JPS62257704A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS62257704A
JPS62257704A JP61099350A JP9935086A JPS62257704A JP S62257704 A JPS62257704 A JP S62257704A JP 61099350 A JP61099350 A JP 61099350A JP 9935086 A JP9935086 A JP 9935086A JP S62257704 A JPS62257704 A JP S62257704A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
sintered
coercive force
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61099350A
Other languages
Japanese (ja)
Inventor
Akira Fukuno
亮 福野
Hideki Inouchi
井内 秀貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61099350A priority Critical patent/JPS62257704A/en
Publication of JPS62257704A publication Critical patent/JPS62257704A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a sintered permanent magnet having stable magnetic characteristics, by producing the permanent magnet from a sintered material having a specific composition and a predetermined grain size and containing a predetermined amount of oxygen. CONSTITUTION:A permanent magnet is composed of a sintered material having a composition of [(CexLa1-x)yR1-y]z [(Fe1-uMu)1-vBv]1-z, containing 2000 ppm or less of oxygen and having an average grain size of 3-40mum. In the above formula, R represents at least one of rare-earth elements (containing Y) except Ce and La, M represents at least one of the group consisting of Al, Ti, V, Cr, Mn, Zr, Hf, Nb, Ta, Mo, Ge, Sb, Sn, Bi, Ni, W, Cu and Ag; 0.4<=x<=0.9, 2<=y<=1.0, 0.05<=z<=0.3, 0.01<=v<= 0.3, and 0<=u<=0.2. The composition of the magnet may be [(CexLa1-x)yR1-y]z[(Fe1-u-wCowMu)1-vBv]1-z when 0<w<=0.5. In this manner, a sintered permanent magnet having stable magnetic characteristics can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類−鉄永久磁石に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to rare earth-iron permanent magnets.

〔従来の技術〕[Conventional technology]

希土類−Fe−Bを基本成分とする永久磁石についての
研究が近年活発になされ、その結果が公開特許公報等に
より公表されるようになりつつある。
BACKGROUND ART Research has been actively conducted in recent years on permanent magnets containing rare earth elements -Fe-B as a basic component, and the results are beginning to be published in published patent publications and the like.

特開昭57−141901号公報によると、遷移族金属
(T)、メタロイド金属(M) 、Yおよびランタニド
元素Rの組み合わせからなる組成を非晶質化し、次に非
晶を組成を熱処理により結晶化することによって保磁力
を発生せしめる永久磁石粉末製法が記載されている。こ
の公報によると、TはTi、V、Cr、Mn、Fe、C
o、Ni、Cu。
According to JP-A-57-141901, a composition consisting of a combination of a transition group metal (T), a metalloid metal (M), Y, and a lanthanide element R is made amorphous, and then the amorphous composition is crystallized by heat treatment. A method for manufacturing permanent magnet powder is described in which coercive force is generated by oxidation. According to this publication, T is Ti, V, Cr, Mn, Fe, C
o, Ni, Cu.

Zr 、Nb 、Mo 、HE 、Ta 、Wより選ば
れる1種もしくは2種以上の組合せであり、またMはB
、Si、P、Cより選ばれる1種もしくは2種以上の組
合せ、RはYおよびランタニド元素より選ばれる1種も
しくは2種以上の組合せであって、これらを(T+−x
MX)J+−gなる関係式(但し、0≦x≦0.35 
、0.35≦z≦0.90)で含有させた永久磁石粉末
についての特許が請求されている。
One or a combination of two or more selected from Zr, Nb, Mo, HE, Ta, and W, and M is B
, Si, P, and C; R is one or more combinations selected from Y and lanthanide elements;
MX) J+-g (however, 0≦x≦0.35
, 0.35≦z≦0.90).

特開昭58−123853号公報によると、Laおよび
Pr含有材料が提案されており、その組成は、(Fex
B+−Jy(La*Prw〕z〔(Fe1−*−w) 
+−y、但し、RはLa。
According to JP-A-58-123853, a material containing La and Pr has been proposed, and its composition is (Fex
B+-Jy(La*Prw]z[(Fe1-*-w)
+-y, where R is La.

Pr以外の希土類金属、x = 0.75〜0.85 
、 )’ −0,85〜0.95 、 z = 0.4
0〜0.75 、 w= 0.25〜0.60 。
Rare earth metals other than Pr, x = 0.75 to 0.85
, )' -0,85~0.95, z = 0.4
0-0.75, w=0.25-0.60.

z+w≦1.0である。この公報には、液体急冷法によ
り非晶質化したR−Fe−B含有合金を焼鈍して結晶化
させる際の保磁力増大を適切にするために1.希土類元
素の種類および割合を上述の(LaJrw〕z〔(Fe
1−z−w)とする組成調節法が述べられている。
z+w≦1.0. In this publication, 1. The types and proportions of rare earth elements are determined by the above-mentioned (LaJrw]z[(Fe
1-z-w) is described.

特開昭59−46008号公報には、8〜30原子%の
R(但し、Rは希土類元素の少なくとも1種)、2〜2
8原子%のB、及び残部Feからなる磁気異方性焼結体
が提案されている。この公報で公開された発明は液体急
冷法によらず焼結法によって任意の形状の永久磁石体を
製造可能にすることをひとつの意図としている。また、
焼結体成分中のRとしては、Nd単独、Pr単独、Nd
とPrの組合せ、NdとCeの組合せ、SmとPrの組
合せ、PrとYの組合せ、Nd、PrとLaの組合せ、
Tb単独、Dy単独、HO単独、ErとTbの組合せ等
について焼結体の磁気特性が示されている。
JP-A No. 59-46008 discloses that 8 to 30 atomic % of R (wherein R is at least one rare earth element), 2 to 2
A magnetically anisotropic sintered body consisting of 8 at % B and the balance Fe has been proposed. One of the intentions of the invention disclosed in this publication is to make it possible to manufacture a permanent magnet body of any shape by a sintering method rather than by a liquid quenching method. Also,
R in the sintered body component includes Nd alone, Pr alone, Nd
and Pr combination, Nd and Ce combination, Sm and Pr combination, Pr and Y combination, Nd, Pr and La combination,
The magnetic properties of sintered bodies are shown for Tb alone, Dy alone, HO alone, a combination of Er and Tb, etc.

上述の如き従来技術をまとめるとR−Fe−B(但し、
Rは希土類金属)系永久磁石においてRがNdまたはP
rであるときに優れた磁石特性が得られていたことが分
かる。
To summarize the prior art as mentioned above, R-Fe-B (however,
R is a rare earth metal) system permanent magnet, R is Nd or P
It can be seen that excellent magnetic properties were obtained when r.

また、従来技術において、希土類元素としてLaおよび
Ceが使用可能であることを特許請求しているものもあ
るが、LaのみをRとして使用するのではなくLaの含
有量上限を制限していることにより多量のLaによる磁
気特性低下が避けられている。上記従来技術においては
LaおよびCeを主体として希土類成分を具体的に構成
した永久磁石の例はない。
In addition, some prior art patents claim that La and Ce can be used as rare earth elements, but rather than using only La as R, the upper limit of the content of La is limited. This prevents deterioration of magnetic properties due to a large amount of La. In the above-mentioned prior art, there is no example of a permanent magnet specifically composed of rare earth components mainly composed of La and Ce.

第1図はJ、Appl、Phys、Vol 55(19
84)第2079頁に掲載されているグラフを再掲した
R−Fe−B系永久磁石合金の減磁曲線である。このグ
ラフからも、Pr、NdがR−Fe−B合金のR成分と
して最も望ましく、LaまたはCeをR−Fe−B系合
金のR成分とした合金は永久磁石としての特性をもたな
くなることが分かる。このような点からして、上述の従
来技術は、Pr、Nd等の極く一部をLa 、Ceで置
換することを開示していても、LaまたはCeを主体と
してR成分を構成したR−Fe−B合金が永久磁石にな
ることは何ら開示していないと言えよう。
Figure 1 is from J, Appl, Phys, Vol 55 (19
84) This is the demagnetization curve of the R-Fe-B permanent magnet alloy, which is a reproduction of the graph published on page 2079. This graph also shows that Pr and Nd are the most desirable R components of R-Fe-B alloys, and alloys with La or Ce as R components of R-Fe-B alloys no longer have the characteristics as permanent magnets. I understand. From this point of view, even though the above-mentioned prior art discloses replacing a very small part of Pr, Nd, etc. with La or Ce, the R It can be said that there is no disclosure that the -Fe-B alloy can be used as a permanent magnet.

最近の希土類−鉄永久磁石に関する注目すべき進展は、
1984年10月のM M Mに発表されたFe−(3
2,5〜34.5%)R−(1〜1.6%)B1 (但
し、Rはジジム(Nd−10%Pr)、5Ce−ジジム
、または4O−Ceジジム)が1Hc=10.2kg 
(B H) m*X −40MGOeを達成したことで
ある。(rDIDYMIUM−Fe−B 5INTER
ED PERMANENTMAGNETS J論文)、
だが、この永久磁石でもR成分はNdが主体となってい
る。
Recent notable developments in rare earth-iron permanent magnets include:
Fe-(3) announced at MMM in October 1984
2.5-34.5%) R-(1-1.6%) B1 (where R is didymium (Nd-10%Pr), 5Ce-didymium, or 4O-Ce didymium) is 1Hc = 10.2kg
(BH) m*X -40MGOe was achieved. (rDIDYMIUM-Fe-B 5INTER
ED PERMANENT MAGNETS J paper),
However, even in this permanent magnet, the R component is mainly Nd.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

R−Fe−Bを基本成分とする永久磁石は磁気特性がす
ぐれているものの、そのひとつの問題点はすぐれた磁気
特性を得ようとするとNd、Prを希土類金属の主体と
せざるを得ず、このために永久磁石が高価になることで
あった。よって、上記ジジム含有永久磁石は、比較的安
価なジジムを使用してもNd、Prと同等の磁気特性を
発揮できるので注目されているのである。
Permanent magnets whose basic components are R-Fe-B have excellent magnetic properties, but one problem with them is that in order to obtain excellent magnetic properties, Nd and Pr must be the main rare earth metals. This made permanent magnets expensive. Therefore, the didymium-containing permanent magnet is attracting attention because it can exhibit magnetic properties equivalent to those of Nd and Pr even when relatively inexpensive didymium is used.

LaまたはCeは他の希土類元素と比較して多量に産出
されそして安価であるために、これらを希土類金属の主
成分として使用可能になれば希土類−鉄永久磁石の大幅
なコストダウンが可能になる。だが、第1図から分かる
ようにLa、Ceは磁気特性上有害な元素である。La
 、Ceが磁気特性上有害である理由は、希土類−鉄永
久磁石の強磁性成分はRzFe+4B化合物であり、そ
してRがLaであると該化合物が不安定になるかもしく
は生成されず、またRがCeであるR(Ce) Jet
 4Bは保磁力が小さいためである。
La or Ce is produced in large quantities and is inexpensive compared to other rare earth elements, so if it were possible to use them as the main components of rare earth metals, it would be possible to significantly reduce the cost of rare earth-iron permanent magnets. . However, as can be seen from FIG. 1, La and Ce are elements harmful to magnetic properties. La
, Ce is harmful in terms of magnetic properties because the ferromagnetic component of rare earth-iron permanent magnets is a RzFe+4B compound, and if R is La, this compound becomes unstable or is not produced, and R is R (Ce) Jet
This is because 4B has a small coercive force.

上述のように、従来技術は種々の改良を提案しているも
ののLa、Ceを希土類金属の主成分として使用する永
久磁石を提案するに至っていない。
As mentioned above, although the prior art has proposed various improvements, it has not yet come to the point of proposing a permanent magnet using La and Ce as the main components of the rare earth metal.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、 〔(CexLa1−x)y〕z〔(Fe1−y)  z
  ((Fe+−uMu)+−v  Bv) +−g−
但し、RはCa 、La以外の少なくとも1種の希土類
金属(Yを含む)、またMはA l 、 T i 。
The present invention provides [(CexLa1-x)y]z[(Fe1-y)z
((Fe+-uMu)+-v Bv) +-g-
However, R is at least one rare earth metal (including Y) other than Ca and La, and M is Al or Ti.

V 、 Cr 、 M n 、 Z r 、 Hf 、
 N b 、 T a 、 M o 。
V, Cr, Mn, Zr, Hf,
Nb, Ta, Mo.

Ge、、Sb、Sn、Bi、Ni、W、Cu、およびA
gよりなる群の少なくとも1種の元素、0.4≦x≦0
.9,0.2<y≦1.0 、0.05≦z≦0.3 
、0.01≦v≦0.3.0≦u≦0.2−なる組成を
有し、酸素量が2000ppm以下であり、かつ焼結体
の平均結晶粒径が3〜40μmであることを特徴とする
焼結型永久磁石及びC(CexLa+−x)y〕z〔(
Fe1−y) z ((Fe+−u−wcOJu)+−
vBj +−z−但し、RはCe 、La以外の少なく
とも1種の希土類金属(Yを含む)、またMはAg、T
i。
Ge, Sb, Sn, Bi, Ni, W, Cu, and A
At least one element of the group consisting of g, 0.4≦x≦0
.. 9, 0.2<y≦1.0, 0.05≦z≦0.3
, 0.01≦v≦0.3.0≦u≦0.2-, the amount of oxygen is 2000 ppm or less, and the average crystal grain size of the sintered body is 3 to 40 μm. Features of sintered permanent magnet and C(CexLa+-x)y]z[(
Fe1-y) z ((Fe+-u-wcOJu)+-
vBj +-z- However, R is Ce, at least one rare earth metal other than La (including Y), and M is Ag, T
i.

V、Cr、Mn、Zr、Hf 、Nb、Ta、Mo。V, Cr, Mn, Zr, Hf, Nb, Ta, Mo.

Ge、Sb、Sn、Bi、Ni、W、Cu、およびAg
よりなる群の少なくとも1種の元素、0.4≦x≦0.
9,0.2<y≦1.0 、0.05≦z≦0.3 、
0.01≦v≦0.3.0≦u≦0.2゜Q<w≦0.
5 −なる組成を有し、酸素量が2000ppm以下であり
、かつ焼結体の平均結晶粒径が3〜40μmであること
を特徴とする焼結型永久磁石を提供する。
Ge, Sb, Sn, Bi, Ni, W, Cu, and Ag
At least one element of the group consisting of 0.4≦x≦0.
9,0.2<y≦1.0, 0.05≦z≦0.3,
0.01≦v≦0.3.0≦u≦0.2゜Q<w≦0.
Provided is a sintered permanent magnet having a composition of:

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

Xが0.4未満もしくは0.9を越えるとそれぞれLa
単独またはCe単独の組成と同等程度の保磁力しか得ら
れないために、x = 0.4〜0.9とした。
When X is less than 0.4 or more than 0.9, La
Since only a coercive force comparable to that of the composition of Ce alone or Ce alone can be obtained, x = 0.4 to 0.9.

また2が0.05未満であると角型比および保磁力が低
下し、2が0.3を越えると残留磁束密度が低下するた
めに、z = 0.05〜0.3とした。さらに、■が
0.01未満であると保磁力が低下し、またVが0.3
を越えると残留磁束密度が低下するためV=0、O1〜
0.3とした。さらに、より高い保磁力を得るためには
、0.6≦x≦0.8 、0.02≦v≦0.15゜0
.1≦z≦0.2の範囲であることが好ましい。より好
ましくは、0.03≦v≦0.12である。R中の重希
土類の量比は0.4以下、特に0.2以下が望ましい。
Moreover, if 2 is less than 0.05, the squareness ratio and coercive force will decrease, and if 2 exceeds 0.3, the residual magnetic flux density will decrease, so z was set to 0.05 to 0.3. Furthermore, if ■ is less than 0.01, the coercive force decreases, and V is 0.3.
If it exceeds V=0, O1~ because the residual magnetic flux density decreases.
It was set to 0.3. Furthermore, in order to obtain higher coercive force, 0.6≦x≦0.8, 0.02≦v≦0.15゜0
.. It is preferable that the range is 1≦z≦0.2. More preferably, 0.03≦v≦0.12. The ratio of heavy rare earth elements in R is desirably 0.4 or less, particularly 0.2 or less.

Coはキュリ一温度を上昇させ、磁気的性質、特にBr
の温度特性を改善する。COの添加量Wが0.5を越え
ると安価な永久磁石としての特徴が薄れかつ保磁力が低
下するので、Q<w≦0.5となる。好ましくは0.0
01 ≦W≦0.35である。
Co increases the Curie temperature and improves magnetic properties, especially Br.
improve the temperature characteristics of If the amount W of CO added exceeds 0.5, the characteristics as an inexpensive permanent magnet will diminish and the coercive force will decrease, so Q<w≦0.5. Preferably 0.0
01≦W≦0.35.

本発明において酸素量を2000ppm以下としたのは
、この値を越える0□が含まれると、永久磁石としての
特性において本組成系が本来持つ高性能を発揮しないか
らである。
The reason why the oxygen amount is set to 2000 ppm or less in the present invention is that if 0□ exceeding this value is included, the high performance inherent to this composition system as a permanent magnet will not be exhibited.

焼結体の(平均)結晶粒径を3〜40μmとしたのは、
3μm未満を実現する為には成型に供する粒径を2.5
μm以下にしなければならないので、粉砕工程が長時間
かつ複雑になり、酸素量を2000ppm以下に保つこ
とが難かしくなり、磁束密度(Br)が低下する。40
μmより大きくなると、粒子は単磁区粒子でなくなり、
磁場プレス時の、粒子の配向が悪くなり磁束密度が低下
すると伴に、逆磁区の発生点が多くなり保磁力も低下す
る。
The (average) grain size of the sintered body was set to 3 to 40 μm because
In order to achieve a particle size of less than 3 μm, the particle size used for molding should be 2.5 μm.
Since it has to be less than μm, the grinding process becomes long and complicated, and it becomes difficult to maintain the oxygen content below 2000 ppm, resulting in a decrease in magnetic flux density (Br). 40
When larger than μm, the particles are no longer single-domain particles;
During magnetic field pressing, the orientation of the particles deteriorates and the magnetic flux density decreases, and the number of points where reversed magnetic domains occur increases and the coercive force also decreases.

本発明の永久磁石の製造法を一般的に説明するならば以
下のようになる。先ず原材料を所望の組成になるごとく
配合する。これをアルゴン等の不活性ガス中あるいは、
真空中で溶解し鋳造後合金のインゴットを得る。次に得
られたインゴットを必要に応じて非酸化雰囲気中溶体化
あるいは時効後粉砕を行なう。粉砕は公知の粗粉砕また
は微粉砕法に従がって厳密に非酸化性雰囲気に保たれた
中で行なわれる。合金は粉砕によって平均粒径2〜15
μmとなるように調整される。その後非酸化性雰囲気を
保ったまま無磁場あるいは3〜15KOe程度の磁場中
で圧縮成形を行ない成形体を得る。成形体は引き続き非
酸化性雰囲気を保ちつつ熱処理炉に運ばれ、炉中で真空
中あるいは不活性ガス中で900〜1200℃にて0.
5〜6時間焼結後冷却する。次に必要に応じて時効処理
を焼結温度より50℃〜750℃低い温度で0.2〜6
0時間施こす。時効処理としては、高温側で第1段目の
時効後低温側で時効する多段時効処理を用いた方が高い
保磁力が得られる。このようにして本発明の永久磁石は
製造される。
A general explanation of the method for manufacturing a permanent magnet of the present invention is as follows. First, raw materials are blended to give the desired composition. This is carried out in an inert gas such as argon or
After melting and casting in vacuum, an alloy ingot is obtained. Next, the obtained ingot is subjected to solution treatment in a non-oxidizing atmosphere or pulverization after aging, as required. The grinding is carried out in a strictly non-oxidizing atmosphere according to known coarse grinding or fine grinding methods. The alloy is crushed to an average particle size of 2 to 15
It is adjusted so that it becomes μm. Thereafter, compression molding is performed in a non-magnetic field or in a magnetic field of approximately 3 to 15 KOe while maintaining a non-oxidizing atmosphere to obtain a molded body. The molded body is then transported to a heat treatment furnace while maintaining a non-oxidizing atmosphere, where it is heated to 900 to 1200°C in a vacuum or in an inert gas at a temperature of 0.
Cool after sintering for 5 to 6 hours. Next, if necessary, aging treatment is performed at a temperature of 50 to 750 degrees Celsius lower than the sintering temperature.
Apply for 0 hours. As for the aging treatment, a higher coercive force can be obtained by using a multi-stage aging treatment in which aging is performed on the low temperature side after the first stage aging on the high temperature side. In this way, the permanent magnet of the present invention is manufactured.

〔作 用〕[For production]

本発明に係る永久磁石の一つの特色は従来の永久磁石と
比較して組成上安価であるところにある。
One of the features of the permanent magnet according to the present invention is that it is less expensive in terms of composition than conventional permanent magnets.

すなわち、従来はFe−B−R系永久磁石の成分として
使用できないと考えられていたLa 、 Ceを主体と
して極めて安価な永久磁石を製造する。
That is, extremely inexpensive permanent magnets are manufactured mainly using La and Ce, which were conventionally thought to be unusable as components of Fe-BR permanent magnets.

而して、本発明においては、LaとCeの原子比率が約
0.35対約0.65において保磁力が最大になり、ま
たかかる保磁力(iHc)はLa単独のものに比較して
約35倍、Ce単独のものに比較して約3.5倍となる
Therefore, in the present invention, the coercive force is maximum when the atomic ratio of La and Ce is about 0.35 to about 0.65, and the coercive force (iHc) is about 35 times, which is about 3.5 times that of Ce alone.

本出願人に譲渡された特願昭59−280125号にお
いて、その発明者はLaとCeの共存による保磁力(i
Hc)の顕著な増大の原因を究明すべく、FeysCL
、a+−xCer )+Jsの結晶構造をX線で調べ、
RzFe14B型結晶の存在を確認した。この結晶は従
来Nd−Fe−B系合金において検知されていたものと
同じ結晶形を有するものであった。
In Japanese Patent Application No. 59-280125 assigned to the present applicant, the inventor proposed that the coercive force (i
In order to investigate the cause of the remarkable increase in Hc), FeysCL
, a+-xCer)+Js was examined using X-rays,
The presence of RzFe14B type crystals was confirmed. This crystal had the same crystal form as that conventionally detected in Nd-Fe-B alloys.

従来LaはRzFe+4B型結晶を作らないと考えられ
ており、それ故LaはR−Fe−B系永久磁石のR主成
分としては用いられていなかった。ところがLaとCe
が共存する組成においてはRJe+ aB型結晶の存在
が確認されたために、LaとCeが共存するとRJe+
J型結晶が主結晶れることが分かった。よって、この結
晶が保磁力(iHc)の向上に寄与していると考えられ
た。
It has been conventionally believed that La does not form RzFe+4B type crystals, and therefore La has not been used as the main R component of R-Fe-B permanent magnets. However, La and Ce
The presence of RJe+ aB type crystals was confirmed in compositions where La and Ce coexist, so when La and Ce coexist, RJe+
It was found that the J-type crystal was the main crystal. Therefore, it was considered that this crystal contributed to the improvement of coercive force (iHc).

また、Ce、Fe、、Bは格子定数a 、 = 0.8
77の正方品結晶を作り、その保磁力(iHc)はLa
−Fe−Bよりは格段に高いことが知られている。
In addition, Ce, Fe, and B have the lattice constant a, = 0.8
77 square crystals were prepared, and their coercive force (iHc) was La.
-Fe-B is known to be much higher than that of -Fe-B.

ところが、CeとLaを共存させることによって、Ce
Je+ aBよりもはるかに高い保磁力(iHc)が得
られている。この点を考慮すると、本発明により得られ
る高い保磁力(iHc)は、LaとCeがRzFe+J
結晶中にある特定の割合で存在することによる寄与もあ
ると考えられた。
However, by coexisting Ce and La, Ce
A much higher coercive force (iHc) than Je+aB is obtained. Considering this point, the high coercive force (iHc) obtained by the present invention is due to the fact that La and Ce are RzFe+J
It was thought that the presence of a certain proportion in the crystal also contributed.

本発明に係る永久磁石の他の特色は、焼結体の酸素量と
結晶粒径を規制することによって、安定した磁気特性を
得るところにある。
Another feature of the permanent magnet according to the present invention is that stable magnetic properties are obtained by controlling the oxygen content and crystal grain size of the sintered body.

希土類元素は酸化し易いために、焼結磁石中に希土類酸
化物が生成され、これが結晶粒中に存在すると逆磁区の
発生点になり、焼結磁石の保磁力を低下せしめる。また
、希土類酸化物は非磁性であるか、あるいは磁性を有し
ても飽和磁束密度が低いために、焼結磁石の残留磁束密
度を低下せしめる。このような希土類酸化物はLaおよ
びCeを希土類の主成分とする本発明の焼結磁石の磁気
特性を著しく不安定にする。すなわち、LaおよびCe
を希土類の主成分とする焼結磁石では、Nd等を主成分
とする永久磁石よりも希土類酸化物の影響は大きく、N
dを希土類の主成分とする永久磁石では3000ppm
以上の酸素も許容されるが、本組成系では2000pp
m以下に酸素を規制しなければならない。また、焼結磁
石の結晶粒寸法が磁気特性に影響する。Ndを主成分と
する永久磁石では、1μm以下と80μmの間で良好な
磁気特性が得られている。ところがLaおよびCeを希
土類元素の主成分とする永久磁石ではNdを主成分とす
る永久磁石より、磁気特性上良好な結晶粒範囲は狭まく
3〜40μmとなる。
Since rare earth elements are easily oxidized, rare earth oxides are generated in the sintered magnet, and if they exist in the crystal grains, they become points of generation of reversed magnetic domains and reduce the coercive force of the sintered magnet. Furthermore, rare earth oxides are non-magnetic, or even if they are magnetic, they have a low saturation magnetic flux density, so they reduce the residual magnetic flux density of the sintered magnet. Such rare earth oxides make the magnetic properties of the sintered magnet of the present invention containing La and Ce as main rare earth components extremely unstable. That is, La and Ce
In sintered magnets whose main component is rare earth, the influence of rare earth oxides is greater than in permanent magnets whose main component is Nd, etc.
3000 ppm for permanent magnets whose main component is d
Oxygen levels above 2,000pp are allowed, but in this composition system, 2000pp
Oxygen must be regulated below m. Additionally, the grain size of the sintered magnet affects its magnetic properties. For permanent magnets containing Nd as a main component, good magnetic properties are obtained between 1 μm or less and 80 μm. However, in a permanent magnet whose main components are La and Ce as rare earth elements, the crystal grain range with good magnetic properties is narrower, from 3 to 40 μm, than in a permanent magnet whose main component is Nd.

以下、実施例によりさらに本発明を説明する。The present invention will be further explained below with reference to Examples.

〔実施例〕〔Example〕

実施例1 第1表に組成を示すインゴットをアルガス雰囲気溶解法
により製造した。次にアルゴン雰囲気中でショークラッ
シャ、ブラウンミル、ジェットミルにより粗粉砕、微粉
砕を行い約3〜5μmの微粉末とした。その後、微粉末
に、約10KOe。
Example 1 An ingot having the composition shown in Table 1 was manufactured by an argas atmosphere melting method. Next, the mixture was coarsely pulverized and finely pulverized using a Shaw crusher, a Brown mill, and a jet mill in an argon atmosphere to obtain a fine powder of about 3 to 5 μm. Then, about 10 KOe was added to a fine powder.

1、5  ton / cotの条件でアルゴン雰囲気
中で磁場中プレスを施した。続いて、アルゴン雰囲気中
で1000〜1100°Cで2時間焼結を行った。さら
に、得られた焼結体にアルゴン雰囲気中で500〜90
0℃で時効処理を施した。得られた磁石特性を第1表に
示す。
Pressing was performed in a magnetic field in an argon atmosphere under conditions of 1.5 tons/cot. Subsequently, sintering was performed at 1000 to 1100°C for 2 hours in an argon atmosphere. Furthermore, the obtained sintered body was heated to a temperature of 500 to 90% in an argon atmosphere.
Aging treatment was performed at 0°C. The obtained magnetic properties are shown in Table 1.

第1表の18 、19はCeとLaが共存していない組
成の比較例である。これらの18 、19では結晶粒径
および酸素濃度は本発明の範囲内の値となっているが、
LaとCeが共存していないので、磁気特性は著しく低
い。これに対して、本発明例では5kOe以上の保磁力
(iHc)が得られている。
18 and 19 in Table 1 are comparative examples of compositions in which Ce and La do not coexist. In these Nos. 18 and 19, the crystal grain size and oxygen concentration are within the range of the present invention, but
Since La and Ce do not coexist, the magnetic properties are extremely low. On the other hand, in the example of the present invention, a coercive force (iHc) of 5 kOe or more is obtained.

5kOe以上の保磁力を具備する本発明の永久磁石は希
土類コバルト系およびFe−B−Pr(Nd)系、およ
びフェライト系永久磁石と十二分に対抗しうる。
The permanent magnet of the present invention having a coercive force of 5 kOe or more can more than compete with rare earth cobalt-based, Fe-B-Pr (Nd)-based, and ferrite-based permanent magnets.

比較例 第2表に示す組成について、実施例1と同様の手順で焼
結磁石を製造した。但し、酸化が起こり易い通常の焼結
磁石製造条件とするため粗粉砕及び成型の工程を大気中
で行なうこととした。得られた永久磁石の特性を第2表
に示す。
Comparative Example A sintered magnet having the composition shown in Table 2 was manufactured in the same manner as in Example 1. However, it was decided that the coarse pulverization and molding steps would be carried out in the atmosphere to achieve normal sintered magnet manufacturing conditions where oxidation is likely to occur. Table 2 shows the properties of the obtained permanent magnet.

以下余白 第1表の対応する組成と第2表の組成との磁気特性の差
を次表に示す。
The following table shows the difference in magnetic properties between the corresponding compositions in Table 1 and the compositions in Table 2.

第  3  表 〔発明の効果〕 本発明に係る永久磁石は極めて安価でありまた保磁力(
i Hc)は満足すべき高い値を有するために各種用途
に使用されることが期待される。
Table 3 [Effects of the invention] The permanent magnet according to the present invention is extremely inexpensive and has a coercive force (
i Hc) is expected to be used in various applications because it has a satisfactorily high value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はRo、 +3s(F e o、 qzs B 
o、 obs)o、 1165の減磁界曲線である。 第1図
Figure 1 shows Ro, +3s (F e o, qzs B
o, obs) o, 1165. Figure 1

Claims (1)

【特許請求の範囲】 1、〔(Ce_xLa_1_−_x)_yR_1_−_
y〕_z〔(Fe_1_−_uM_u)_1_−_vB
_v〕_1_−_z−但し、RはCe、La以外の少な
くとも1種の希土類金属(Yを含む)、またMはAl、
Ti、V、Cr、Mn、Zr、Hf、Nb、Ta、Mo
、Ge、Sb、Sn、Bi、Ni、W、Cu、およびA
gよりなる群の少なくとも1種の元素、0.4≦x≦0
.9、0.2<y≦1.0、0.05≦z≦0.3、0
.01≦v≦0.3、0≦u≦0.2−なる組成を有し
、酸素量が2000ppm以下であり、かつ焼結体の平
均結晶粒径が3〜40μmであることを特徴とする焼結
型永久磁石。 2、〔(Ce_xLa_1_−_x)_yR_1_−_
y〕_z〔(Fe_1_−_u_−_wCo_wM_u
)_1_−_vB_v〕_1_−_z−但し、RはCe
、La以外の少なくとも1種の希土類金属(Yを含む)
、またMはAl、Ti、V、Cr、Mn、Zr、Hf、
Nb、Ta、Mo、Ge、Sb、Sn、Bi、Ni、W
、Cu、およびAgよりなる群の少なくとも1種の元素
、0.4≦x≦0.9、0.2<y≦1.0、0.05
≦z≦0.3、0.01≦v≦0.3、0≦u≦0.2
0<w≦0.5 −なる組成を有し、酸素量が2000ppm以下であり
、かつ焼結体の平均結晶粒径が3〜40μmであること
を特徴とする焼結型永久磁石。
[Claims] 1, [(Ce_xLa_1_-_x)_yR_1_-_
y]_z[(Fe_1_-_uM_u)_1_-_vB
_v]_1_-_z-However, R is Ce, at least one rare earth metal other than La (including Y), and M is Al,
Ti, V, Cr, Mn, Zr, Hf, Nb, Ta, Mo
, Ge, Sb, Sn, Bi, Ni, W, Cu, and A
At least one element of the group consisting of g, 0.4≦x≦0
.. 9, 0.2<y≦1.0, 0.05≦z≦0.3, 0
.. 01≦v≦0.3, 0≦u≦0.2-, the amount of oxygen is 2000 ppm or less, and the average crystal grain size of the sintered body is 3 to 40 μm. Sintered permanent magnet. 2, [(Ce_xLa_1_-_x)_yR_1_-_
y]_z[(Fe_1_-_u_-_wCo_wM_u
)_1_-_vB_v]_1_-_z-However, R is Ce
, at least one rare earth metal other than La (including Y)
, and M is Al, Ti, V, Cr, Mn, Zr, Hf,
Nb, Ta, Mo, Ge, Sb, Sn, Bi, Ni, W
, Cu, and at least one element of the group consisting of Ag, 0.4≦x≦0.9, 0.2<y≦1.0, 0.05
≦z≦0.3, 0.01≦v≦0.3, 0≦u≦0.2
A sintered permanent magnet having a composition such that 0<w≦0.5 -, an oxygen content of 2000 ppm or less, and an average crystal grain size of the sintered body of 3 to 40 μm.
JP61099350A 1986-05-01 1986-05-01 Permanent magnet Pending JPS62257704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61099350A JPS62257704A (en) 1986-05-01 1986-05-01 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099350A JPS62257704A (en) 1986-05-01 1986-05-01 Permanent magnet

Publications (1)

Publication Number Publication Date
JPS62257704A true JPS62257704A (en) 1987-11-10

Family

ID=14245162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099350A Pending JPS62257704A (en) 1986-05-01 1986-05-01 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS62257704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254529A2 (en) * 1986-07-23 1988-01-27 Kabushiki Kaisha Toshiba Permanent-magnetic material
JP2010074084A (en) * 2008-09-22 2010-04-02 Toshiba Corp Permanent magnet and method for manufacturing permanent magnet
CN110534279A (en) * 2019-08-23 2019-12-03 华南理工大学 A kind of pure high abundance Rare-Earth Ce, La, the nanocrystalline permanent-magnet alloy of the Quito Y member and preparation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254529A2 (en) * 1986-07-23 1988-01-27 Kabushiki Kaisha Toshiba Permanent-magnetic material
JP2010074084A (en) * 2008-09-22 2010-04-02 Toshiba Corp Permanent magnet and method for manufacturing permanent magnet
CN110534279A (en) * 2019-08-23 2019-12-03 华南理工大学 A kind of pure high abundance Rare-Earth Ce, La, the nanocrystalline permanent-magnet alloy of the Quito Y member and preparation

Similar Documents

Publication Publication Date Title
US7258751B2 (en) Rare earth magnet and method for production thereof
JPH0510806B2 (en)
JPH0521218A (en) Production of rare-earth permanent magnet
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JPH0574618A (en) Manufacture of rare earth permanent magnet
JP2513994B2 (en) permanent magnet
JPH03236202A (en) Sintered permanent magnet
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
JPH01219143A (en) Sintered permanent magnet material and its production
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JPH01220803A (en) Magnetic anisotropic sintered magnet and manufacture thereof
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JP2537189B2 (en) permanent magnet
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
JP3303044B2 (en) Permanent magnet and its manufacturing method
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
US5055129A (en) Rare earth-iron-boron sintered magnets
JPH0678582B2 (en) Permanent magnet material
JPS61159708A (en) Permanent magnet
JPH0146575B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPS62257704A (en) Permanent magnet
JPS62281403A (en) Permanent magnet