式会社東芝 | permanent magnet |
-
1986
- 1986-03-06 JP JP61049245A patent/JPH07105289B2/en not_active Expired - Lifetime
-
1987
- 1987-03-04 EP EP19870400473 patent/EP0237416B1/en not_active Expired
- 1987-03-04 DE DE8787400473T patent/DE3760962D1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
EP0237416B1 (en) | 1989-11-08 |
EP0237416A1 (en) | 1987-09-16 |
JPS62206802A (en) | 1987-09-11 |
DE3760962D1 (en) | 1989-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3143156B2 (en) | Manufacturing method of rare earth permanent magnet | |
US5034146A (en) | Rare earth-based permanent magnet | |
EP0101552B2 (en) | Magnetic materials, permanent magnets and methods of making those | |
EP0126802B1 (en) | Process for producing of a permanent magnet | |
US5071493A (en) | Rare earth-iron-boron-based permanent magnet | |
JPH07105289B2 (en) | Rare earth permanent magnet manufacturing method | |
JP3254229B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPS6110209A (en) | Permanent magnet | |
JPH0696928A (en) | Rare-earth sintered magnet and its manufacture | |
JP2720040B2 (en) | Sintered permanent magnet material and its manufacturing method | |
JP2853838B2 (en) | Manufacturing method of rare earth permanent magnet | |
JP2853839B2 (en) | Manufacturing method of rare earth permanent magnet | |
JP2747236B2 (en) | Rare earth iron permanent magnet | |
JPS62174905A (en) | Permanent magnet | |
JP3143157B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPH0146575B2 (en) | ||
JP3247839B2 (en) | Manufacturing method of rare earth permanent magnet | |
JP2000503810A (en) | SE-Fe-B permanent magnet and method of manufacturing the same | |
JPH0653882B2 (en) | Alloy powder for bonded magnet and manufacturing method thereof | |
JP2868062B2 (en) | Manufacturing method of permanent magnet | |
JP3231000B2 (en) | Manufacturing method of rare earth permanent magnet | |
JPS6318603A (en) | Permanent magnet | |
JP2577373B2 (en) | Sintered permanent magnet | |
JPH0815123B2 (en) | permanent magnet | |
JP3053344B2 (en) | Rare earth magnet manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |