JPS6318603A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS6318603A
JPS6318603A JP61161955A JP16195586A JPS6318603A JP S6318603 A JPS6318603 A JP S6318603A JP 61161955 A JP61161955 A JP 61161955A JP 16195586 A JP16195586 A JP 16195586A JP S6318603 A JPS6318603 A JP S6318603A
Authority
JP
Japan
Prior art keywords
magnetic
permanent magnet
phase
weight
laves phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61161955A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Mizoguchi
徹彦 溝口
Akihiko Tsutai
津田井 昭彦
Isao Sakai
勲 酒井
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61161955A priority Critical patent/JPS6318603A/en
Publication of JPS6318603A publication Critical patent/JPS6318603A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To obtain a magnet particularly having good temperature characteristics by sintering an alloy composed mainly of Fe and containing a rare earth element R containing Y, Co, B and Ga, thereby producing a permanent magnet which is composed mainly of a ferromagnetic Fe-rich phase of the tetragonal system and containing a non-magnetic Laves phase. CONSTITUTION:A given amount of Ga is added to a composition of the R-B-Co- Fe system to develop a non-magnetic Laves phase. Its wt.% composition is such that R is 10-40%, B is 0.1-8%, Co is 1-30%, Ga is 0.1-1%, and the remainder is substantially Fe. This alloy is ground to an average particle diameter of 2-10mum, oriented by applying a magnetic field when pressing, subsequently sintered in Ar of about 1100 deg.C, and then aged. If the proportion of the Laves phase is 2-10vol.%, B is 0.8-0.95wt.% and 90wt.% or less of Ga is substituted by Al, then a permanent magnet is obtained which has a higher Curie temperature an paticularly has good temperature characteristics.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は永久磁石に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to permanent magnets.

(従来の技術) 従来高性能磁石として希土類Co系磁石が知られている
。この希土類Co系磁石は最大エネルギー積が大きくて
も30MGOe程度であり、近年の各種電子機器におけ
る小形化、高性能化の要求は強く、より高性能の永久磁
石の開発が望まれていた。この様な要望に応えて鉄を主
体とした永久磁石の開発が行なわれている(特開昭59
−46008号等)。この鉄系の永久磁石は、Nd等の
希土類元素と硼素を含み残部実質的に鉄からなり(B 
H)maxが30MGOeを越えるものを得ルコとがで
き、またCoに比べ安価なFeを主体としているため、
高性能磁石を低コストで得ることができ、非常に有望な
材料である。
(Prior Art) Rare earth Co-based magnets have been known as high-performance magnets. This rare earth Co-based magnet has a maximum energy product of about 30 MGOe at most, and in recent years there has been a strong demand for smaller size and higher performance in various electronic devices, and there has been a desire to develop permanent magnets with higher performance. In response to these demands, permanent magnets mainly made of iron are being developed (Japanese Patent Laid-Open No. 59
-46008 etc.). This iron-based permanent magnet contains rare earth elements such as Nd and boron, and the remainder is substantially iron (B
H) It is possible to obtain a material with a max of over 30 MGOe, and since it is mainly made of Fe, which is cheaper than Co,
It is a very promising material that can produce high-performance magnets at low cost.

この鉄系永久磁石の問題は希土類コバルト系の永久磁石
に比ベキユリー温度が低く、磁気特性の温度特性が劣る
ことである。このことは、例えば高温環境下等の過酷な
条件で使用される、DCブラシレスモーター等に使用さ
れる場合の大きな問題であり、この点の改良が望まれて
いる。
The problem with this iron-based permanent magnet is that it has a lower benzyl temperature than rare-earth cobalt-based permanent magnets, and its magnetic properties have inferior temperature characteristics. This is a major problem when used in DC brushless motors, etc., which are used under harsh conditions such as high-temperature environments, and improvements in this respect are desired.

この様な改良として、例えばR−B−Co−AI−Fe
の組成が提案されている(特開昭60−77959号)
。しかしながら希土類鉄系永久磁石に対するより高性能
化の要求は強く各所で開発が進められている。
As such an improvement, for example, R-B-Co-AI-Fe
The composition of
. However, there is a strong demand for higher performance rare earth iron permanent magnets, and development efforts are underway in various places.

(発明が解決しようとする問題点) この様に希土類鉄系永久磁石は極めて高性能の磁石とな
り得るが、キュリー温度が低く、磁気特性の温度特性が
悪いという欠点がある。
(Problems to be Solved by the Invention) As described above, rare earth iron-based permanent magnets can be extremely high-performance magnets, but they have the disadvantage of having a low Curie temperature and poor temperature characteristics of magnetic properties.

本発明は以上の点を考慮してなされたものであり、キュ
リー温度が高く、磁気特性、特に温度特性の良好な永久
磁石を得ることを目的とする。
The present invention has been made in consideration of the above points, and an object of the present invention is to obtain a permanent magnet having a high Curie temperature and good magnetic properties, particularly temperature properties.

[発明の構成コ (問題点を解決するための手段と作用)本発明は、鉄を
主成分とし、R(イツトリウムを含む希土類元素)、コ
バルト、硼素およびGaを含有する合金の焼結体であり
、正方晶系の強磁性F・す・・チ相を主体とし、非磁性
のラーシス相を含有することを特徴とする永久磁石であ
る。
[Structure of the Invention (Means and Actions for Solving Problems) The present invention is a sintered body of an alloy whose main component is iron and which contains R (a rare earth element including yttrium), cobalt, boron, and Ga. It is a permanent magnet characterized by being mainly composed of a tetragonal ferromagnetic F, S,...T phase and containing a nonmagnetic Rashis phase.

希土類鉄系の永久磁石はNd2Fe14B9の正方晶系
の強磁性Feリッチ相を主1目とする。その相等を構成
相とし、さらに酸化物等を含む。他のR成分を用いた場
合も同様である。
Rare earth iron-based permanent magnets mainly have a tetragonal ferromagnetic Fe-rich phase of Nd2Fe14B9. These phases are considered constituent phases, and further include oxides and the like. The same holds true when other R components are used.

本発明ではさらに非磁性ラーベス相を構成相とが、保磁
力低下という欠点も有する。これは磁性相であるラーベ
ス相が生成されるためである。この磁性相であるラーベ
ス相は逆磁区の核発生サイトとなり保磁力を低下すると
考えられる。本発明ではこのラーベス相を非磁性化し、
もって保磁力を向上させる。従ってCo添加によるキュ
リー温度上昇の効果を最大限に生かしつつ、磁気特性を
良好なものとすることができる。またこのように特性も
良好となる。この非磁性ラーベス相は2〜10vol%
程度含有することが好ましい。あまり多いと磁性を担う
主相の比率が減少し、Brが低下する。またあまり少な
いとCo添加量が少なくなり、キュリー温度上昇の効果
を十分に得ることができない。
The present invention also has the disadvantage that the non-magnetic Laves phase as a constituent phase reduces coercive force. This is because a Laves phase, which is a magnetic phase, is generated. This magnetic phase, the Laves phase, is thought to serve as a nucleation site for reversed magnetic domains and reduce the coercive force. In the present invention, this Laves phase is made non-magnetic,
This improves coercive force. Therefore, it is possible to make the best use of the effect of increasing the Curie temperature due to the addition of Co and to improve the magnetic properties. In addition, the characteristics are also improved in this way. This non-magnetic Laves phase is 2 to 10 vol%
It is preferable to contain it to some extent. If it is too large, the ratio of the main phase responsible for magnetism decreases, resulting in a decrease in Br. On the other hand, if the amount is too small, the amount of Co added will be too small and the effect of raising the Curie temperature will not be sufficiently obtained.

他のRリッチ相、Bリッチ相等は必須ではない。Other R-rich phases, B-rich phases, etc. are not essential.

しかしながらRリッチ相は主相に比べ融点が低く、焼結
の際に主相の界面から欠陥、異物等を除去し、逆磁区の
各発生サイトを低減し保磁力の向上等に寄与する。しか
しながらあまり多いと主相の比率が低下し磁気特性が低
下するため、5vol%以下、好ましくは2.5〜5 
vol%程度は含有したほうが良い。
However, the R-rich phase has a lower melting point than the main phase, and during sintering, removes defects, foreign matter, etc. from the interface of the main phase, reduces the number of sites where reversed magnetic domains occur, and contributes to improving coercive force. However, if the amount is too large, the ratio of the main phase will decrease and the magnetic properties will deteriorate.
It is better to contain about vol%.

前述の如く非磁性ラーベス相を出現させるためには、例
えば、特定のR−B−Co−Pe系の組成に特定量のG
aを添加・含有することで実現できる。この−例を第1
図に示す。第1図(a)は、Co添加のない場合の、同
図(b)はCOのみ添加の、同図(C)はさらにGaを
添加した場合のX線回折図である。いずれも主相はFe
リッチ相である。しかしCo添加の場合は回折角2θが
34°、40゜近傍に異相の存在を示すピークが有る。
As mentioned above, in order to make a nonmagnetic Laves phase appear, for example, a specific amount of G is added to a specific R-B-Co-Pe system composition.
This can be achieved by adding and containing a. This - example 1
As shown in the figure. FIG. 1(a) is an X-ray diffraction diagram when no Co is added, FIG. 1(b) is an X-ray diffraction diagram when only CO is added, and FIG. 1(C) is an X-ray diffraction diagram when Ga is further added. In both cases, the main phase is Fe.
It is a rich phase. However, in the case of Co addition, there are peaks indicating the presence of a different phase near the diffraction angle 2θ of 34° and 40°.

このピーM g Cu 2タイプのN d (F e、
  Co) 、 cubiclaves相からの(22
0)および(311)のピークであることが分った。こ
のラーベス相中のFe、C。
This P M g Cu 2 types of N d (F e,
Co), (22
0) and (311) peaks. Fe, C in this Laves phase.

の比率が約1=1であることを考慮するとキュリー温度
は100℃前後であり、常温で磁性を有する。
Considering that the ratio of is about 1=1, the Curie temperature is around 100°C, and it has magnetism at room temperature.

希土類鉄系の永久磁石の保磁力が逆磁区発生磁場の大き
さで決定されること考慮するとこの磁性ラーベス相が逆
磁区発生サイトとして作用していることは明らかである
Considering that the coercive force of rare earth iron permanent magnets is determined by the magnitude of the magnetic field that generates reverse magnetic domains, it is clear that this magnetic Laves phase acts as a site where reverse magnetic domains occur.

これに対し本発明では第1図(C)から明らかなように
、2θが34°、40’のピークが存在し、同図(b)
の場合に比べわずかに低角度側にンフl−していること
が分かる。これはNd(Fe。
On the other hand, in the present invention, as is clear from FIG. 1(C), there is a peak at 2θ of 34° and 40';
It can be seen that the angle is slightly tilted to the lower angle side compared to the case of . This is Nd(Fe.

Co ) 2相の格子定数が伸びていることを示してて
いる。Ga原子の原子半径が1.41 AでFe(1,
28A) 、  Co (1,25A)に比べ大きいこ
とからGa原子がラーベス相中に存在することを示す。
Co) This shows that the lattice constant of the two phases is elongated. The atomic radius of Ga atom is 1.41 A and Fe(1,
28A) is larger than Co (1,25A), indicating that Ga atoms are present in the Laves phase.

Ga原子は非磁性であるので、Nd(Fe。Since Ga atoms are non-magnetic, Nd(Fe.

Co r G a ) 2は非磁性相となり、この非磁
性ラーベス相は逆磁区の核発生サイトとはならないため
、結果として保磁力が向上する。
Cor Ga ) 2 becomes a non-magnetic phase, and this non-magnetic Laves phase does not become a nucleation site for reverse magnetic domains, resulting in an improvement in coercive force.

本発明永久磁石の組成は へ″     、R÷会升子
七十。この組成範囲内でも非磁性ラーベス相を含有しな
い場合は本発明の範囲に含まれないことは言うまでもな
い。
The composition of the permanent magnet of the present invention is: R ÷ 70. It goes without saying that even within this composition range, if it does not contain a non-magnetic Laves phase, it is not within the scope of the present invention.

R成分が10重量%未満では保磁力が小さく、40%を
越えるとBrが低下し、(BH)waxが低下してしま
う。25〜35重量%がより好ましい。また希土類元素
の中でもNd及びPrは高い(BH)waxを得るのに
有効であり、R成分としてこの2元素の少なくとも一種
、特にNdを含有することが好ましい。この2元素のR
成分中の割合は、70重量%以上であることが好ましい
When the R component is less than 10% by weight, the coercive force is small, and when it exceeds 40%, Br decreases and (BH)wax decreases. More preferably 25 to 35% by weight. Furthermore, among the rare earth elements, Nd and Pr are effective in obtaining high (BH) wax, and it is preferable to contain at least one of these two elements, particularly Nd, as the R component. These two elements R
The proportion in the components is preferably 70% by weight or more.

Bが0.1重量96未満ではiHcが低下してしまい、
8m2%を超えるとBrの低下する。二〇Bしい。Bf
flが多くなると非磁性Bリッチ相が増加焼結性等を向
上することも可能であるが、置換量はB量の80重量%
程度まである。
If B is less than 0.1 weight 96, iHc will decrease,
When it exceeds 8 m2%, Br decreases. It's 20B. Bf
As fl increases, the non-magnetic B-rich phase increases.It is also possible to improve sinterability, etc., but the substitution amount is 80% by weight of the B amount.
To some extent.

Coはキュリー温度の上昇に寄与し、磁気特性の温度特
性の向上に有効であり、1〜30重量%の添加が効果的
である。キュリー温度上昇の効果を十分に得るためには
ある程度の添加が必要であるが、磁気特性を考慮すると
30重−%を超えると保磁力、(BH)IIlaxが低
下してしまう。磁気特性をおとさない程度で多量の添加
が好ましく、5重量%以上、さらには13重量%以上、
13〜23重量96が好ましい。
Co contributes to raising the Curie temperature and is effective in improving the temperature characteristics of magnetic properties, and addition of 1 to 30% by weight is effective. A certain amount of addition is necessary to sufficiently obtain the effect of raising the Curie temperature, but when magnetic properties are taken into account, if the amount exceeds 30% by weight, the coercive force and (BH)IIlax will decrease. It is preferable to add a large amount so as not to deteriorate the magnetic properties, and preferably 5% by weight or more, more preferably 13% by weight or more,
13-23 weight 96 is preferred.

また非磁性ラーベス相を得るために前述の如く、例えば
Gaを添加する。Gaはラーベス相のキュリー温度を低
下せしめ常温で非磁性化し、保磁力る。Gaの一部をL
りで置換しても良いが合計二で10重量%以下である。
Further, in order to obtain a nonmagnetic Laves phase, for example, Ga is added as described above. Ga lowers the Curie temperature of the Laves phase, becomes nonmagnetic at room temperature, and has a coercive force. Part of Ga is L
It may be substituted with 2, but the total amount of 2 is 10% by weight or less.

また置換量はGaの90重重二以下でなければならない
Further, the amount of substitution must be less than 90 times Ga.

このGaはFeリッチ相中に含有されるとき特異的に保
磁力が増大し、(BH)max、温度特性等の磁気特性
が向上する。この詳細な機構は明らかではないが、Ga
の混入により、Feリッチ相の粒界が浄化されるためと
考えられる。また永久磁石全体として同量のGaを含有
する場合でも、Feリッチ相以外、すなわち、Bリッチ
相、Rリッチ相等に多量のGaを含有する場合はあまり
効果がない。Gaの少なくとも70%以上、さらには8
0%以上かFeリッチ相に含有されることが好ましい。
When this Ga is contained in the Fe-rich phase, the coercive force is specifically increased, and the magnetic properties such as (BH)max and temperature properties are improved. Although the detailed mechanism is not clear, Ga
This is considered to be because the grain boundaries of the Fe-rich phase are purified by the mixing of the Fe-rich phase. Further, even if the permanent magnet as a whole contains the same amount of Ga, it is not very effective if a large amount of Ga is contained in phases other than the Fe-rich phase, that is, the B-rich phase, the R-rich phase, etc. At least 70% of Ga, and even 8
It is preferable that 0% or more of Fe is contained in the Fe-rich phase.

この永久磁石合金中における酸素濃度は重要である。酸
素量が多いと保磁力が低下してしまい、高(BH)Il
laxを得ることができない。またあまり少ないと原料
合金の粉砕が困難になり、製造コストの大幅な上昇をも
たらす。粉砕は2〜10μm程度の微粉砕が要求される
が、酸素量が少ないと微粉砕が困難であり、粒径も不均
一となり、ひいては(BH)IIlaxの低下をもたら
す。従って酸素量は0.005〜0603重量96が好
ましい。
The oxygen concentration in this permanent magnet alloy is important. If the amount of oxygen is large, the coercive force will decrease, resulting in high (BH)Il
cannot obtain lax. In addition, if the amount is too small, it becomes difficult to crush the raw material alloy, resulting in a significant increase in manufacturing costs. Although pulverization is required to be finely pulverized to about 2 to 10 μm, if the amount of oxygen is small, pulverization is difficult and the particle size becomes non-uniform, resulting in a decrease in (BH)IIlax. Therefore, the amount of oxygen is preferably 0.005 to 0.603% by weight.

酸素の合金中の働きは明らかではないものの以下の如く
の振舞により、高性能の永久磁石を得ることができるも
のと考えられる。すなわち、溶解合金中の酸素の一部主
成分元素であるR、Fe原子と結合して酸化物となり、
残りの酸素とともに粒界に偏析して存在すると考えられ
、特にRリッチ相に吸収され、磁気特性を阻害してしま
う。希土類鉄系永久磁石が微粒子磁石であり、その保磁
力が逆磁区発生磁場によって決定されることを考慮する
と、酸化物、偏析等の欠陥が多い場合、これらが逆磁区
発生源として作用することにより保磁力が低下してしま
うと考えられる。また欠陥が性が低下すると考えられる
。永久磁石合金中の酸素口は高純度の原料を用いるとと
もに、原料合金溶解時の炉中等の酸素−を厳密にコント
ロールすることで制御できる。
Although the function of oxygen in the alloy is not clear, it is thought that a high-performance permanent magnet can be obtained by the following behavior. That is, some of the oxygen in the melted alloy combines with R and Fe atoms, which are the main constituent elements, to form an oxide,
It is thought that it exists segregated at the grain boundaries together with the remaining oxygen, and is particularly absorbed by the R-rich phase, impeding magnetic properties. Considering that rare earth iron permanent magnets are fine particle magnets and their coercive force is determined by the magnetic field that generates reversed magnetic domains, if there are many defects such as oxides and segregation, these will act as sources of reversed magnetic domains. It is thought that the coercive force decreases. It is also believed that defects reduce the quality. The oxygen port in the permanent magnet alloy can be controlled by using high-purity raw materials and by strictly controlling the amount of oxygen in the furnace etc. during melting of the raw material alloy.

本発明永久磁石は以下の如くにして製造する。The permanent magnet of the present invention is manufactured as follows.

まず所定の組成を有する原料合金をボールミル等の粉砕
手段を用いて粉砕する。この際、後工程の成形と焼結を
容易にし、かつ磁気特性を良好とす、 るために、粉末
の平均粒径が2〜10t1mとなるように微粉砕するこ
とが好ましい。あまり大きいと保磁力の低下をもたらし
、あまり小さいと粉砕が困難であり、Br等の磁気特性
の低下を招く。
First, a raw material alloy having a predetermined composition is pulverized using a pulverizing means such as a ball mill. At this time, in order to facilitate molding and sintering in the subsequent steps and to improve magnetic properties, it is preferable to pulverize the powder so that the average particle size is 2 to 10 t1m. If it is too large, the coercive force will be lowered, and if it is too small, it will be difficult to crush, leading to a reduction in the magnetic properties of Br, etc.

次いで、微粉砕された永久磁石合金粉末を所望の形状に
プレス成形する。成形の際には通常の焼結磁石を製造す
るのと同様に、例えば10kOe程度の磁場を印加し、
配向処理を行なう。続いて1000〜1200°C,0
,5〜5H程度の条件で焼結する。
Next, the finely pulverized permanent magnet alloy powder is press-molded into a desired shape. During molding, a magnetic field of about 10 kOe is applied, for example, in the same way as in manufacturing normal sintered magnets.
Perform orientation processing. Then 1000-1200°C, 0
, 5 to 5 hours.

この焼結は合金中の酸素濃度を増加させないように、A
rガス等の不活性ガス中、真空中等で行なうことが好ま
しい。続いて500〜1000℃、0.5〜10H程度
の条件で時効処理を施す。
This sintering is performed so as not to increase the oxygen concentration in the alloy.
It is preferable to carry out the reaction in an inert gas such as r gas or in a vacuum. Subsequently, aging treatment is performed under conditions of 500 to 1000°C and approximately 0.5 to 10 hours.

このようにして本発明永久磁石を得る。In this way, the permanent magnet of the present invention is obtained.

(実施例) 以下に本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

・実施例−1 0.7 頃1−1 、4 v t%B、  2.1wt%G a
 、 14.4wt%Co。
・Example-1 Around 0.7 1-1, 4 vt%B, 2.1wt%Ga
, 14.4wt%Co.

32.4vt%Nd残部Feの組成となるように各元素
を配合し、Ar雰囲気中で水冷銅ボート中でアーク溶解
した。得られた磁石合金(酸素濃度0.02wt%)を
Ar雰囲気中で粗粉砕し、更にジェットミ3、Gl ルにより約\=yμmの粒度まて微粉砕した。
Each element was blended to have a composition of 32.4 vt% Nd and balance Fe, and arc melted in a water-cooled copper boat in an Ar atmosphere. The obtained magnetic alloy (oxygen concentration 0.02 wt%) was coarsely pulverized in an Ar atmosphere, and further finely pulverized to a particle size of about \=yμm using a jet mill 3 and a Gl mill.

この微粉末を所定の押型に充填して20kOeの磁界を
印加しつつ、2ton/c♂の圧力で圧縮成形した。こ
の成形体をAr雰囲気中、1020〜1120°Cで1
h焼結し、室温まで急冷した後、真空中900℃、1h
の時効処理を行ない、さらに600℃で6hの時効処理
を施し室温まで急冷した。いずれの磁石も非磁性ラーベ
ス相がX線回折により確認された。またGaのうち90
%以上がFeリッチ相に含有されていることがXMAを
用いた組織観察により確認された。
This fine powder was filled into a predetermined mold and compression molded at a pressure of 2 ton/c♂ while applying a magnetic field of 20 kOe. This molded body was heated at 1020 to 1120°C in an Ar atmosphere for 1
After sintering and rapidly cooling to room temperature, 900°C in vacuum for 1 h.
This was followed by an aging treatment at 600° C. for 6 hours, followed by rapid cooling to room temperature. Non-magnetic Laves phase was confirmed in all magnets by X-ray diffraction. Also, 90 of Ga
% or more was contained in the Fe-rich phase by microstructural observation using XMA.

得られた永久磁石について、i Hc 、 (B H)
maxとB量との関係を第2図に示す。比較のため、B
(b)−1,4wt%、 Co 14.4vt%、 N
 d 32.4wt%残部Feの組成(比較例−1)に
ついても同様に第2図に示す。この比較例では非磁性ラ
ーベス相は確認されず、磁性ラーベス相が確認された。
For the obtained permanent magnet, i Hc , (B H)
The relationship between max and the amount of B is shown in FIG. For comparison, B
(b) -1.4wt%, Co 14.4vt%, N
d The composition of 32.4 wt % balance Fe (Comparative Example-1) is also shown in FIG. In this comparative example, a non-magnetic Laves phase was not confirmed, but a magnetic Laves phase was confirmed.

第2図から明らかなように、i Hc 、 (B H)
max高くなっていることが分かる。また本実施例では
キュリー温度500°C−、B rの温度係数が−0,
071%/’Cと優れたものであった。
As is clear from Fig. 2, i Hc , (B H)
It can be seen that the max is higher. In addition, in this example, the Curie temperature is 500°C-, the temperature coefficient of Br is -0,
It was excellent at 0.071%/'C.

同様に製造した各種組成の磁石の特性を第1表に示す。Table 1 shows the characteristics of magnets of various compositions manufactured in the same manner.

以下余白 第1表から明らかなように本発明による永久磁石は優れ
た特性を示す。
As is clear from Table 1 below, the permanent magnet according to the present invention exhibits excellent characteristics.

・実施例−2 各種組成の磁石について構成相と磁気特性を第2表に示
す。
・Example-2 Table 2 shows the constituent phases and magnetic properties of magnets with various compositions.

第2表から明らかなように非磁性ラーベス相を含冑する
本発明実施例では優れた磁気特性を得られていることが
分かる。
As is clear from Table 2, excellent magnetic properties were obtained in the examples of the present invention containing a non-magnetic Laves phase.

以下余白 ・実施例−3 B 0.9vt%、 G a 1.34wj%、 Co
 14.3wt%、Nd30.8vt96残部Feの組
成となるように各元素を配合し、Ar雰囲気中で水冷銅
ボート中でアーク溶解した。得られた磁石合金(酸素濃
度0.02wt%)をAr雰囲気中で粗粉砕し、更にジ
ェットミルにより釘約3μmの粒度まで微粉砕した。こ
の粉末を用い実施例−1と同様にして製造したときの保
磁力の値と、粉砕日から焼結までの日数(Ar中で保存
)の関係を第3図に示す。比較のため。
Margin below/Example-3 B 0.9vt%, Ga 1.34wj%, Co
Each element was blended to have a composition of 14.3 wt %, Nd 30.8 vt 96 balance Fe, and arc melted in a water-cooled copper boat in an Ar atmosphere. The obtained magnetic alloy (oxygen concentration: 0.02 wt%) was coarsely ground in an Ar atmosphere, and further finely ground to a particle size of about 3 μm using a jet mill. FIG. 3 shows the relationship between the coercive force value and the number of days from the day of crushing to sintering (stored in Ar) when this powder was manufactured in the same manner as in Example-1. For comparison.

B 0.98wt%、 N d 32.7vt%残部F
e(比較例−2)についても第3図にあわせて示した。
B 0.98wt%, N d 32.7vt% remainder F
e (Comparative Example-2) is also shown in FIG.

第3図から明らかなように比較例−2の場合は粉砕後2
日で保磁力が大幅に低下してしまうが、本発明の実施例
では20日後においても保磁力の劣化は認められなかっ
た。
As is clear from Figure 3, in the case of Comparative Example-2, the
Although the coercive force significantly decreases after 20 days, no deterioration of the coercive force was observed in the examples of the present invention even after 20 days.

[発明の効果] 以上説明したように本発明によればキュリー温度が高く
、磁気特性に優れ、その温度特性の良好な希土類鉄系の
永久磁石を得ることができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a rare earth iron-based permanent magnet that has a high Curie temperature, excellent magnetic properties, and good temperature characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は永久磁石のX線回折図、第2図はB二と磁気特
性の関係を示す特性図、第3図は粉砕がら焼結までの日
数と保磁力との関係を示す特性図である。
Figure 1 is an X-ray diffraction diagram of a permanent magnet, Figure 2 is a characteristic diagram showing the relationship between B2 and magnetic properties, and Figure 3 is a characteristic diagram showing the relationship between the number of days until sintering of crushed particles and coercive force. be.

Claims (4)

【特許請求の範囲】[Claims] (1)R(イットリウムを含む希土類元素)10〜40
重量%、B0.1〜8重量%、Co1〜30重量%、G
a0.1〜10重量%残部が実質的にFeである組成系
からなる合金の焼結体であり、正方晶系の強磁性Feリ
ッチ相を主体とし、非磁性のラーベス相を含有すること
を特徴とする永久磁石。
(1) R (rare earth elements including yttrium) 10-40
Weight%, B0.1-8% by weight, Co1-30% by weight, G
It is a sintered body of an alloy consisting of a composition system in which the balance is substantially Fe at 0.1 to 10% by weight, and is mainly composed of a tetragonal ferromagnetic Fe-rich phase and contains a non-magnetic Laves phase. Features a permanent magnet.
(2)前記ラーベス相の割合が2〜10vol%である
ことを特徴とする特許請求の範囲第1項記載の永久磁石
(2) The permanent magnet according to claim 1, wherein the proportion of the Laves phase is 2 to 10 vol%.
(3)Bが0.8〜0.95重量%であることを特徴と
する特許請求の範囲第1項記載の永久磁石。
(3) The permanent magnet according to claim 1, wherein B is 0.8 to 0.95% by weight.
(4)Gaの90重量%以下をAlで置換することを特
徴とする特許請求の範囲第1項記載の永久磁石。
(4) The permanent magnet according to claim 1, wherein 90% by weight or less of Ga is replaced with Al.
JP61161955A 1986-07-11 1986-07-11 Permanent magnet Pending JPS6318603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161955A JPS6318603A (en) 1986-07-11 1986-07-11 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161955A JPS6318603A (en) 1986-07-11 1986-07-11 Permanent magnet

Publications (1)

Publication Number Publication Date
JPS6318603A true JPS6318603A (en) 1988-01-26

Family

ID=15745234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161955A Pending JPS6318603A (en) 1986-07-11 1986-07-11 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS6318603A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647503A (en) * 1986-07-23 1989-01-11 Hitachi Metals Ltd Permanent magnet with high thermal stability
WO2012002060A1 (en) * 2010-06-29 2012-01-05 昭和電工株式会社 R-t-b based rare earth permanent magnet, motor, automobile, power generator and wind energy conversion system
JP2012015168A (en) * 2010-06-29 2012-01-19 Showa Denko Kk R-t-b-based rare earth permanent magnet, motor, vehicle, generator and wind power generator
CN105074837A (en) * 2013-03-29 2015-11-18 日立金属株式会社 R-t-b-based sintered magnet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647503A (en) * 1986-07-23 1989-01-11 Hitachi Metals Ltd Permanent magnet with high thermal stability
WO2012002060A1 (en) * 2010-06-29 2012-01-05 昭和電工株式会社 R-t-b based rare earth permanent magnet, motor, automobile, power generator and wind energy conversion system
JP2012015168A (en) * 2010-06-29 2012-01-19 Showa Denko Kk R-t-b-based rare earth permanent magnet, motor, vehicle, generator and wind power generator
JP2012015169A (en) * 2010-06-29 2012-01-19 Showa Denko Kk R-t-b-based rare earth permanent magnet, motor, automobile, power generator and wind force power generator
CN102959648A (en) * 2010-06-29 2013-03-06 昭和电工株式会社 R-T-B based rare earth permanent magnet, motor, automobile, power generator and wind energy conversion system
EP2590181A4 (en) * 2010-06-29 2015-12-02 Showa Denko Kk R-t-b based rare earth permanent magnet, motor, automobile, power generator and wind energy conversion system
CN105074837A (en) * 2013-03-29 2015-11-18 日立金属株式会社 R-t-b-based sintered magnet
EP2985768A4 (en) * 2013-03-29 2016-12-28 Hitachi Metals Ltd R-t-b-based sintered magnet

Similar Documents

Publication Publication Date Title
JPS61222102A (en) Rare earth iron group permanent magnet
US4859254A (en) Permanent magnet
EP0237416A1 (en) A rare earth-based permanent magnet
JPS6110209A (en) Permanent magnet
JP2537189B2 (en) permanent magnet
JPH01220803A (en) Magnetic anisotropic sintered magnet and manufacture thereof
JPH0685369B2 (en) Permanent magnet manufacturing method
JP3296507B2 (en) Rare earth permanent magnet
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPS6318603A (en) Permanent magnet
JPH045739B2 (en)
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JPS62291903A (en) Permanent magnet and manufacture of the same
JPS6247455A (en) Permanent magnet material having high performance
JP2868062B2 (en) Manufacturing method of permanent magnet
JPS6260207A (en) Permanent magnet
JP2577373B2 (en) Sintered permanent magnet
JPH0815123B2 (en) permanent magnet
KR900000427B1 (en) Permanent magnet
JPS6247454A (en) Permanent magnet alloy
JPH0583627B2 (en)
JP3703903B2 (en) Anisotropic bonded magnet
JPS62257704A (en) Permanent magnet
JP4802927B2 (en) Rare earth sintered magnet and manufacturing method thereof